Linefeed control in belt-type printers

Information

  • Patent Grant
  • 6582072
  • Patent Number
    6,582,072
  • Date Filed
    Monday, April 3, 2000
    24 years ago
  • Date Issued
    Tuesday, June 24, 2003
    21 years ago
Abstract
Described are techniques for preventing the forces attributable to shrinkage of print media from shifting print media on the media-carrying belt in the vicinity of the print zone. In one approach, a “hold zone” is identified immediately upstream of the print zone. In the hold zone, a mechanism is employed for securing the media to be immovable relative to the belt. The hold mechanism provides sufficient force to overcome tension transmitted to the dry portion of the media as the remaining portion shrinks. In one embodiment, the hold mechanism is a roller that pinches the media against the belt. In another embodiment, the amount of vacuum pressure applied to the belt is regulated so that the suction force applied to the media in the hold zone is greater than the suction force applied to the media in the portion upstream of the hold zone.
Description




TECHNICAL FIELD




This invention relates to the control of linefeed distances in a heated, belt-type system for advancing print media through a printer.




BACKGROUND AND SUMMARY OF THE INVENTION




An ink-jet printer includes at least one print cartridge that contains ink within a reservoir. The reservoir is connected to a print head that is mounted to the body of the cartridge. The print head is controlled for ejecting minute droplets of ink from the print head to a sheet of print medium, such as paper, that is advanced through the printer.




Many ink-jet printers include a carriage for holding the print cartridge. The carriage is scanned across the width of the paper, and the ejection of the droplets onto the paper is controlled to form a swath of an image with each scan. Between carriage scans, the paper is advanced so that the next swath of the image may be printed. Sometimes, more than one swath is printed before the paper is advanced. In some printers, a stationary print head or array of print heads may be provided to extend across the entire width of the paper that moves through the printer.




The relative position of the print head(s) and paper must be precisely maintained to effect high-resolution, high-quality printing. This precision is especially important in the region known as the “print zone” of the printer, which is the space where the ink travels from the print head to the print media. Thus, in the course of advancing the print media between swaths, encoders and associated servo systems are employed for controlling the precise advance of the media. This incremental advance is commonly called “linefeed. ” Thus, the control of the amount of the advance, the linefeed distance, is critical for high print quality.




One method of securing print media, such as a sheet of paper, for movement through a printer is to direct the paper against one side of a perforated belt. Vacuum pressure is applied to the other side of the belt and, thus, through the belt perforations to secure the paper to the belt. The belt, with secured paper, is moved relative to the print head and through the print zone where ink is printed on the paper.




The belt may be configured as an endless loop and secured between a pair of rollers that are mounted to the printer to drive the belt under tension. The upper surface of the belt transports the paper toward the print zone. The porous belt moves over a support surface that includes vacuum ports through which the vacuum pressure is applied to the belt and to the paper that is carried by the belt.




Any of a variety of encoder mechanisms can be employed for controlling linefeed distances. Typically, a rotary encoder is connected to the belt drive roller. The information provided by the encoder, in combination with information produced by a media edge sensor, is processed by the printer controller to control the linefeed distance between swaths. Such processing may account for runout errors or the like, but otherwise assumes that there is no movement of the media relative to the belt that carries it.




Another important factor affecting the print quality of ink-jet or other liquid-ink printers is drying time. The print media movement must be controlled to ensure that the liquid ink dries properly once printed. If, for example, sheets of printed media are allowed to contact one another before ink is adequately dried, smearing can occur as a result of that contact.




Heat may be applied to the print media in order to speed the drying time of the ink. An effective way to heat the print media is by conduction, in a manner that will not overheat the print head nor interfere with the trajectory of the droplets expelled from the print head. This can be accomplished by heating the underside of the belt by conduction, which heat is thus transferred to the media carried by the belt.




Normally, print media carries at least some moisture with it. For example, a sealed ream of standard office paper comprises about four and one-half percent moisture. High amounts of moisture in the media, such as paper, may be present in humid environments. Thus, the paper shrinks as the applied heat dries the paper.




The moisture in the paper may be substantially removed by the heated belt before the leading portion of the media passes into the print zone. Nonetheless, the shrinkage or contraction that occurs in the portion of the media that is outside of the print zone (“upstream” of the print zone) can tug on the dry portion of the media by an amount sufficient to cause the media to shift slightly in the region in or near the print zone. This shifting would occur, for example, where the overall vacuum force applied to the media upstream of the print zone (that is, where the media shrinks as it dries) is greater than the vacuum force applied to the remaining portion of the media. The term “upstream” means in the direction opposite to the direction of paper movement.




This shifting movement of the media in the vicinity of the print zone introduces errors in the calculation of the linefeed distances. The encoder, which follows belt or drive roller motion, does not track the movement of the shrinking paper relative to the belt. Such errors lead to degradation in print quality as a result of artifacts known as “banding.”




The present invention is generally directed to techniques for preventing the forces attributable to shrinkage of print media from shifting the media relative to the belt in the vicinity of the print zone.




In one approach to the invention, a “hold zone” is identified immediately upstream of the print zone. In the hold zone a mechanism is employed for securing the media to be immovable relative to the belt. The hold mechanism provides sufficient force to overcome tension transmitted to the dry portion of the media as a result of the shrinkage in the remaining, upstream portion of the media.




In one embodiment, the hold mechanism is a roller that pinches the media against the belt.




In another embodiment, the amount of vacuum pressure applied to the belt is regulated so that the suction force applied to the media in the hold zone is greater than the suction force applied to the media in the portion upstream of the hold zone.











Apparatus and methods for carrying out the invention are described. Other advantages and features of the present invention will become clear upon review of the following portions of this specification and the drawings.




BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a diagram showing the primary components of one embodiment of an ink-jet printer that includes a heated, belt-type media advance system to which the present invention is adaptable.





FIG. 2

is an enlarged detail view of a portion of the embodiment depicted in FIG.


1


.





FIG. 3

is a cross section view of the embodiment of FIG.


1


.











DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS




The diagram of

FIG. 1

shows an ink-jet print cartridge


20


, which may be mounted to a printer by conventional means such as a movable carriage assembly (not shown). For illustrative purposes, only one cartridge is shown in the figures, although it is contemplated that more than one cartridge may be employed. For instance, some color printers use four cartridges at a time, each cartridge carrying a particular color of ink, such as black, cyan, yellow, and magenta. In the present description, the term “cartridge” is intended to mean any such device for storing liquid ink and for printing droplets of the ink to media. Preferred cartridges are available from Hewlett Packard Co. of Palo Alto, Calif., http://www.hp.com. The cartridges may be connected to remote sources of ink that supplement the ink supply that is stored in each cartridge.




The carriage assembly supports the cartridge


20


above print media, such as a sheet of paper


22


. A print head


24


(see

FIG. 2

) is attached to the underside of the cartridge. The print head


24


is a planar member and has an array of nozzles through which the ink droplets are ejected. The cartridge


20


is supported so that the print head is precisely maintained at a desired spacing from the paper


22


, such as, for example, between 0.5 mm to 1.5 mm from the paper. The paper


22


is advanced through the printer, and the cartridge print head


24


is controlled to expel ink droplets onto the paper.




In the vicinity of the cartridge


20


, the paper


22


is supported on a moving conveyor belt


26


. The belt


26


moves the paper


22


through the printer's print zone


28


(FIG.


2


). As noted above, the print zone


28


is the space in the printer where the ink is moved from the print head


24


to the paper


22


. Two imaginary boundaries of the print zone


28


are shown in dashed lines in FIG.


2


.




The paper


22


is heated as it is moved through the printer. Heat is applied to the paper in conjunction with mechanisms for applying vacuum pressure to the paper (or any other media) to support the paper on the belt as it moves through the printer.




Preferably, the heat is applied to the paper


22


while the paper is in the print zone


28


. Also provided are mechanisms for heating the paper before and after it moves through the print zone.




With reference to

FIGS. 1-3

, the particulars of the system for heating and transporting the media through the printer are now described. The system includes a platen


42


that generally provides support for the belt


26


that, in turn, carries media such as paper sheets


22


through the print zone of the printer.




The platen


42


is a rigid member, formed of material such as stainless steel. The platen may also be formed of copper or another metal having a copper-coated outer surface. Preferably, the surface of the platen over which the belt


26


moves has high thermal conductivity for reasons described more below.




It is also contemplated that the platen


42


may be formed of material having low thermal mass. This would enable a somewhat more responsive control of heat applied to the media directly from heaters that are mounted to the platen and described below.




The belt


26


is porous, and vacuum pressure is employed for drawing the paper


22


against the belt and platen to support the paper as it is advanced through the printer. Thus, the platen


42


has ports


44


formed through it (FIG.


2


). The platen


42


also forms the top of a vacuum chamber or box


46


(

FIG. 1

) that is inside the printer.




The vacuum box


46


includes a body


49


to which the platen


42


is attached. The box


46


is thus enclosed except for the ports


44


in the platen


42


and a conduit


48


to a vacuum source


50


. The vacuum source is controlled to reduce the pressure in the interior of the box


46


so that suction or vacuum pressure is generated at the ports


44


.




The platen


42


has a planar support surface


52


(

FIG. 2

) that faces the print head


24


. The ports


44


in the platen open to the support surface


52


. The ports are formed in rows across the support surface. The ports


44


are sized and arranged to ensure that vacuum pressure is uniformly distributed over the platen surface


52


.




As explained more fully below, in one embodiment the ports


44


are arranged to provide variations in the suction force applied to the media in different zones of the platen surface.




The belt


26


is configured as an endless loop between a fixed drive roller


62


and tension roller


64


(FIG.


1


). In the figures, the belt


26


is shown rotating clockwise, with a transport portion


66


of the belt (

FIG. 2

) sliding over the support surface


52


of the platen


42


. The return portion of the belt


26


underlies the vacuum box


46


. Paper


22


is directed onto the transport portion by conventional pick and feed roller mechanisms (not shown).




The porous belt


26


permits communication of vacuum pressure to the underside of the paper


22


. The belt


26


also conducts heat to the paper


22


(or other type of print media) that is carried on its transport portion


66


. To this end, the belt preferably is made of heat conductive material.




In a preferred embodiment, the belt is formed of a stainless steel alloy, commonly known as Invar


36


, having a thickness of about 0.125 mm. The belt


26


has a width that is sufficient to cover all but the margins of the platen


42


(FIG.


1


). The belt


26


is heated by conduction. In a preferred embodiment, the conductive heating of the belt is accomplished by the use of heaters


72


that are attached to the support surface


52


of the platen


42


as best shown in FIG.


2


.




The heaters


72


are comprised of an array of linear, resistive heating elements that extend between the rows of vacuum ports


44


that are defined on the support surface


52


of the platen.




Any of a number of techniques may be employed for heating the belt. One preferred way that incorporates the heaters


72


mentioned above is described in U.S. patent application Ser. No. 09/412,842, which is commonly owned by the assignee of the present application and hereby incorporated by reference.




As noted above, shrinkage or contraction that occurs in the portion of the media that is outside of the print zone (“upstream” of the print zone) can tug on the dry portion of the media by an amount sufficient to cause the media to shift slightly in the region in or near the print zone. With reference to

FIG. 1

, this upstream portion can be referred to as a support zone


55


. In this zone


55


, the moisture in the paper is removed by the underlying heaters, which removal results in the shrinkage discussed above.




In a preferred embodiment of the invention, the paper is securely held against the belt


26


in the region upstream and adjacent to the print zone


28


. This region can be designated as the hold zone


51


(FIG.


3


). Preferably, a pinch roller


53


is rotatably mounted to the printer and urged downwardly to pinch the paper


22


against the belt with an amount of force sufficient to resist movement of the paper


22


relative to the belt as might otherwise occur because of the tensile forces induced as a result of paper shrinkage in the support zone


55


(i.e., to the left of the hold zone in FIG.


3


).




Put another way, the hold mechanism applied in the hold zone


51


secures the paper


22


so that any shrinkage movement of the paper


22


relative to the belt


26


is constrained to occur in the support zone


55


, outside of the hold zone


51


.




It is contemplated that other pinching devices may be employed in lieu of the roller


53


described above. For instance smooth, arcuate guide members may be urged against the paper and belt at the margins of the paper.




As another approach to securing the paper to the belt in the hold zone


51


, the vacuum pressure applied to the paper


22


may be regulated in a manner such that the suction force applied in the hold zone


51


is greater than the suction force applied in the support zone


55


. With this approach, the suction force in the support zone (and not the hold zone) will yield to the tensile forces in the paper attributable to shrinkage. To arrive at this, the ports


44


in the platen


42


are configured and arranged so that the greatest amount of the surface area on the underside of the paper


22


is exposed to vacuum pressure in the hold zone, so that the greatest amount of suction force is delivered there.




There are a variety of other ways to vary the vacuum pressure in a manner such that the greatest suction force is delivered in the hold zone. For example, the vacuum box


46


could be divided into discrete chambers or compartments corresponding to each of the print, hold, and support zones. Separate conduits from the vacuum source would be connected to each chamber. The vacuum pressure provided by the conduits could be regulated (as by flow restriction or valving) to apply the desired variations in vacuum pressure to the chambers. With this approach, the ports


44


in the platen


42


could be otherwise uniformly sized and distributed across all zones.




The technique of securing the paper


22


to be immovable relative to the belt in the hold zone via vacuum pressure may be undertaken alone or in combination with a pinch roller. In either event, it is contemplated that the holding force applied there may be of a magnitude sufficient for eliminating the need for vacuum pressure to be applied in the support zone


55


.




As respects the surface area of the platen downstream of the print zone


28


, vacuum pressure is applied to the belt (hence, to the paper) for the purpose of ensuring that the paper continues to engage the heat-conducting belt to facilitate drying of the ink that is applied to the paper by the cartridge


20


. Inasmuch as some additional shrinking will occur as the ink-wetted media dries, it is preferred that the vacuum pressure applied downstream of the print zone is at a sufficiently low level to ensure that the associated suction force is not greater than that applied in the hold zone. This relatively lower force will ensure that any shifting of the shrinking paper in this drying region will not be transmitted to the upstream print zone or hold zone.




In view of the foregoing it will be appreciated that the portion of the print media in the hold zone


51


, which is upstream of the print zone


28


, will not move relative to the belt


26


and, as such, the printer controller can precisely predict the linefeed distances. In this regard, an encoder connected to the belt


26


, the pinch roller


53


, or drive roller


62


will provide position information that reliably indicates the paper position for accurate linefeed control.




Although preferred and alternative embodiments of the present invention have been described, it will be appreciated by one of ordinary skill in this art that the spirit and scope of the invention is not limited to those embodiments, but extend to the various modifications and equivalents as defined in the appended claims.



Claims
  • 1. A method of securing a sheet of print media that is advanced through a printer that has a print zone in which ink is applied to the media, the method comprising:supporting the media on a belt that moves the media toward and through the print zone; applying suction through the belt and against the media in a hold zone that is adjacent to the print zone, the advanced media reaching the hold zone before reaching the print zone; applying heat to the belt in a support zone that the advancing media reaches before reaching the hold zone; applying suction through the belt and against the media in the support zone; regulating the suction applied in the hold zone and support zone so that the amount of force applied to the media by the suction in the hold zone is greater than the amount of force applied to the media by the suction in the support zone; and providing for limited movement of the media relative to the belt in the support zone.
  • 2. The method of claim 1 including the step of pinching the media against the belt in the hold zone in addition to applying suction through the belt and against the media in the hold zone.
  • 3. An apparatus for supporting print media within a printer that has a print zone where ink is applied to print media, comprising:a belt that is operable for moving media from a support zone, through a hold zone, and then into the print zone; a heater underlying the belt in the support zone and in the hold zone for heating the belt in the support zone and the hold zone; a source of suction for securing the media to the belt in the print zone; a hold chamber connected to the source of suction and configured for directing suction through the belt and against the media in the hold zone thereby to hold the media immovable relative to the belt in the hold zone adjacent to the print zone; a support chamber connected to the source of suction for directing suction through the belt and against the media in the support zone; and regulator means for regulating the source so that the suction forces applied against the media in the hold zone are greater than the suction forces applied against the media in the support zone.
  • 4. An apparatus for of securing a sheet of print media that is advanced through a printer that has a print zone in which ink is applied to the media, the apparatus comprising:a belt that supports the media and moves the media toward and through the print zone; a source for applying suction through the belt and against the media in a hold zone that is adjacent to the print zone the media reaching the hold zone before the print zone; a heater underlying the belt in a support zone that the advancing media reaches before the advancing media reaches the hold zone; a platen connected to the source and configured for directing suction through the belt and against the media in the support zone; and a regulator for regulating the suction so that the amount of suction force applied to the media in the hold zone is greater than the amount of suction force applied to the media in the support zone.
US Referenced Citations (19)
Number Name Date Kind
4146219 Phillips Mar 1979 A
4347006 Shakib Aug 1982 A
4676683 Uchikata Jun 1987 A
4952950 Bibl Aug 1990 A
5225853 Kobayashi et al. Jul 1993 A
5287123 Medin Feb 1994 A
5296873 Russell Mar 1994 A
5371531 Rezanka Dec 1994 A
5406321 Schwiebert Apr 1995 A
5510822 Vincent Apr 1996 A
5668584 Broder Sep 1997 A
5674345 Nash Oct 1997 A
5754208 Szlucha May 1998 A
5757407 Rezanka May 1998 A
5896154 Mitani et al. Apr 1999 A
5993094 Lee Nov 1999 A
6092891 Okubo et al. Jul 2000 A
6234472 Juan May 2001 B1
6315404 Wotton et al. Nov 2001 B1
Non-Patent Literature Citations (1)
Entry
Hall et al.; Inkjet Printer Print Quality Enhancement Techniques, Feb. 1994 Hewlett Packard Journal, pp. 35-40.