Relevant subject matter is disclosed in the copending U.S. patent application entitled “linear voltage regulator” with application Ser. No. 11/283,287, which is filed on Nov. 17, 2005 and assigned to the same assignee with this patent application.
The present invention relates to voltage regulators, and particularly to a linear voltage regulator for providing a selectable output voltage to a load mounted on a motherboard.
Linear voltage regulators are widely used to supply power to electronic devices, such as to a load on a motherboard of a computer. Such linear voltage regulators are available in a wide variety of configurations for many different applications.
Referring to
When the resistor R1 or the resistor R2 has an appropriate impedance, the output voltage Vout can be regulated at a required level.
However, in the voltage regulator IC 10, the output voltage Vout is not adjustable with a change in input voltage Vin, such as when the input voltage Vin is 3.3V, the output voltage Vout is 2.5V, and when the input voltage Vin is 3.5 for example, the output voltage Vout is still 2.5V. Furthermore, when a selectable output voltage Vout is required between 2.5V and 2.8V, the linear voltage regulator 1 cannot provide an adjustable output voltage Vout to the load RL.
What is needed is a linear voltage regulator which is able to provide a selectable output voltages to a load.
An exemplary linear voltage regulator which provides a selectable output voltage to a load in accordance with a preferred embodiment includes: a regulating circuit including an input terminal for receiving an input voltage, an output terminal for providing an output voltage to a load, and an adjusting terminal; a first resistor and a second resistor connected between the output terminal and ground for receiving the output voltage; and a voltage sampling control circuit electrically connected to a node between the first resistor and the second resistor including a third resistor and a fourth resistor, a common terminal of the third resistor and the fourth resistor is connected to the node between the first resistor and the second resistor; the other terminals of the third resistor and the fourth resistor act as controlling signal input ends for receiving logic signals from a controlling chip, the voltage sampling control circuit generates a reference current to the adjusting terminal of the regulating circuit to provide a selectable output voltage.
Other advantages and novel features will become more apparent from the following detailed description, in which:
As shown in
The regulating circuit 20 includes a regulating means Q1, a transistor Q2, and a current-limiting resistor R3. The regulating means Q1 is a N-channel metal-oxide-semiconductor field-effect transistor (MOSFET). The transistor Q2 is a bipolar transistor.
A base of the transistor Q2 receives the reference current I1. An emitter of the transistor Q2 is grounded. A collector of the transistor Q2 is connected to a gate of the regulating means Q1. The gate of the regulating means Q1 is coupled to a driving voltage Vd via the current-limiting resistor R3 as a controlling pole. A drain of the regulating means Q1 is connected to the input terminal 22 as the input pole, for receiving the input voltage Vin. A source of the regulating means Q1 is connected to the output terminal 23 as the output pole, for providing the output voltage Vout.
The voltage sampling control circuit 30 includes a third resistor R6, a fourth resistor R7, a first switch Q3, and a second switch Q4. The first switch Q3 and the second switch Q4 are respectively P-channel MOSFETs. A common terminal of the third resistor R6 and the fourth resistor R7 is connected to the node M between the first resistor R4 and the second resistor R5, and the other terminals of the third resistor R6 and the fourth resistor R7 are respectively connected to first terminals of the first switch Q3 and the second switch Q4. Second terminals of the first switch Q3 and the second switch Q4 are respectively connected to ground. Third terminals of the first switch Q3 and the second switch Q4 act as a pair of controlling signal input ends 31 and 32 to selectively control the third resistor R6 and the fourth resistor R7 connected to ground for participating in output voltage Vout sampling.
The controlling signal input ends 31 and 32 are used for receiving logic signals from a controlling chip (Model IP8203R, for example) mounted to a motherboard, for generating an orderly range of output voltages. In this embodiment, there are four different output voltages, a value of a difference between each output voltage being same. For example, there are four output voltages a, b, c, and d. The output voltage a is largest and the output voltage d is smallest, then their relationship to each other can be expressed as a−b is equal to b−c, and b−c is equal to c−d. The logic signals are respectively “11”, “10”, “01”, and “00”, wherein “1” represents logic high value, and “0” represents logic low value. When controlling signal input ends 31 and 32 receive the logic signals, the output voltage will be as follows.
When receiving the logic signal “11”, the first switch Q3 and the second switch Q4 are turned on, therefore the third resistor R6 and the fourth resistor R7 are grounded. When grounded, the third resistor R6 and the fourth resistor R7 cooperate with the first resistor R4 and the second resistor R5 to form a voltage divider. The second resistor R5, the third resistor R6, and the fourth resistor R7 are connected in parallel, and together connected in series with the first resistor R4. The output voltage Vout can be expressed as:
When receiving the logic signals “10”, the first switch Q3 is turned on, the second switch Q4 is turned off, therefore the third resistor R6 is grounded, and the second switch Q4 is in an open state. When grounded, the third resistor R6 cooperates with the first resistor R4 and the second resistor R5 to form a voltage divider. The second resistor R5 and the third resistor R6 are connected in parallel, and together connected in series with the first resistor R4. The output voltage Vout can be expressed as:
When receiving the logic signals “01” in the same way, the first switch Q3 is turned off, and the third resistor R6 is an open state. The second switch Q4 is turned on, therefore the fourth resistor R7 is grounded. When grounded, the fourth resistor R7 cooperates with the first resistor R4 and the second resistor R5 to form a voltage divider. The second resistor R5 and the fourth resistor R7 are connected in parallel, and together connected in series with the first resistor R4. The output voltage Vout can be expressed as:
When receiving the logic signals “00” in the same way, the first switch Q3 and the second switch Q4 are turned off, therefore the third resistor R6 and the fourth resistor R7 are in open states. The first resistor R4 cooperates with the second resistor R5 to form the voltage divider. The output voltage Vout can be expressed as:
When an output voltage Vout suddenly becomes larger, the Vref becomes larger as well, therefore the adjusting current I1 becomes correspondingly larger. A collector current I2 becomes correspondingly larger. Then a voltage ΔUDG between the drain and the gate of the regulating means Q1 becomes higher. The increase of the voltage ΔUDG induces a decrease of the output voltage Vout. Therefore the load Rload voltage drops to a same level as before the sudden increase thereof.
Contrarily, when the output voltage Vout suddenly becomes lower, the Vref becomes lower, the adjusting current I1 becomes correspondingly smaller, and the collector current I2 becomes smaller correspondingly. Then the voltage UDG between the drain and the gate of the regulating means Q1 becomes lower. The decrease of the voltage ΔUDG induces an increase of the output voltage Vout. Therefore the load Rload voltage climbs to a same level as before the sudden decrease thereof.
In the first embodiment, the input voltage Vin is 3.3V, and the driving voltage Vd is 12V. In such case, a relationship of the controlling signal input ends 31 and 32 receiving the logic signals and the output voltage Vout is shown as follows:
As seen in TABLE 1, the output voltage Vout increases by 0.1V when receiving logic signals. The output voltage Vout may be varied depending on values of the first resistor R4, the second resistor R5, the third resistor R6, and the fourth resistor R7.
When the controlling signal input ends 50 and 40 receive the logic signals “11”, “10”, “01” and “00”, the output voltage Vout can be expressed as.
In the second embodiment, when the input voltage Vin is 3.3V, the driving voltage Vd is 12V, then a relationship of the controlling signal input ends 50 and 40 receiving the logic signals and the output voltage Vout is shown as follows:
It is believed that the present embodiments and their advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the invention or sacrificing all of its material advantages, the examples hereinbefore described merely being preferred or exemplary embodiments of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2005 1 0036443 | Aug 2005 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
5231316 | Thelen, Jr. | Jul 1993 | A |
5467009 | McGlinchey | Nov 1995 | A |
5963439 | Wuidart et al. | Oct 1999 | A |
6020727 | Bernard et al. | Feb 2000 | A |
6583607 | Marty et al. | Jun 2003 | B1 |
6861901 | Prexl et al. | Mar 2005 | B2 |
7068019 | Chiu | Jun 2006 | B1 |
Number | Date | Country | |
---|---|---|---|
20070029983 A1 | Feb 2007 | US |