The field of the invention relates to medical devices for stabilizing the vertebral motion segment. More particularly, the field of the invention relates to a device, a linearly expanding spine cage (LEC), and a method for providing improved spinal intervertebral body distraction and fusion.
Inability to Expand and Distract Endplates
Referring to
Such existing devices for interbody stabilization, such as conventional spine cage or implant 101, have important and significant limitations. These limitations include an inability to expand and distract the endplates. Separation of the endplates serves to create lordosis within the spine. Current devices for interbody stabilization include static spacers composed of titanium, PEEK, a high performance thermoplastic polymer produced by VICTREX, (Victrex USA Inc., 3A Caledon Court; Greenville, S.C. 29615), carbon fiber, or resorbable polymers. Current interbody spacers do not improve interbody lordosis and can contribute to the formation of a kyphotic segment and the clinical problem of “flatback syndrome.” Separation of the endplates increases space available for the neural elements, specifically the neural foramen. Existing static cages do not reliably improve space for the neural elements. Therefore, what is needed is an expanding cage that will increase space for neural elements centrally and in the neural foramen.
Poor Interface Between Bone and Biomaterial
Another problem with conventional devices for interbody stabilization includes poor interface between bone and biomaterial. Conventional static interbody spacers form a weak interface between bone and biomaterial. Although the surface of such implants is typically provided with a series of circumferential threads or grooves 104, such threads are uniform and are in parallel with applied horizontal vectors or side to side motion. That is, the threads offer no resistance to movement applied to either side 106 of the endplates (as opposed to force applied to the front or back Thus, nonunion is common in allograft, titanium and polymer spacers, due to motion between the implant and host bone. Conventional devices typically do not expand between adjacent vertebrae.
Therefore, what is needed is a way to expand an implant to develop immediate fixation forces that can exceed the ultimate strength at healing. Such an expandable implant ideally will maximize stability of the interface and enhance stable fixation. The immediate fixation of such an expandable interbody implant advantageously will provide stability that is similar to that achieved at the time of healing. Such an implant would have valuable implications in enhancing early post-operative rehabilitation for the patient.
Large Diameter Devices Require Wide Exposure of Neural Structures
Another problem of conventional interbody spacers is their large diameter requiring wide exposure. Existing devices used for interbody spacers include structural allograft, threaded cages, cylindrical cages, and boomerang-shaped cages. Conventional devices have significant limitation with regard to safety and efficacy. Regarding safety of the interbody spacers, injury to neural elements may occur with placement from an anterior or posterior approach. A conventional spine cage lacks the ability to expand linearly in a vertical direction without also changing position or expanding laterally, thus working against stable fixation.
The risks to neural elements are primarily due to the disparity between the large size of the cage required to adequately support the interbody space, and the small space available for insertion of the device, especially when placed from a posterior or transforminal approach. Existing cylindrical interbody implants are characterized by a width that is equal to their height. Therefore, implantation requires a wide exposure and potential compromise of vascular and neural structures. Given the proximity of nerve roots and vascular structures to the insertion site, and the solid, relatively large size of conventional hollow devices, such constraints predispose a patient to foraminal (nerve passage site) violation, and possible neural and vascular injury.
Therefore, what is needed is an expanding spine cage that is capable of insertion with minimal invasion into a smaller aperture. Such a minimally sized spine cage advantageously could be expanded by instrumental force application. Due to the small size of the cage, the nerves can be anatomically separated from the cage proximity, thus allowing a greater level of safety during the surgical procedure. Such an expandable implant would permit a more narrow exposure in the space outside of the vertebral body, with expansion inside of the interbody space.
What is also needed is a smaller expanding spine cage that is easier to operatively insert in a patient with minimized trauma in contrast to conventional, relatively large devices that create needless trauma to nerve roots in the confined space of the vertebral region.
Limited Capacity for Interbody Bone Formation
Existing interbody implants have limited space available for bone graft. Adequate bone graft or bone graft substitute is critical for a solid interbody arthrodesis. It would be desirable to provide an expandable interbody cage will provide a large volume of bone graft material to be placed within the interbody space. Additionally, conventional interbody implants lack the ability to stabilize endplates completely and prevent them from moving. Therefore, what is also needed is an expanding spine cage wherein the vertebral endplates are subject to forces that both distract them apart, and hold them from moving. Such an interbody cage would be capable of stabilization of the motion segment, thereby reducing micro-motion, and discouraging pseudo arthrosis (incomplete fusion) and pain.
Ideally, what is needed is a spine cage or implant that is capable of increasing its expansion diameter to a calculated degree. Such a spine cage would permit restoration of normal spinal alignment after surgery and hold the spine segments together rigidly, mechanically, until healing occurs. What is also needed is an expanding cage or implant that is capable of holding vertebral or joint sections with increased pullout strength to minimize the chance of implant subsidence in the healing period.
It would also be desirable if such a cage could expand linearly (vertically, along the vertical axis of the entire spine) rather than uniformly which would take up more space inside the vertebral body surfaces.
An aspect of the invention comprises a linearly expanding spine cage (LEC) comprising two halves joined along a common longitudinal axis to form a cylinder with a minimized diameter in its unexpanded state that is equal to the diameter of an insertion groove cut in adjacent vertebral bodies. The LEC is thus conformably engaged between the endplates of adjacent vertebra to effectively distract the intervertebral area, restore space for neural elements, stabilize the motion segment and eliminate pathologic segmental motion. The LEC enhances spinal arthrodesis by creating a rigid spine segment.
The LEC provides a significant advantage by enabling a comparatively large quantity of bone growth enhancing agents to be contained within its interior and communicated directly to adjacent bone over a maximized surface area due to a perforated design with apertures dispersed through multiple rows of corrugations, ridges, points, troughs or other features for bone engagement provided on radial surfaces of LEC halves. Importantly, this results in fixation forces greater than adjacent bone and soft tissue failure forces.
By expanding linearly (vertically, along the vertical axis of the entire spine) rather than uniformly (which would take up more space inside the vertebral body surfaces), the cage height increases to hold the vertebrae, while the width remains stable so as to decrease impingement upon a second cage, or upon soft tissue structures in the immediate vicinity (neural elements).
Generally, two LECs are used for fusion through the anterior approach—though the surgeon can choose any insertional vector. The cages may be inserted in parallel, or obliquely to accommodate located anatomy, and to adjust deformities such as scoliosis, kyphosis, and spondylolisthesis.
The clinical goals of the LEC and method for its insertion reduce pain, improve function, and permit early mobilization of the patient after fusion surgery. Since the LEC pullout forces are greater than vertebral body failure forces, patients can mobilize more quickly than was previously possible. Once healing (fusion or arthrodesis) does occur, the implants become incorporated and their role becomes quiescent.
The present LEC provides more internal to external graft bone space exposure, easier insertion, less risk of insertional damage to nerve roots and other tissue, and thus a substantially improved immediate and long term result. The specialized exterior on the outside of the LEC seeks to balance multiple projections, tines, or other bone engaging features that will hold firmly adjacent bone to prevent prosthetic extrusion, while being sufficiently rounded so as to avoid injuring nearby nerve or vascular structures. Bone ingrowth is encouraged by the perforated design of the LEC and the exterior corrugations that greatly increase the surface area of the LEC that conformably engages adjacent vertebral bone. By avoiding a square or rectangular configuration, the LEC is less prone toward subsidence.
The drawings are heuristic for clarity. The foregoing and other features, aspects and advantages of the invention will become better understood with reference to the following descriptions, appended claims and accompanying drawings in which:
Referring to
As is well understood by one skilled in the art, the intervertebral disc occupying space 204 will be removed using standard techniques including rongeur, curettage, and endplate preparation to bleeding subchondral bone. The posterior longitudinal ligament will be divided to permit expansion of the intervertebral space.
The intervertebral space 204 will be distracted to 10 mm using a rotating spatula (Not shown. This is a device that looks like a wide screw driver that can be placed into the disc space horizontally and turned 90 degrees to separate the endplates).
Referring to
It will be appreciated that the spiked tips 210 of the insertion cannulas advantageously stabilize the working surfaces of the vertebral segments to a high degree such that all bone movement and misalignment is substantially prevented during the operation. With a narrow cannula in place, the neural and vascular elements are protected and a safe working channel is created for endplate preparation and cage placement. Insertion of the cage follows tapping of the endplates, or vertebral segments.
Referring to
Once the cutting tool is removed, the vertebral surface will have a radial or rounded cut 216 acting as a base for stabilized, conformable receipt of a 10 mm diameter spine cage.
An important aspect of the invention is that the LEC cage 218 is, for example, only on average about 10 mm in width—the same diameter as the groove 216 made by cutting tool 212. This is critical because conventional cages are 14-16 mm high and wide, making them quite difficult to insert. Such conventional cages require large cannulas for insertion and subject nerve roots to trauma and injury. Mispositioning such a cage by as little as 3 mm can severely injure a nerve root.
In contrast, the present LEC cage can expand to a greater dimension without requiring so much space in insertion. As set forth above, this enables the present cannula to be much smaller than a conventional cannula. This safeguards the nerve roots and minimizes trauma. The 10 mm limitation is an example only. Thus, the cannula can be made as small as possible to take advantage of the unique expandable attributes of the LEC.
As will be explained in greater detail infra, the LEC can expand linearly to a vertical height by approximately 30-40 percent. The LEC is characterized by expansion ranges of, for example, from 7 mm up to 10 mm; from 9 mm up to 12 mm; or 12 mm up to about 16 mm. Due to the wide expansion range, a cannula advantageously can be as small as possible for insertion of the smaller LEC in its unexpanded state.
Referring to
It will be appreciated that the interior surface of the cannula advantageously matches or closely conforms to the exterior profile of the insertion tool and LEC, thereby properly orienting the LEC and preventing the LEC from rotating in the cannula. This further aids in precise placement of the LEC without injury to nearby nerve roots.
Referring to
Referring to
It will be appreciated that providing other equivalent bone engaging features such as a multiplicity of pointed surfaces, corrugations or points extending over bone contacting surfaces of each LEC half 218a, 218b similarly provides a maximized surface area for bone engagement and fixation.
When seated in position, the surface configuration of the LEC prevents the LEC from rotating in the groove in the vertebral surface. This further enhances stable fixation of the LEC with the bone and prevents rollover and misalignment.
The cylindrical configuration of the LEC and matching radius of grooves 216 provide initially a 360° mating surface or bone to implant interface. This effectively doubles pullout forces with respect to the surface contact currently available in spinal reconstruction. Thus, the LEC is capable of withstanding at least 2000 Newtons (force pounds) in the perioperative period. In sitting, a person is capable of withstanding typically 1200 Newtons; when standing 800N, and when forward bending and heavy lifting up to 10,000N of intervertebral body force. Titanium is a preferential material for the LEC that achieves at least a 2000 Newton pullout force in the perioperative period.
The foregoing features enable the LEC to expand into the vertebrae with greater fixation forces than would be currently possible with known conventional devices. Thus, the requirements for additional stabilization procedures are reduced. This means that instead of achieving spine fusion by a series of conventional operative procedures, given the immediate solid fixation that accrues from the present LEC, operative procedures may be reduced in number, potentially to one operation. This advantageously would save the patient from pain, and the risks attendant with multiple anesthesias.
Due to the enhanced fixation and lateral stability, healing time is greatly reduced. Typically, once tissue is reconnected to bone, patients are only 30-40 percent healed after three-four weeks; 60-70 percent by six weeks; are 85 percent healed by 12 weeks; and 100 percent healed in about a year. This means, even though skin healing occurs, such superficial healing masks the long term need for joint immobilization to allow complete healing to occur. Such need for long-term immobilization has negative impacts on patients, their family, their employer, their livelihood and their future.
In contrast, the present LEC provides substantially immediate bone to implant fixation that is stabilized against rotational forces. This achieves an accelerated bone to implant fixation time without joint immobilization.
Due to the substantially immediate bone fixation, lateral stability and elimination of the need for immobilization, the LEC can be used for large animals; for example horses or large dogs such as 200 lb. mastiffs, which cannot follow instructions regarding limiting activities after injury and repair.
Once the LEC has been seated in position in radial groove 216, the cannula spikes 210 are removed from the vertebrae and the LEC is expanded. Pulling the cannula out slightly removes the spikes from the vertebrae and allows the vertebrae to be spread.
Referring to
The complementary adjacent sides of the wings 224a, 224b slidably move against each other in opposite directions during expansion. The wings provide complementary contacting surfaces for equalizing force distribution in each respective LEC half such that the halves expand equally in opposite directions. The wings work cooperatively to control expansion in a linear direction and to maintain the alignment of respective halves of the cage during expansion process. When the LEC is in its fully expanded state, the wings cooperate to neutralize or block natural potentially deforming compression and shear forces. The wings thus provide controlled linear expansion of the two halves of the LEC and maintain each half in their predetermined alignment with the vertebral groove 216 during and after expansion.
Referring to
Referring to
Means are provided for translating a rotary motion into a linear, vertical motion that expands the LEC vertically with respect to its axis of insertion, or at a desired angle determined by the angle of the expansion wedge to provide a full range of spinal correction. In
As will be explained further with reference to
Thus, by turning the screwdriver, the expansion wedge 242 advances forward into the receiving slot 244 of the LEC 218 and the LEC expands linearly in a vertical direction at an angle predetermined by the angle and height of wedge 242. Once fully expanded, the ends of the expansion wedge 242 are trapped conformably within the receiving slot 244 and an end receiving space 252 defined by wings 224a, 224b of the LEC. This locks expansion wedge 242 in place and prevents the expansion wedge 242 from deforming and buckling outward during expansion and thereafter. The side slot 244 and end receiving space 252 also provide a substantially smooth interface between the expansion wedge and exterior of the LEC Once expansion is complete, the driver, screw, nut and LEC insertion tool are removed from the cannula, leaving only the expanded LEC locked in place.
It will be appreciated that the driver in combination with the screw and the expansion wedge provide a means for translating an applied rotational force into a precisely determined linear vector for expanding the halves LEC 218 vertically along the vertical axis of the entire spine, rather than uniformly (that is, without increasing diameter, which would take up more space inside the vertebral body surfaces).
Referring to
The LEC halves 218a, 218b are expanded vertically in a linear direction in accordance with the rotation of the driver 240 and screw 246. The precise linear height can be directly determined by the rotation of the driver or by the use of an expansion wedge of a known size and angle. The expansion process presses the LEC halves 218a, 218b, strongly into the predrilled vertebral bone grooves 216, thereby securing the adjacent vertebrae to enhance stability during arthrodesis (fusion) healing.
Slots or apertures 254 in
It will be appreciated that the maximized surface area of corrugations or bone-engaging surfaces are provided with the series of apertures 254 which provide channels for bone in-growth. Thus, the surface area for communicating bone graft material from the interior of the LEC to the bone is effectively increased, and the LEC provides a maximized surface area of bone fixation as compared to conventional devices utilizing smooth or threaded surfaces. The effectively maximized surface area also increases avenues for feed through of bone growth enhancing agents in the cylinder to facilitate bone fusion and ingrowth into the LEC with resulting fixation forces greater than adjacent bone and soft tissue failure forces.
An additional advantage of the multiple rows of bone engaging surfaces or corrugations 238 is to provide a maximized surface area of enhanced bone fusion for a minimal sized implant. Thus, bone engaging surfaces of LEC 218 can be provided with a coating such as hydroxyapatite, bone morphogenic protein and or certain enzyme substances that have the propensity to enable bone osteo-inductive and osteo-conductive principles for better healing responses. Alternatively, such morphogenic proteins and enzyme substances for promoting bone growth are advantageously contained in the hollow interior of LEC 218. These substances communicate with the bone-engaging surfaces through the slots 254 that act as conduits for bone in growth. The LEC and its slots 254 are also designed to permit suture free fusion. The slots 254 provide apertures and curvature angles in the areas intended for bone egress between the interior bone graft or bone substitute products, and the outer vertebral bone interface (the interface between vertebral segments 202a, 202b and bone engagement surfaces of LEC 218) involved in the fusion process can be used by a surgeon to pull the interspinal ligament, or other structures through the LEC, thus creating an intentional immediate interface or padding to avert interspinal nerve injuries.
Since the LEC is inserted in a closed or non-expanded state, its interior may advantageously contain bone graft material, bone growth enhancing agents, medication or other agents that promote healing. During the expansion process the expansion wedge 242 progressively moves forward along the sides of the LEC as previously explained. This advantageously keeps the sides of the LEC substantially sealed while simultaneously allowing the LEC to expand in a vertical direction. Thus, medication and bone graft enhancing material contained within the interior of the LEC remain therein during the expansion process.
As the exterior of the LEC presses into the adjacent bone by the force of vertical expansion, the slots provide egress zones for absorption of bone growth enhancers, such as bone morphogenic proteins or other enzyme substances contained within the interior of the LEC. The slots 254 also provide areas for bone in growth thus promoting stable healing. As healing advances, pullout forces are greater than vertebral body failure forces, and patients can mobilize more quickly. Once healing (fusion or arthrodesis) does occur, the implants become incorporated and their role becomes quiescent.
When the expansion is at a maximum, that is, the LEC is in the fully expanded state, the driver, in combination with the screw, are removed through the insertion tool and the insertion tool is detached from the cage. U shaped expansion wedge 242 has been drawn all the way into its end receiving space 252 in the interior of the LEC and locks the cage in its linearly expanded position.
Once detached from the insertion tool, the expanded LEC is securely set in groove 216 between two vertebral bodies 202a, 202b. Since the force of fixation is greater than the bone failure strengths, early patient mobilization after surgery is feasible. Force to failure will be approximately 4000 Newtons.
Referring to
The LEC enables selective adjustment of spinal alignment. Due to the known angulation and height of the sides of the expansion wedge, and known radius of the driver and screw, it is possible to expand either LEC 918a or 918b vertically and linearly to a predetermined height H1, H2.
Referring to
For correction of lordosis (as seen on a lateral X-ray view, naturally noted in both the lumbar and cervical regions of the spine), the LEC (anterior cage) can be expanded so that it widens or expands more anterior linearly symmetrically than posterior, thus creating a trapezoidal construct that fills in the disc space more naturally, both expanding into the vertebral endplates, and filling the normally wider anterior space in such a manner that the “flat back syndrome” is eliminated. This promotes fusion in a normal or physiologic alignment.
Referring to
It will be appreciated that due to the placement of the two LECs, one on each side of a vertebral body, it is now possible to adjust spinal alignment as shown in
The present LEC enables three dimensional correction of spinal malalignments, and maintenance of natural curvatures. Thus, the present LEC may provide a cure for scoliosis or other forms of spinal misalignment. Structural interbody support of the anterior column of the spine has clear biomechanical and clinical benefits compared with conventional posterior/lateral arthodesis. Biomechanically, interbody support improves the stability of the anterior column of the spine and permits load sharing with the region of the spinal motion segment that is exposed to highest loads improving stiffness and reducing rates of implant failure.
Clinically, interbody structural support enhances the rate of successful arthrodesis and is associated with improved clinical outcomes. The present LEC may be placed from an anterior approach to the spine or from a posterior or transforaminal approach. The posterior or transforaminal approach is popular because it permits circumferencial arthrodesis of the spine in a single surgery, eliminating the morbidity of a separate anterior approach. Currently, anterior only surgery is unreliable due to inadequate initial stabilization of the spinal motion segment. With a linearly expandable cage such as the present LEC and consequent rigid interbody fixation, the need for posterior augmentation is advantageously eliminated. Since the LEC expands into the vertebrae with greater fixation forces, the requirements for additional stabilization procedures will be reduced. By starting with a smaller fusion cage, such as the LEC, the surgeon can better approach the destination with less tissue dissection and consequently less injury to nerve roots and soft tissues around the spine.
Referring to
As the expansion element 242 is drawn into receiving slot 244 during the expansion process, the angle and height of the wedge 250 determines the angle of correction and the fully extended height of expansion of cage 218. The final extent of expansion of the cage occurs when expansion lock 262 (a projection provided on the distal end of the wedge 250) slides into engagement with and is locked in place by a corresponding recess 264 provided in the surface of the cage 218 that defines the end of travel for the wedge in the receiving slot 244. It will be appreciated that two corresponding sets of projections 262 and corresponding recesses 264 are provided on the upper and lower surfaces of the wedge and receiving slot for locking engagement to strongly lock the cage in position in its fully expanded state. Only one set is shown for clarity
The advantages of inserting two parallel cages as shown in
Expansion wedges 242 could be chosen to have angled surfaces 250, such as angle a or b in
It is advantageous to have an assortment of heights and angles for the expansion wedge. This enables a physician to pre select, before surgery, a desired reconstructive change size to be implanted in a vertebrae in accordance with actual size vertebral segments shown in X rays. The base 270 of the expansion wedge 242 should be 3 mm thick, assuming a 20 mm long cage, since lordotic endplates are 3 mm posterior dimension and anterior height=4.4 mm (=tan(wedge angle)/(20+(3/tan(wedge angle)). Expansion wedges should be available in 2 mm height increments.
In accordance with an aspect of the invention the foregoing features now make it possible to expand a 10 mm spine cage to 20 mm (more commonly to between 10 and 17 mm), while correcting trapezoidally for lordosis, kyphosis or even scoliosis requirements. The foregoing flexibility—the ability to predetermine height of expansion and degree of spinal correction by pre selecting expansion wedges having different sizes and angles, and inserting two expansion wedges in parallel provides an anatomically correct range of spinal correction in three dimensions.
An important advantage of the expandable cage is that the device permits a posterior (single stage) operation to create the lordosis that may normally require a combined anterior and posterior approach. The anterior-based linear cage may permit a single stage surgery if a physician adds a permanent staple to the position of the cannula set screws to provide tension anteriorly. The reason that stand-alone anterior cages are inadequate and require posterior support is that the approach disrupts the anterior tension band (the anterior longitudinal ligament and disc annulus).
By stapling across the implant vertically it is possible to create an anterior plate or tension band that will reconstitute the anterior column stability in extension, enabling a physician to avoid a posterior approach. These staples (two in parallel in vertical orientation) can be placed in the position of the prongs from the insertion canula.
While the invention has been described in connection with what are presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments and alternatives as set forth above, but on the contrary is intended to cover various modifications and equivalent arrangements included within the scope of the following claims.
For example, equivalent fixation features can be provided for stabilizing the cage within the bone. Other configurations for the overlapping wing portions of the LEC halves may be utilized to provide interlocking capability and maintain linear expansion.
Also, other compositions of additives, such as various types of biogenic materials for enhancing bone growth can be added to the interior portion of the LEC. Other materials for construction of the LEC may be substituted for Titanium without departing from the scope of the invention.
As one skilled in the art will readily appreciate from the disclosure of the present invention, processes, machines, compositions of matter, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Therefore, persons of ordinary skill in this field are to understand that all such equivalent processes, arrangements and modifications are to be included within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3875595 | Froning | Apr 1975 | A |
4863476 | Shepperd | Sep 1989 | A |
4932975 | Main et al. | Jun 1990 | A |
5236460 | Barber | Aug 1993 | A |
5609636 | Kohrs et al. | Mar 1997 | A |
5653763 | Errico et al. | Aug 1997 | A |
5665122 | Kambin | Sep 1997 | A |
5980522 | Koros et al. | Nov 1999 | A |
6039761 | Li et al. | Mar 2000 | A |
6102950 | Vaccaro | Aug 2000 | A |
6127597 | Beyar et al. | Oct 2000 | A |
6371989 | Chauvin et al. | Apr 2002 | B1 |
6375682 | Fleischmann et al. | Apr 2002 | B1 |
6395032 | Gauchet | May 2002 | B1 |
6409766 | Brett | Jun 2002 | B1 |
6436140 | Liu et al. | Aug 2002 | B1 |
6454806 | Cohen et al. | Sep 2002 | B1 |
6500205 | Michelson | Dec 2002 | B1 |
6652584 | Michelson | Nov 2003 | B2 |
6666891 | Boehm, Jr. et al. | Dec 2003 | B2 |
6709458 | Michelson | Mar 2004 | B2 |
6716247 | Michelson | Apr 2004 | B2 |
6719796 | Cohen et al. | Apr 2004 | B2 |
6723126 | Berry | Apr 2004 | B1 |
6764491 | Frey et al. | Jul 2004 | B2 |
6793679 | Michelson | Sep 2004 | B2 |
6814756 | Michelson | Nov 2004 | B1 |
6821298 | Jackson | Nov 2004 | B1 |
6835206 | Jackson | Dec 2004 | B2 |
6893464 | Kiester | May 2005 | B2 |
6962606 | Michelson | Nov 2005 | B2 |
6972035 | Michelson | Dec 2005 | B2 |
6981989 | Fleischmann et al. | Jan 2006 | B1 |
7001431 | Bao et al. | Feb 2006 | B2 |
7018416 | Hanson et al. | Mar 2006 | B2 |
7056343 | Schäfer | Jun 2006 | B2 |
7060073 | Frey et al. | Jun 2006 | B2 |
7118598 | Michelson | Oct 2006 | B2 |
7128760 | Michelson | Oct 2006 | B2 |
7204853 | Gordon et al. | Apr 2007 | B2 |
7211112 | Baynham et al. | May 2007 | B2 |
7214243 | Taylor | May 2007 | B2 |
7217293 | Branch, Jr. | May 2007 | B2 |
7282063 | Cohen et al. | Oct 2007 | B2 |
7291150 | Graf | Nov 2007 | B2 |
7291158 | Crow et al. | Nov 2007 | B2 |
7316686 | Dorchak et al. | Jan 2008 | B2 |
7316714 | Gordon et al. | Jan 2008 | B2 |
7326248 | Michelson | Feb 2008 | B2 |
7351261 | Casey | Apr 2008 | B2 |
7410501 | Michelson | Aug 2008 | B2 |
20020138146 | Jackson | Sep 2002 | A1 |
20050043800 | Paul et al. | Feb 2005 | A1 |
20050216084 | Fleischmann et al. | Sep 2005 | A1 |
20050229433 | Cachia | Oct 2005 | A1 |
20060167547 | Suddaby | Jul 2006 | A1 |
20060264968 | Frey et al. | Nov 2006 | A1 |
20070050030 | Kim | Mar 2007 | A1 |
20070093901 | Grotz et al. | Apr 2007 | A1 |
20070179611 | DiPoto et al. | Aug 2007 | A1 |
20070233254 | Grotz et al. | Oct 2007 | A1 |
20070255413 | Edie et al. | Nov 2007 | A1 |
20070255415 | Edie et al. | Nov 2007 | A1 |
20080058930 | Edie et al. | Mar 2008 | A1 |
20080188941 | Grotz | Aug 2008 | A1 |
Number | Date | Country |
---|---|---|
1290985 | Mar 2003 | EP |
0209626 | Feb 2002 | WO |
0238062 | May 2002 | WO |
2004016205 | Feb 2004 | WO |
2004019829 | Mar 2004 | WO |
2007022021 | Feb 2007 | WO |
WO 2008011371 | Jan 2008 | WO |