The present invention relates to liner bolts and an apparatus for removing the same from mills. In particular, the apparatus is an adaptor that can be fitted to a liner bolt removal tool for removal of such liner bolts.
Liner bolts are typically used to secure sacrificial liners to the internal casing of mills used in the mining industry. The sacrificial liners are routinely replaced during maintenance of the mills. Typically such mills may range in size from three meters to eleven meters in diameter and are lined with replaceable heavy steel segments attached internally to the mill casing by through bolting using liner bolts. The liner bolts typically have a diameter of up to about 50 mm (2 inches).
In such applications, the bolts become corroded and clearances between bolts and holes become compacted with ore fines. This results in difficult bolt removal at liner removal time. As a result the many liner bolts that are utilized to attach the liners to the mill shell are often required to be freed manually by the use of large sledge-hammers. This is a difficult and time-consuming task that may result in injury to the workers.
While it is well known to use percussive devices such as jack-hammers and hydraulically powered hammers to provide repetitive impacts for many applications, they are not able to be manually guided into alignment with wall mounted bolts and other components. The applications of jack hammers are limited as the hammering effect produced by an electrically or pneumatically operated jack hammer does not provide the impact as would be provided by a sledge hammer, for example.
In known hammering devices capable of delivering such impacts, a high reaction force is produced which necessitates that such devices be carried by articulating machines or be rigidly attached to some support structure. This reduces their versatility and makes them unsuitable for many applications. Furthermore, it is difficult to quickly and accurately align such devices with the shank of a bolt or the like for effecting ready removal thereof.
International publication WO97/26116 (Russell Mineral Equipment Pty Ltd) describes a hydraulic liner bolt removal tool. The hydraulic tool essentially comprises a housing having a moil mounted at the forward end and a hydraulic piston assembly reciprocally moveable along the hammer axis between a striking position at which the piston assembly strikes the impact delivery member and a retracted position remote from the impact delivery member. A firing means is provided for hydraulically firing the piston assembly from its retracted position to its striking position under the control of actuating means. A reactive body assembly is moveable in the direction of the hammer axis by driving means towards the impact delivery member prior to operation of the firing means whereby the reactive body assembly may be energized by movement and subsequently decelerated to substantially absorb the reaction generated by firing the piston assembly. Recoil is thus reduced whereby the apparatus may be operated by hand with the apparatus being suspended about its centre of gravity at the work site.
U.S. Pat. No. 6,904,980 (Rubie) describes a pneumatic liner bolt removal tool that is operable from a conventional compressed air supply.
A disadvantage associated with using such prior art liner bolt removal tools to remove conventional liner bolts, is that it is necessary for the operator of the removal tool be assisted by a workman who helps align the moil of the removal tool with the liner bolt. This is because even though the removal tools are suspended, their size and weight makes them difficult to handle and they obstruct the operator's view of the work area. The workman assisting the operator typically utilizes a handheld moil guide as shown in
Another disadvantage of removing liner bolts using these liner bolt removal tools is the damage caused to the mill casing in the area around the bolt hole, as a result of misalignment.
The present invention seeks to overcome at least some of the abovementioned disadvantages.
According to a first aspect the present invention consists of a liner bolt for securing a liner to a mill, said liner bolt comprising a head and a shank extending therefrom, said shank having an external thread thereon, characterized in that said shank having a bore therein extending from its free end.
Preferably in use, when said liner bolt is to be removed from said mill in a first embodiment, a removal pin is inserted into said bore.
Preferably in use, said removal pin in is adapted to be struck by a moil.
Preferably, said moil is operably mounted to a liner bolt removal tool.
Preferably, said moil is housed within an adaptor mounted to said liner bolt removal tool, and said adaptor is adapted to slidably engage with said pin.
Preferably, when said liner bolt is to be removed from said mill in a second embodiment, a moil is adapted to be inserted into said bore.
According to a second aspect the present invention consists of a hammer adaptor for a liner bolt removal tool, said adaptor adapted to be fitted to said tool in such a manner to shroud said moil, said adaptor slidably engagable with a liner bolt and a removal pin, said liner bolt comprising a shank having a bore therein and said removal pin adapted to be seated within said bore, said adaptor to guide said moil into striking engagement with said pin.
Preferably, said hammer adaptor is length variable.
Preferably, said hammer adaptor comprises a first tubular member spring loaded in a telescopic arrangement with a second tubular member.
According to a third aspect the present invention consists of a removal pin in combination with a predetermined liner bolt, said predetermined liner bolt comprising a head and a shank extending therefrom, said shank having an external thread thereon, and said shank having a bore therein extending from its free end, said removal pin having a first end adapted to be inserted into said bore of said liner bolt, and a second end adapted to be struck by a tool when said removal pin is in engagement with said liner bolt.
According to a fourth aspect the present invention consists of a liner bolt for securing a liner to a mill, said liner bolt comprising a head and a shank extending therefrom, said shank having an external thread thereon, said shank being of length such that when said bolt is secured to said mill, a substantial portion of said shank protrudes from said mill, thereby allowing a hammer adaptor for a liner bolt removal tool to slidably engage with said shank.
Preferably, said hammer adaptor is length variable.
Preferably, said hammer adaptor comprises a first tubular member spring loaded in a telescopic arrangement with a second tubular member.
In order that this invention may be more readily understood and put into practical effect, reference will now be made to the accompanying drawings which illustrate a typical embodiment of the invention and wherein:
The term “comprising” (and its grammatical variations) as used herein is used in the inclusive sense of “having” or “including” and not in the exclusive sense of “consisting only of”.
In the claims, letters are used to identify claimed steps (e.g., (a), (b), and (c)). These letters are used to aid in referring to the method steps and are not intended to indicate the order in which claimed steps are performed, unless and only to the extent that such order is specifically recited in the claims.
Liner bolt 1 comprises an oval shaped head 3 and a shank 4 extending therefrom. Shank 4 is preferably threaded in a conventional manner to allow a fastening nut (not shown) to engage therewith. Liner bolt 1 also comprises a bore 5 that extends into shank 4 a short distance from its free end 6. Liner bolt 1 is made of a similar material used for conventional liner bolts.
Removal pin 2 comprises a first cylindrical end 7, a central portion 8 and a second cylindrical end 9. The first cylindrical end 7 has a diameter smaller than the second cylindrical end 9. Central portion 8 has a diameter substantially greater than both first and second ends 7,9. Central portion 8 also has a flat face facing the direction to which the first cylindrical end 7 extends. Pin 2 is preferably made of a substantially hardened material and is reusable.
In use, liner bolt 1 secures a liner to a mill casing in a conventional manner, with the head 3 of liner bolt 1 located internally and shank 4 projecting externally of the mill casing. In order to remove the liner bolt 4, the second cylindrical end 7 of pin 2 is fully inserted into bore 5 such that the flat face of central portion 8 abuts against the free end 6 of shank 4. In order to remove the liner bolt 1, the second cylindrical end 9 of pin 8 is preferably struck by the moil of a hammer.
The liner bolt 1 may be made in sizes to replace conventional liner bolts. In one particular size, the liner bolt 1 may have a shank 4 with a diameter of about 45 mm, and an overall length of about 300-350 mm. This size bolt may have a bore 5 of about 25 mm diameter and about 75 mm in length.
As can be seen in
In an alternative embodiment as shown in
This shank 104 has an external thread thereon, thereby allowing it to be secured to mill casing 13 in a like manner to bolt 1 shown in
Removal of the liner bolts 1 as described in the abovementioned embodiments not only minimizes the risk of injury to workers, but may result in the actual knock out times being reduced by 40-60%, which is a considerable saving of downtime. Another advantage of liner bolt 1 and removal pin 2 is that their use significantly reduces risk of damaging the area around the bolt hole.
Number | Date | Country | Kind |
---|---|---|---|
2005903391 | Jun 2005 | AU | national |
This application is a continuation of U.S. patent application Ser. No. 11/994,012, which is the National Stage of International Application No. PCT/AU06/00898, filed Jun. 26, 2006, both of which are incorporated herein by reference as if fully set forth.
Number | Date | Country | |
---|---|---|---|
Parent | 11994012 | Feb 2008 | US |
Child | 13656161 | US |