This invention relates in general to oil and gas well drilling while simultaneously installing a liner in the well bore.
Oil and gas wells are conventionally drilled with drill pipe to a certain depth, then casing is run and cemented in the well. The operator may then drill the well to a greater depth with drill pipe and cement another string of casing. In this type of system, each string of casing extends to the surface wellhead assembly.
In some well completions, an operator may install a liner rather than another string of casing. The liner is made up of joints of pipe in the same manner as casing. Also, the liner is normally cemented into the well. However, the liner does not extend back to the wellhead assembly at the surface. Instead, it is secured by a liner hanger to the last string of casing just above the lower end of the casing. The operator may later install a tieback string of casing that extends from the wellhead downward into engagement with the liner hanger assembly.
When installing a liner, in most cases, the operator drills the well to the desired depth, retrieves the drill string, then assembles and lowers the liner into the well. A liner top packer may also be incorporated with the liner hanger. A cement shoe with a check valve will normally be secured to the lower end of the liner as the liner is made up. When the desired length of liner is reached, the operator attaches a liner hanger to the upper end of the liner, and attaches a running tool to the liner hanger. The operator then runs the liner into the wellbore on a string of drill pipe attached to the running tool. The operator sets the liner hanger and pumps cement through the drill pipe, down the liner and back up an annulus surrounding the liner. The cement shoe prevents backflow of cement back into the liner. The running tool may dispense a wiper plug following the cement to wipe cement from the interior of the liner at the conclusion of the cement pumping. The operator then sets the liner top packer, if used, releases the running tool from the liner hanger, and retrieves the drill pipe.
A variety of designs exist for liner hangers. Some may be set in response to mechanical movement or manipulation of the drill pipe, including rotation. Others may be set by dropping a ball or dart into the drill string, then applying fluid pressure to the interior of the string after the ball or dart lands on a seat in the running tool. The running tool may be attached to the liner hanger or body of the running tool by threads, shear elements, or by a hydraulically actuated arrangement.
In another method of installing a liner, the operator runs the liner while simultaneously drilling the wellbore. A drill bit is located at the lower end of the liner. This method is similar to a related technology known as casing drilling. One option is to not retrieve the drill bit, rather cement it in place with the liner. If the well is to be drilled deeper, the drill bit would have to be a drillable type. This technique does not allow one to employ components that must be retrieved, which might include downhole steering tools, measuring while drilling instruments and retrievable drill bits. Retrievable bottom hole assemblies are known for casing drilling, but in casing drilling, the upper end of the casing is at the rig floor. In typical liner drilling, the upper end of the liner is deep within the well and the liner is suspended on a string of drill pipe. In casing drilling, the bottom hole assembly can be retrieved and rerun by wire line, drill pipe, or by pumping the bottom hole assembly down and back up. With liner drilling, the drill pipe that suspends the liner is much smaller in diameter than the liner and has no room for a bottom hole assembly to be retrieved through it. Being unable to retrieve the bit for replacement thus limits the length that can be drilled and thus the length of the liner. If unable to retrieve and rerun the bottom hole assembly, the operator would not be able to liner drill with expensive directional steering tools, logging instruments and the like, without planning for removing the entire liner string to retrieve the tools.
If the operator wishes to retrieve the bottom hole assembly before cementing the liner, there are no established methods and equipment for doing so. Also, if the operator wishes to rerun the bottom hole assembly and continue drilling with the liner, there are no established methods and equipment for doing so. Some liner drilling proposals involve connecting a bottom hole assembly to a string of drill pipe and running the drill pipe to the bottom of the liner. Retrieving the drill string at the conclusion of the drilling would retrieve the bottom hole assembly.
One difficulty to overcome in order to retrieve and rerun a bottom hole assembly during liner drilling concerns how to keep the liner from buckling if it is disconnected from the drill pipe and left in the well. If the liner is set on the bottom of the well, at least part of the drilling bottom hole assembly could be retrieved to replace a bit or directional tools. But, there is a risk that the liner might buckle due to inadequate strength to support its weight in compression.
In this invention, the operator assembles concentric inner and outer strings of tubulars, the outer string including a string of riser, and the inner string including a bottom hole assembly that axially and rotationally latches to the outer string. The operator lowers the outer string and inner string into a well from a drilling rig by connecting additional tubulars to the inner string. When on bottom, the operator rotates the inner string, which translates rotation to the drill bit to deepen the well.
If a need arises to change out the bottom hole assembly before reaching the total depth for the string of liner, the operator raises the inner and outer strings together until the upper end of the outer string is at the drilling rig. The operator supports the outer string with slips, then releases the latch between the inner and outer strings and removes the inner string. The operator reassembles the inner string, runs it back into the outer string and latches the inner string to the outer string. The operator then runs the whole assembly back into the well to continue drilling.
In the preferred embodiment, torque imposed on the inner string at the drilling rig transfers from the inner string to the outer string at the upper end of the string of liner. The torque transfers from the outer string back to the inner string at lower point where the inner string latches to the outer string, near the bottom of the liner.
Referring to
A first step of this system involves assembling an outer or liner string 15 and suspending it in casing 11. Liner string 15 is made up of tubulars that may be the same type of pipe as used for casing. Liner string 15 will eventually be cemented in the well, however, its upper end will be located a short distance above casing shoe 13, rather than extending all the way to the surface. Normally, one refers to the term “casing” as being a string of pipe that extends all the way to the surface when cemented in place. However, the terms “liner” and “casing” may be used interchangeably.
Liner string 15 is supported by a spider or slips 17 located at a drilling rig floor 19. The upper end of casing 11 will be located a short distance below. Liner string 15 has a profile nipple 21 assembled within it. Profile nipple 21 is a tubular member that has a machined profile within it for purposes that will be subsequently explained. In the example shown, profile nipple 21 is located a relatively short distance above a liner shoe 23, which is the lower end of liner string 15. However, it could be mounted in liner string 15 at other points. Preferably, liner string 15 will be made up to its full length before commencing liner drilling, which may be a few hundred feet to several thousand feet. While liner string 15 is suspended at rig floor 19, liner shoe 23 will be spaced above casing shoe 13. Liner shoe 23 may include cutting elements for cutting a sidewall of the borehole.
The operator then assembles an inner string to lower into liner string 15. Referring to
In this embodiment, a telescoping joint or sub 31 is secured to the lower end of running tool 27. Telescoping sub 31 has an inner pipe 33 with an engagement member 35 on its lower end. Inner pipe 33 is carried within an outer pipe 37 of approximately the same length. Outer pipe 37 preferably has an upper engagement end or clutch 39 that contains splines, grooves or threads for engagement by inner pipe engagement end 35. When engaged, which occurs when telescoping sub 31 is fully extended, rotation of inner pipe 33 causes outer pipe 37 to rotate. Outer pipe 37 optionally may have a lower engagement end or clutch 41 that has similar grooves, splines or threads for receiving inner pipe engagement end 35. When engagement end 35 engages lower clutch 41, which occurs if telescoping sub 31 is fully contracted, torque applied to inner pipe 33 will rotate outer pipe 37. Inner pipe 33 is shown extending upward from outer pipe 37, but they could be reversed with outer pipe 37 on the upper end of telescoping sub 31. When inner pipe engagement end 35 is located between upper and lower clutches 39, 41, inner pipe 33 is free to rotate without imposing any torque on outer pipe 37.
Referring again to
A drill lock assembly or tool 45 attaches to the lower end of lower drill pipe string 43 as shown in
Referring still to
In the operation of the components shown in
After the operator is confident that drill lock tool 45 has properly locked to profile nipple 21, he connects liner hanger running tool 27, which may be previously installed within liner hanger 29, to the upper end of telescoping sub 31. The operator applies weight above telescoping sub 31 to cause its shear element to shear, allowing it to contract from the extended position. As telescoping sub 31 contracts, liner hanger 29 will engage the upper end of liner string 15. The operator secures liner hanger 29 to the upper end of liner string 15, such as by rotating running tool 27. Once liner hanger 29 is secured, liner hanger running tool 27 is connected rotationally and axially to liner string 15 through liner hanger 29. After being latched rotationally and axially at liner hanger 29 and drill lock tool 45, the inner and outer strings make up a concentric string assembly.
The inner string is thus connected rotationally and axially to liner string 15 at the upper end of liner string 15 and also near the lower end of liner string 15, at profile nipple 21. The operator will know the approximate length of liner string 15 from its upper end to profile nipple 21, but it would be difficult to precisely assemble the inner string so that the distance from drill lock tool 45 to liner hanger 29 exactly matched that distance. Telescoping sub 31 may have a length that ranges from about 10 feet to 20 feet or more from the contracted to the extended position, thus avoids the need for the operator to precisely match the distance from profile nipple 21 to the upper end of liner string 15.
Once liner hanger 29 is engaged with liner string 15, running tool 27 will be able to transmit torque to liner string 15. Because telescoping sub 31 is in a neutral position, torque imposed on upper drill string 25 will not pass through telescoping sub 31 to lower drill pipe string 43.
After making up liner hanger 29 with liner string 15, the operator lifts liner string 15 slightly with upper drill pipe string 25, releases slips 17, and lowers the entire concentric string assembly into the well. The operator will add more joints of drill pipe to upper drill pipe string 25 until pilot bit 61 reaches the bottom of the wellbore, which typically is at casing shoe 13. The operator begins pumping drilling fluid down upper drill pipe string 25 and begins rotating upper drill pipe string 25. Torque imposed on upper drill pipe string 25 by the top drive or rotary table of the drilling rig passes through liner hanger 29 to liner string 15. The torque then passes from liner string 15 through profile nipple 21 to drill lock tool 45. Drill lock tool 45 transfers that torque to auxiliary equipment 57, underreamer 59 and drill bit 61. In this embodiment, drill lock tool 45 would also transmit rotational force to lower drill pipe string 43, causing it to rotate. The outer pipe 37 of telescoping sub 31 would also be rotating even though in the neutral position of
The drilling fluid being pumped down upper drill pipe string 25 flows through telescoping sub 31 and lower drill pipe string 43, drill lock tool 45, auxiliary equipment 57 and out the lower end of drill bit 61. The drilling fluid in the preferred embodiment flows back up the outer annulus between liner string 15 and the borehole wall and casing 11. Cup seals 55, if employed, prevent the flow of drilling fluid up liner string 15. Cup seals 55 could be eliminated and a seal located between running tool 27 and liner hanger 29 or the upper end of liner string 15.
The operator may wish to retrieve the bottom hole assembly before reaching the total desired depth of liner string 15 because of repair or replacement of drill bit 61 or auxiliary equipment 57. If so, referring to
Eventually, substantially all of the upper drill pipe string 25 will be removed and liner hanger 29 will be located above slips 17. The operator actuates slips 17 to support liner string 15. Liner shoe 23 will be spaced above casing shoe 13 again. Liner hanger 29 will be extending upward from liner string 15. The operator disengages liner hanger 29 from liner string 15 by a suitable method, such as left-hand rotation. The operator then sets liner running tool 25 and liner hanger 29 aside and retrieves the remaining components of the inner string by first unlatching drill lock tool 45 from profile nipple 21. In the preferred embodiment, this is handled simply by pulling upward on telescoping sub 31 with a sufficient force, which causes telescoping sub 31 to fully extend and transmit the upward force to lower drill pipe string 43. Preferably, drill lock tool 45 releases from profile nipple 21 in response to a straight upward pull. If some rotation of drill lock tool 45 relative to liner string 15 is needed to release it from profile nipple 21, rotation of telescoping sub 31 will transmit torque to lower drill pipe string 43 and drill lock tool 45 because telescoping sub 31 transmits torque while in the extended position.
The operator thus will pull to the surface and set aside telescoping sub 31, lower drill pipe string 43, drill lock tool 45, underreamer 59 and drill bit 61. Once retrieved, liner string 15 will be free of internal components and will appear as illustrated in
After drilling liner string 15 reaches its total depth, the operator will set liner hanger 29 so that its slips 30 engage the inner diameter of casing 11, as schematically illustrated in
The operator retrieves the inner string and then assembles a cementing string as illustrated in
A cement retainer launch tube 69, which may simply be a tubular member with a releasable internal seat, extends below cement running tool 63. A cement retainer 71 is located on the lower end of launch tube 69. In this example, cement retainer 71 is of a type that is adapted to be pumped down liner string 15, thus has seals 73 on its exterior for engaging liner string 15. In this example, cement retainer 71 has an axial passage that is open so that the operator can pump cement through it while it is still attached to cement retainer launch tube 69. Preferably, cement retainer 71 has a latch 77 (
In the cementing operation, the operator will lower the assembly shown in
When the measured quantity of cement has been dispensed, the operator drops a sealing element 75, which may be a ball or dart, as shown in
The operator then releases cement running tool 63 from packer 65 in a conventional manner and sets packer 65. In one type of arrangement, this is handled by applying downward weight from upper drill pipe string 25 to cement running tool 63 after it has been released from packer 65. The weight causes packer element 67 to expand out, and gripping mechanisms of packer 65 will grip and engage casing 11. The operator retrieves upper drill pipe string 25 and cement running tool 63.
Although described to be a valve-less type that is pumped down after dispensing the cement, cement retainer 71 may be a variety of types. For example, a cement retainer pumped down before dispensing cement could be employed. If so, it would normally have a valve within it, such as a flapper valve, to block return flow of cement. It might also have a frangible element, such as a burst disc, that closes its axial passage against fluid pressure from above to enable cement retainer 71 to be pumped down. The burst disc would rupture after the cement retainer latches in profile nipple 21. The launch tube would need to be capable of carrying and launching a following wiper plug in addition to the cement retainer. Additionally, a cement retainer could be run by other means than pumping, such as by a wireline or drill pipe.
Drill lock tool 45 has a body 83 with a bore 85. The lower portion of cone mandrel 79 is located within bore 85. Cone mandrel 79 may be stroked between an upper position shown in
In this example, set position shear fasteners 91 are mounted to retainer nut 87. Set fasteners 91 are biased by springs 92 radially inward. In the run-in position, set position shear fasteners 91 simply bear against the outer wall of cone mandrel 79 and do not prevent any movement of cone mandrel 79 relative to body 83. When cone mandrel 79 moves to the set position of
Seals 95 are located on a lower cylindrical portion of cone mandrel 79. While in the run-in position of
The system described above allows an operator to retrieve a bottom hole assembly during liner drilling without setting the liner string on the bottom of the wellbore. By pulling the upper end of the liner string back to the rig floor, the operator does not need to set and release the liner hanger. The liner hanger and running tool can be conventional since the liner hanger is set only once. The telescoping sub allows the inner string to be axially and rotationally locked to the liner string both at the top and near the bottom. The neutral position of the telescoping sub allows the drilling torque to be transmitted only through the liner string, and not also through the inner string. The upper clutch mechanism enables torque to be transmitted through the telescoping sub during run-in and retrieval from the liner string, if needed. The lower clutch allows one to transmit torque through the telescoping sub while in the contracted position in the event it is needed.
While the invention has been shown in only one of its forms, it should be apparent to those skilled in the art that it is not so limited and is susceptible to various changes without departing from the scope of the invention.
This application is a continuation-in-part of Ser. No. 12/238,191, filed Sep. 25, 2008, which claimed priority to provisional application Ser. No. 60/977,263, filed Oct. 3, 2007.
Number | Date | Country | |
---|---|---|---|
60977263 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12238191 | Sep 2008 | US |
Child | 12347610 | US |