There exist multiple types of light sources currently in use for providing illumination. Such light sources are commonly referred to as lamps. Most of the lamps in use are electrically powered. One of the most common types in use is an incandescent lamp in which a filament of tungsten or other refractory material is heated by the power dissipated in the electrical resistance of the filament when an electrical current is forced through it. Much of the dissipated power is radiated as heat in the form of infrared radiation, some of the power converts to heat that leaves the lamp through thermal conduction and convection, and a relatively small portion of the power is radiated as visible light. For an incandescent lamp the power efficiency of the lamp, which is calculated as the ratio of the power radiated as visible light to the total electrical power dissipated in the lamp, is typically about 5 percent or lower.
The envelope of an incandescent lamp is capable of operating at high temperatures, and the portion of the dissipated power that is not radiated as heat or light is usually carried away almost entirely by convection. There usually is no need for an additional heat sink.
The light radiated from the filament of an incandescent lamp emerges in all directions, and any attempt to distribute the light efficiently and uniformly over a limited illuminated area in practice requires compound optics, such as a reflector in back of the envelope and either a reflector or a lens in front of it.
Another common type of lamp is a discharge lamp, in which electrical current flows through a gas. Excited by the current, the gas emits infrared, visible, and ultraviolet radiation. A fluorescent lamp is a type of discharge lamp in which much of the ultraviolet radiation is converted to visible radiation by a fluorescent coating. Other types of discharge lamps include sodium lamps, carbon arc lamps, mercury arc lamps, neon lamps, xenon lamps, plasma lamps, and metal halide lamps. Visible light is radiated with power efficiencies ranging up to the low twenty percent range. Much of the remaining power is dissipated as infrared or ultraviolet radiation, and some may be converted to heat that is carried away through thermal conduction and convection.
Discharge lamps share with incandescent lamps the ability to shed heat without the addition of a heat sink. Discharge lamps also share with incandescent lamps the need for compound optics to direct the light efficiently and uniformly over a limited illuminated area.
A newer category of light sources distinct from incandescent lamps and discharge lamps is that of solid-state light-emitting devices. Included in this category are, for example, electroluminescent devices, semiconductor lasers, and light-emitting diodes. Unlike incandescent lamps and discharge lamps, solid-state light-emitting devices suitable for illumination emit substantially all of their radiation in the form of visible light, and the amount of power emitted in the form of infrared or ultraviolet radiation is relatively insignificant. Currently, the most efficient of these solid-state light-emitting devices, the light-emitting diodes (LEDs) and the semiconductor lasers, may operate at power efficiencies as high as twenty to forty percent. The electrical power that is not converted to light is converted to heat. To be efficient and long-lasting the solid-state devices cannot operate at high temperatures. Due to the small sizes of practical high-power devices and the low temperatures at which they must operate, usually only a small fraction of the heat is removed from the devices directly through convection, and the remainder of the heat must be removed by thermal conduction through a heat sink that in turn spreads the heat and transfers the heat to the surrounding air by way of convection over a large surface area.
Also, unlike incandescent and discharge lamps, solid-state light-emitting devices emit light over a limited range of directions. Most, in fact, emit only into a half-space, since the devices are attached to heat sinks that would block any light emitted in other directions. This fact, coupled with the fact that solid-state light-emitting devices can be very small compared to incandescent and discharge sources, may present some unique opportunities.
There are many lighting applications in which a large, flat surface, often rectangular in shape, must be illuminated with some degree of uniformity. Examples include the illumination of billboard signs; illumination of displays, paintings, food service, etc.; illumination of walls for color or dramatic effect; and indirect lighting, in which walls or ceilings are illuminated so that they will act as non-glare sources of diffuse light. The usual practice is to use spotlights or floodlights for illumination or, in the case of indirect lighting, to hide the light source within a cove that keeps direct light from striking the eyes of viewers but allows direct and diffuse reflected light to strike a wall or ceiling. The illumination resulting from these methods is often lacking in either uniformity or efficiency. Meanwhile, methods for achieving more uniform illumination, such as the use of projection optics as in a movie projector or slide projector, are usually too expensive due to the cost of the optics. In addition, the use of projection optics often requires that the light source be inconveniently distant from the object being illuminated.
In some examples, a lamp assembly may include a light source, a specularly reflecting surface, and a heat sink. The light source may be in the configuration of an array of light-emitting devices disposed along a center line with all of the light-emitting devices oriented to emit light in the same primary direction. The specularly reflecting surface may be disposed in alignment with the light source, extending along the length of the light source and having a cross-section in planes perpendicular to the center line, which cross-section is constant over most of the length of the light source. The heat sink may have a mounting surface extending the length of the light source, and the light source may be mounted in thermal contact with the mounting surface. The light source may be such that essentially all of the light is emitted within a particular range of angles with respect to the primary direction of emission of the light-emitting devices, the angles being specified on a plane perpendicular to the center line. Light emitted over a first portion of this range of angles may be allowed to illuminate an object as direct light, while light emitted over the remaining, second portion of the range of angles may be intercepted by the specularly reflecting surface and be redirected, as reflected light, to the object. The design of the specularly reflecting surface may be such that the distribution of reflected light on the object may complement the distribution of direct light in a manner that may result in a distribution of total illumination on the object that is more uniform or otherwise more desirable than the distribution of illumination from direct light alone.
In some examples of the lamp assembly just described the specularly reflecting surface may be a portion of the surface of the heat sink. In other examples, the specularly reflecting surface may be a portion of a separate item aligned with the light source. In further examples, the heat sink may include a portion acting as a blind by intercepting light emitted over part of the first portion of the range of angles, thereby reducing the range of angles over which direct light may be distributed. In further examples, an end piece with a reflective surface may be attached to an end of the heat sink. In further examples, the heat sink may include an elongated hole passing through a curved exterior surface of the heat sink to facilitate the mounting of the lamp assembly to a surface with a range of orientations. In further examples, the specularly reflecting surface may be mottled, wrinkled, dimpled, faceted, or otherwise textured to produce a limited amount of diffusion or patterning of the reflected light.
A linear wash lamp disclosed in the present application will become better understood through review of the following detailed description in conjunction with the drawings. The detailed description and drawings provide examples of the various embodiments described herein. Those skilled in the art will understand that the disclosed examples may be varied, modified, and altered without departing from the scope of the disclosed structures. Many variations are contemplated for different applications and design considerations; however, for the sake of brevity, not every contemplated variation is individually described in the following detailed description.
An embodiment of a linear wash lamp is now described in more detail with reference to
For the present embodiment, with reference to
Reflecting surface 101 has a near edge 106 closest to linear light-emitting array 100 and a far edge 107 farthest from linear light-emitting array 100. Light from linear light-emitting array 100 emitted at angle θ=−π/2, expressed in radians, may strike reflecting surface 101 at its near edge 106. Light emitted at angle θ2 may strike reflecting surface 101 at its far edge 107. All light emitted at angles θ between −π/2 and θ2 may strike reflecting surface 101. All light emitted at angles θ between θ2 and π/2 may strike flat surface 102 directly. Let the origin (0,0) of the Cartesian coordinate system defined by directions x and y be located at the intersection of front surface 103 and normal 105. Let flat surface 102 be at the plane defined by x=xw. Let h1 be the y coordinate at a position (xw,h1) below which no direct light is to strike flat surface 102. To assure that no direct light may strike flat surface 102 at positions below (xw,h1), linear light-emitting array 100 may be oriented in such a way that direct light striking flat surface 102 at position (xw,h1) is emitted at angle θ=π/2 with respect to the normal 105 to front surface 103, while direct light striking flat surface 102 at positions above (xw,h1) is emitted at angles θ<π/2. Let h2 be the y coordinate at a position (xw,h2) above which no direct light is to strike flat surface 102. The latter condition is assured if light striking position (xw,h2) directly from linear light-emitting array 100 is emitted at angle θ=θ2, since any light emitted at angles θ between −π/2 and θ2 will be prevented by reflecting surface 101 from striking flat surface 102 directly.
An arbitrary point (xw,h) on flat surface 102 with h between h1 and h2, is illuminated directly by light emitted from light-emitting array 100 at angle θs to normal 105 as shown in
Conceivably, for every emission angle θr between −π/2 and θ2 the angle φ at the point at which the light strikes reflecting surface 101 can be adjusted to direct the reflected light toward point (xw,h). In fact, as is commonly known to those skilled in the art of optics, all of the light emitted at angles θr between −π/2 and θ2 may be reflected toward point (xw,h) by a reflecting surface 101 approximating the shape of an ellipse with foci at (0,0) and (xw,h), provided the corresponding distances d(θr) are small relative to r0 in
In an embodiment of the linear wash lamp, reflecting surface 101 may be shaped to distribute the reflected light in such a way that the reflected light complements the direct light in order to produce an overall illumination intensity on flat surface 102 that varies linearly from zero at point (xw,h1) to a maximum value at point (xw,h2). At the near edge 106 of reflecting surface 101 the tangent to reflecting surface 101 may be perpendicular to the plane of front surface 103 so that light emitted at angle −π/2 with respect to normal 105 will be reflected toward point (xw,h1) on flat surface 102. Progressing from near edge 106 toward far edge 107 the reflecting surface 101 may be curved initially to reflect some light toward points in the vicinity of point (xw,h1), in which case the curve may approximate an ellipse with one focus at point (d(θ)(cos(β1+π/2+θ), d(θ)sin(β1+π/2+θ)), which is the position of the virtual source, and the other focus at point (xw,h1), where β1 is the angle of front surface 103 with respect to the x axis, as shown in
In practice, as is known by persons skilled in the art of geometry, the iteration may be performed mathematically if the flux distribution function I(θ) is known for all light emission angles θ. Alternatively, the curvature of reflecting surface 101 may be adjusted manually through trial and error to achieve the required distribution of reflected light.
The table in
In a preferred embodiment heat-sinking reflector 300 may be formed from aluminum lighting sheet with high specular reflectance, preferably above 80%, on at least one surface. A preferred thickness of the aluminum lighting sheet may be 0.040 inches. The sheet may be shaped by various rolling or bending processes so that a surface with high specular reflectance forms specularly reflecting surface 301. A 90-degree first bend 308 may produce mounting surface 302, which is substantially flat, and a 90-degree second bend 309 may produce blind 303. The outer surface 310 of heat-sinking reflector 300 may have any finish, such as, for example, a wire-brushed finish, a polished finish, a bright-dipped finish, an anodized finish, a powder-coated finish, or a painted finish. In a preferred embodiment the width W of heat-sinking reflector 300 may be approximately 24 inches, but other widths are allowed without limitation. Lamps incorporating this type of heat-sinking reflector may be placed end-to-end to produce the effect of one lamp of length many times W.
Heat-sinking reflector 300 may also be formed from other materials that may or may not have high specular reflectance on a surface. An overlay, inlay, coating, or insert of material with high specular reflectance may be attached to or pressed against heat-sinking reflector 300 to create specularly reflecting surface 301. Heat-sinking reflector 300 may have holes other than those shown in
In a preferred embodiment, end piece 400 may be formed from aluminum lighting sheet with high specular reflectance, preferably above 80%, on at least one surface. A preferred thickness of the aluminum lighting sheet may be 0.040 inches. Mounting tabs 402 may be formed by way of tab bends 405. The outer surface 406 of end piece 400 may have any finish, such as, for example, a wire-brushed finish, a polished finish, a bright-dipped finish, an anodized finish, a powder-coated finish, or a painted finish.
End piece 400 may also be formed from other materials that may or may not have high specular reflectance on a surface. An overlay, inlay, coating, or insert of material with high specular reflectance may be attached to or pressed against inner surface 404 to create a surface with desired optical reflectance properties such as, for example, specular reflectance or diffuse reflectance with high total reflectivity. End piece 400 may have holes other than those shown in
In a preferred embodiment one end piece 400 may be attached to heat-sinking reflector 300 at each end 505 of lamp assembly 500. Each end piece 400 may have a specularly reflective inner surface 404 on the side facing toward the inside 506 of lamp assembly 500. The end piece fasteners 502 and light source fasteners 503 may be pop rivets. A single wire- or cable-protecting device 504 may consist of a strain relief bushing. Light source 501 may include a circuit board assembly 507, a gasket 508, and a bezel 509 similar to those disclosed in Patent Application Number PCT/US2010/045236 filed with the U.S. Patent and Trade Office on Aug. 11, 2010. Light source 501 may also include a potting compound as described in the above application. Light source 501 may also include wires connected as described in the above application. The wires (not shown in
In other embodiments of lamp assembly 500 there may be no end pieces 400, or there may be more than two end pieces 400, and one or more end pieces may be placed within the inside 506 of lamp assembly 500 rather than at an end 505. End pieces 400 may be specularly reflective on both sides. One or more end pieces 400 may be attached to heat-sinking reflector 300 with attachment means other than rivets, such as, for example, screws, spot welds, bends, catches, dimples, or mechanical resistance. One or more of light source fasteners 503 may be screws or other fastener types suitable for applying compression between joined elements and may include lock washers, springs, or other devices to enhance the performance or reliability of the fasteners. Light source fasteners 503 may be omitted. Light source 501 may be held in place by pressure from a portion of blind 303 and another feature of heat-sinking reflector 300, and additional bends or features in heat-sinking reflector 300 may be present to facilitate such capture. Wire- or cable-protecting device 504 may be omitted, or there may be more than one wire- or cable-protecting device 504, and each wire- or cable-protecting device 504 may be something other than a strain-relief bushing, such as, for example, a grommet, a cable sheath, or a cable clamp. Wire- or cable-protecting device 504 may be a connector, such as, for example, a panel-mount connector, to which wires from light source 501 may be attached to make electrical connection from the inside 506 and to which a plug or receptacle may be electrically and mechanically connected from the outside 511 of lamp assembly 500. There may be no exit holes 307 in heat-sinking reflector 300. There may be one or more exit holes in each of one or more end pieces 400, and each such exit hole may have attached to it a wire- or cable-protecting device 504. The light-emitting devices within light source 501 may be light-emitting diodes, incandescent lamps, arc lamps, plasma light emitters, or any other kind of light-emitting device small in size in comparison to the distance between the light-emitting devices and first bend 308.
It will be appreciated that heat-sinking reflector 300 can be a special case of the heat sink (600) described in Patent Application Number PCT/US2010/045236 filed with the U.S. Patent and Trade Office on Aug. 11, 2010, and that heat-sinking reflector 300 may function in a similar manner to conduct and dissipate heat generated by light source 501 while supplying mechanical support for light source 501.
In some cases—if lighting sheet of sufficient thickness is not available, for example—it may be desirable for heat sinking purposes to have a separate piece of sheet material overlapping mounting surface 302 to bring the thickness of the combined sheets to a total that is conducive to sufficient lateral heat transfer. A blind 303 and/or a reverse bend may be incorporated into this piece, and additional heat sink mounting holes axially coincident with heat sink mounting holes 305 may be incorporated into this piece. Light source fasteners 503 may pass through the additional heat sink mounting holes on this piece as well as the heat sink mounting holes 305 in heat-sinking reflector 300 and corresponding holes in light source 501.
It may also be noted that reflecting surface 101 may be designed such that light emitted by linear light-emitting array 100 at certain angles θr may be directed to positions (xw,h) by portions of reflecting surface 101 other than those contemplated previously. For example, the preferred embodiments so far described have light emitted at angle θr=−π/2 striking reflecting surface 101 at near edge 106 and being reflected toward position (xw,h1), while light emitted at angle θr=θ2 strikes reflecting surface 101 at far edge 107 and is reflected toward position (xw,h2). This arrangement helps to keep the angle of incidence of the light on flat surface 102 relatively constant over the illuminated area between position (xw,h1) and position (xw,h2). However, it is also possible to design reflecting surface 101 so that light emitted at angle θr=−π/2 striking reflecting surface 101 at near edge 106 is reflected toward position (xw,h2), while light emitted at angle θr=θ2 strikes reflecting surface 101 at far edge 107 and is reflected toward position (xw,h1). It is also possible to design reflecting surface 101 with a plurality of facets, rather than a continuous curve, in such a way that each facet may reflect light toward a particular approximate position (xw,h) and the total effect of all of the facets may produce approximately the desired illuminance distribution of reflected light.
Although the preferred embodiments that have been described above assume a light source 501 that emits light solely within half-space 104 and hence at angles θ to normal 105 between −π/2 and π/2, it will be clear to persons skilled in the art that endpoint angles differing from −π/2 and π/2 may be accommodated with an approach similar to the approach that has been described.
In more general terms, a linear wash lamp may comprise: a light source the rays of light from which emanate from the vicinity of a center line, the vicinity being defined as points located less than a maximum source radius from the center line, and which rays radiate predominantly into a sector of space having the center line as its vertex, a first plane that contains the center line defining a first boundary of the sector, and a second plane that contains the center line defining a second boundary of the sector, the sector being characterized by an included angle that is the angle traversing the sector between the first plane and the second plane; and a reflecting surface disposed a distance greater than the maximum source radius from the center line, the cross-section of which reflecting surface is substantially constant in size, shape, and orientation in all planes perpendicular to the center line that intersect the light source, the reflecting surface exhibiting primarily specular reflectance of light, the reflecting surface extending to intercept light emitted at angles between the angle of the first plane bounding the sector and the angle of a cutoff plane within the sector, which cutoff plane contains the center line, the reflecting surface not intercepting light at angles between the cutoff plane and the angle of the second plane bounding the sector, the shape of the reflecting surface being such that light reflected by the reflecting surface adds, on an object surface, illumination that supplements the direct illumination by light not intercepted by the reflecting surface.
In further examples of this linear wash lamp, the shape of the reflecting surface may be such that the total illumination on a flat object surface in a plane parallel to the center line, which illumination is a combination of direct illumination by light not intercepted by the reflecting surface and the supplementary illumination by light reflected by the reflecting surface, is uniform between the second plane and the cutoff plane, provided the extent of the light source along the direction of the center line is much greater than the greatest distance from the center line to the illuminated portion of the object surface. Alternatively, the shape of the reflecting surface may be such that the total illumination on a flat object surface in a plane parallel to the center line, which illumination is a combination of direct illumination by light not intercepted by the reflecting surface and the supplementary illumination by light reflected by the reflecting surface, varies linearly with distance along a line on the object surface between the second plane and the cutoff plane, provided the extent of the light source along the direction of the center line is much greater than the greatest distance from the center line to the illuminated portion of the object surface.
In further examples, the linear wash lamp may further comprise a heat sink having a mounting surface to which the light source can be attached and through which heat can flow from the light source into the heat sink.
In further examples, this linear wash lamp with heat sink may further comprise an end piece attached to an end of the heat sink and having a surface substantially perpendicular to the center line, which surface faces toward the other end of the heat sink and which surface is either specularly or diffusively reflective.
In further examples, the linear wash lamp with heat sink may further comprise an elongated hole penetrating through a portion of the heat sink having a curved outer surface, the direction of penetration and the direction of elongation both being in a plane perpendicular to the center line.
In further examples, the linear wash lamp with heat sink may further comprise a portion of the heat sink that may function as a blind by intercepting light emitted by the light source into a portion of the sector between the second boundary and a blind edge plane containing the center line and traversing the interior of the portion of the sector between the second boundary and the cutoff plane.
In further examples of the linear wash lamp with or without heat sink, the intersection of the reflecting surface with a plane perpendicular to the center line may follow a continuous curve.
In further examples of the linear wash lamp with or without heat sink, the reflecting surface may be mottled, wrinkled, dimpled, faceted, or otherwise textured sufficiently to produce a limited amount of diffusion or patterning of the reflected light.
In further examples of the linear wash lamp with or without heat sink, the light source may radiate into a half-space, the included angle of the sector being approximately 180 degrees, and the intersection of the reflecting surface with a plane perpendicular to the center line may have a tangent at a first point at which the intersection meets the first boundary of the sector, the tangent being perpendicular to the first plane and the first point being, of all points on the intersection, the one closest to the center line.
Accordingly, while embodiments have been particularly shown and described, many variations may be made therein. Other combinations of features, functions, elements, and/or properties may be used. Such variations, whether they are directed to different combinations or directed to the same combinations, whether different, broader, narrower, or equal in scope, are also included.
The methods and apparatus described in the present disclosure are applicable to lighting and other industries utilizing solid-state light-emitting devices such as LEDs for illumination.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2011/037474 | 5/20/2011 | WO | 00 | 4/1/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/149795 | 12/1/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4028542 | McReynolds, Jr. | Jun 1977 | A |
5032958 | Harwood | Jul 1991 | A |
6454442 | Changaris | Sep 2002 | B1 |
6773135 | Packer | Aug 2004 | B1 |
7607794 | Thompson | Oct 2009 | B1 |
20060152931 | Holman | Jul 2006 | A1 |
20090180159 | Herloski | Jul 2009 | A1 |
20120099300 | Napoli et al. | Apr 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20130135872 A1 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
61347381 | May 2010 | US |