The present disclosure relates to a liner for a cylinder of an engine block and systems, assemblies, components, and methods thereof and associated therewith.
Cylinder liners can have the challenge of balancing liner structure and sealing effectiveness in a lower coolant sealing region between the liner and block. Providing one or more sealing grooves for a sealing element (e.g., o-ring) in the liner may compromise liner structure. On the other hand, accommodating the one or more sealing grooves in the liner may require undesirable thickness for the liner and/or pose challenges with block reconditioning and reusability in this area at first and subsequent engine overhauls. U.S. Pat. No. 7,726,273 (“the '273 patent”) describes a high strength steel cylinder liner for a diesel engine. According to the '273 patent a diesel engine is fitted with a thin-walled wet liner fabricated of steel, where a compound liner thickness to bore diameter is in the range of 1.5 to 4 percent.
In one aspect, the present disclosure describes a liner for a cylinder of an internal combustion engine. The liner can comprise a cylindrical wall having a radially internal surface, a radially external surface opposite the radially internal surface, and open top and bottom ends, wherein the radially external surface can be without any sealing grooves in at least a bottom portion thereof. The cylindrical wall can include a thick portion at at least a middle portion thereof, and a thin portion below the thick portion, and extending to the bottom end of the cylindrical wall. A transition from the thick portion to the thin portion can be provided by a change in outer diameter of the radially external surface of the cylindrical wall.
In another aspect, the present disclosure describes a method. The method can comprise: providing a liner adapted to be provided in a machined cylinder of an engine block such that the liner is radially supported by sidewall portions of the machined cylinder, the liner being hollow and cylindrical with an inner surface, an outer surface opposite the inner surface, and open top and bottom ends; and providing an insert adapted to be retained in the engine block having the machined cylinder, the insert being in the form of a ring and provided radially around the outer surface of the liner. The liner can be without any sealing grooves in the outer surface thereof in at least a bottom portion thereof. The insert can have an inner surface with a plurality of sealing grooves adapted to receive and retain respective sealing rings such that the sealing rings create a seal between the insert and the outer surface of the liner when the insert is provided radially around the outer surface of the liner. The liner can have a thick portion at a middle portion thereof and a thin portion at the bottom portion thereof, where a transition from the thick portion to the thin portion can be at an acute angle on the outer surface of the liner, and the thin portion defining a thinnest portion of the liner at the bottom end thereof.
In yet another embodiment, an assembly for a cast-iron engine block of an internal combustion engine is described. The assembly can comprise: a steel liner adapted to be inserted and retained in a machined cylinder of the cast-iron engine block such that the steel liner is top-supported by a top surface of the cast-iron engine block and radially supported by sidewall portions of the machined cylinder, the steel liner having a hollow cylindrical body with an inner surface, an outer surface opposite the inner surface, and open top and bottom ends; and a stainless steel insert adapted to be retained in the cast-iron engine block having the machined cylinder, the stainless steel insert being symmetrical and ring-shaped and provided radially around the outer surface of the body of the steel liner. The body of the steel liner can be without any sealing grooves in at least a bottom portion thereof. The stainless steel insert can have an inner surface with a plurality of sealing grooves adapted to receive and retain respective o-rings such that the o-rings create a seal between the stainless steel insert and the outer surface of the body of the steel liner when the stainless steel insert is provided radially around the outer surface of the body of the steel liner. The body of the steel liner can have a thick portion at a middle portion thereof and a thin portion at the bottom portion thereof, a transition from the thick portion to the thin portion being at an acute angle on the outer surface of the body of the steel liner, and the thin portion tapering to a thinnest portion of the body of the steel liner at the bottom end thereof.
Other features and aspects of this disclosure will be apparent from the following description and the accompanying drawings.
The present disclosure relates to a liner for a cylinder of an engine block and systems, assemblies, components, and methods thereof and associated therewith.
As shown in
An assembly according to embodiments of the disclosed subject matter can be comprised of a liner 300 and an insert 400, and can be individually provided for some or all of the cylinders 200. Generally, the insert 400 can be provided in the block 100, radially around a bottom portion 330 of the liner 300, such as shown in
The liner 300 may be provided entirely or mostly in the cylinder 200. Optionally, a portion of the liner 300 may protrude from the cylinder 200. For instance, as shown in
In any case, the liner 300 can be removably provided in the cylinder 200 so as to be radially supported by sidewall portions of the block 100 that define the cylinder 200. According to one or more embodiments, the liner 300 can be inserted and retained in the cylinder 200 via the relatively tight fit of the liner 300 with the sidewall portions defining the cylinder 200. For instance, the liner 300 can be pressed and/or locked in the cylinder 200 via the relatively tight fit of the liner 300 with the sidewall portions defining the cylinder 200. In this regard, the portion(s) of the liner 300 in the cylinder 200 having a maximum outer diameter can be constrained, particularly by an inner diameter of one or more sidewall portions of an upper portion of the block 100. Some or all such sidewall portion(s) may be referred to as pilot(s) (e.g., upper block pilot(s)), and may be used to locate the liner 300 in the cylinder 200.
One or more coolant passages to circulate coolant may be provided between the upper portion of the block 100 and a middle portion 320 of the liner 300. An upper seal, which may be provided just below the flange 312, may provide an upper sealing interface between the upper portion of the block 100 and the middle portion 320 of the liner 300 to seal the one or more coolant passages. According to one or more embodiments the upper sealing interface may be provided by a relatively shallow recess in the liner 300 and may be referred to as a filler band.
Referring to
An interior or inner surface 410 of the insert 400 may be adapted to sealingly interface with an outer surface 302 of the liner 300, particularly at the bottom portion 330 of the liner 300. Generally, one or more non-metallic seals (e.g., elastomer seals) may be provided. For instance, one or more sealing rings 500 can be provided in respective one or more sealing grooves 450 formed in the inner surface 410 of the insert 400. As shown in
In the case of multiple sealing rings 500, the sealing rings 500 can have the same dimensions (e.g., cross-section, diameter, etc.) and, therefore, can have the same percentage of fill of the sealing grooves 450. Optionally, some or all of the sealing rings 500 can have the same compressibility (e.g., compression percentage). According to one or more embodiments, the one or more sealing rings 500 can have dimensions (e.g., cross-sectional dimension, such as diameter) greater than a depth of respective ones of the one or more sealing grooves 450 such that a portion of the sealing ring 500 extends from the sealing groove 450, past the inner surface 410 of the insert 400, at least when the insert 400 is provided with the one or more sealing rings 500 and the liner 300 is not provided radially inward of the insert 400. Optionally, the one or more sealing rings 500 may be retained in respective sealing grooves 450 even when the liner 300 is not provided radially inward of the insert 400. As noted above, according to one or more embodiments some or all of the one or more sealing rings 500 may be o-rings, such as shown in
The one or more sealing rings 500 may be adapted for the specific geometry of the one or more sealing grooves 450 of the insert 400 and/or the outer surface 302 of the liner 300. The one or more sealing rings 500 may also be adapted based on the material or materials to which the one or more sealing rings 500 will be exposed. In this regard, generally, a seal 600 can be formed by the one or more sealing rings 500 and the liner 300 to provide a barrier for engine coolant at a top portion of the insert 400 and a barrier for engine oil at a bottom portion of the insert 400. Hence, the one or more sealing rings 500 forming the seal 600 can be constituted of a material or materials that may be able to accommodate the particular exposure component or components. Accommodate in this context may mean resistant or proof, for instance, coolant—(including water) or oil-resistant or proof. As an example, in the case of the sealing rings 500 of
Referring to
The body 301 of the liner 300 can be cylindrical, though the thickness of the body 301 can change along the length of the body 301. Optionally, according to one or more embodiments, only the surface profile of the outer surface 302 may change, where an inner diameter of the liner 300 defined by the inner surface 304 can be constant along an entire length of the body 301. As noted above, the body 301 of the liner 300 may be characterized as having the top portion 310, the middle portion 320, and the bottom portion 330.
The top portion 310 of the liner 300, which can include the top end 306, can, according to one or more embodiments, define the flange 312. The flange 312 may define a maximum outer diameter of the outer surface 302 of the liner 300 and/or a maximum thickness of the liner 300.
In terms of relative thickness, generally, the middle portion 320 may be thicker than the bottom portion 330, particularly a so-called thin portion 332 of the bottom portion 330. In this regard, the middle portion 320 may have a so-called thick portion 322, which may form a thickest part of the middle portion 320 (though other portions of the middle portion 320 may have a same thickness). Optionally, the thick portion 322 may be characterized as a pilot portion for placement of the liner 300 in the cylinder 200.
The thick portion 322 may be provided at least at a midway point along the longitudinal length of the liner 300 between the top end 306 and the bottom end 308. In the embodiment of
In any case, the transition 329 in thickness from the thick portion 322 to the thin portion 332 can occur at the bottom portion 330 of the liner 300. As noted above, according to one or more embodiments, the transition 329 may be effected by change in elevation of the outer surface 302 of the liner 300. Referring to
The thin portion 332 of the liner 330 can extend from the transition 329 to the bottom end 308 of the liner 300. According to one or more embodiments, no portion of the thin portion 322 can be greater in thickness than any portion of the thick portion 322. Likewise, except at the interface with the thick portion 322, no portion of the transition 329 may be greater in thickness than the thick portion 322. Additionally, according to one or more embodiments, no portion of the thin portion 322 may be thicker than any portion of the middle portion 320. In the case of the top portion 310 being at least as thick as the thick portion 322, the thickness comparisons above naturally apply to the top portion 310 relative to the bottom portion 330 of the liner 300.
Optionally, the thin portion 332 can taper in thickness to the bottom end 308. As noted above, the taper can apply to the outer surface 302 of the liner 300. As shown in
The outer surface 302 of the liner 300 may be entirely or partially without any sealing grooves adapted to receive a sealing ring, such as a D-ring or an o-ring. According to one or more embodiments, the outer surface 302 may be entirely without any such sealing grooves at the bottom portion 330 of the liner 300. Nevertheless, the outer surface 302 at the bottom portion 330 of the liner 300 can be adapted to sealingly interface with an insert assembly according to embodiments of the disclosed subject matter, such as an insert assembly comprised of the insert 400 and the one or more sealing rings 500 discussed herein.
Turning now to
The insert 400 can have the interior or inner surface 410 and the exterior or outer surface 414 opposite the inner surface 410. The outer surface 414, which may be smooth, can define a maximum outer diameter of the insert 400. Optionally, the first end 402 and the second end 406 may be chamfered on the outer surface 414 and/or the inner surface 410. As shown in
The insert 400 can have one or more sealing grooves 450 formed or provided in the inner surface 410. Insert 400, for instance, has three sealing grooves 450. The sealing grooves 450 may extend around an entire circumference of the inner surface 410 of the insert 400, and can be adapted to receive and retain respective sealing rings, such as sealing rings 500 shown in
In the case of multiple sealing grooves 450, the sealing grooves 450 may be evenly spaced from each other in the longitudinal or height direction of the insert 400. Optionally, the sealing grooves 450 may also be evenly spaced from each other and the first and second ends 402, 406, such as shown in
The depth of the sealing grooves 450 can be driven by an amount of compression for a corresponding sealing ring 500 provided therein. Optionally, the depth of the sealing groove 450 can be based on retention of the sealing ring 500 in the sealing groove, for instance, prior to and/or during insertion of the liner 300.
As discussed above, the insert 400 can be adapted to be retained in the pocket 130 of the block 100 to receive the liner 300 such that the insert 400 radially surrounds only the thin portion 332 of the liner 300. The sealing rings 500 can be provided in the respective sealing grooves 450, and can contact the outer surface 302 of the liner 300 to form the seal 600.
As noted above, the present disclosure relates to a liner for a cylinder of an engine block and systems, assemblies, components, and methods thereof and associated therewith.
Embodiments of the disclosed subject matter can balance liner structural adequacy and sealing effectiveness in the lower coolant sealing region between the liner and block. In this regard, embodiments of the disclosed subject matter can provide a sealing system between a liner in a cylinder and the block of an internal combustion engine in a constrained geometric space to prevent or minimize the mixing together of engine coolant and engine oil in the engine block.
The liner, such as liner 300, can have a variable wall thickness along its length, with a relatively thick portion transitioning to a relatively thin portion at a bottom portion of the liner 300. The relatively thick portion of the liner 300 can be for structural adequacy to account for combustion, firing pressure, cavitation, piston side loads, etc. in order to protect the surrounding block, whereas the relatively thin portion of the liner 300 in the bottom portion can be to provide a suitable seal between the liner 300 and the block (and since the bottom portion of the liner 300 may experience comparatively less stress due to combustion, firing pressure, cavitation, piston side loads, etc.).
At least at the thin portion the liner 300 can be without any sealing grooves adapted to receive respective sealing rings. Rather, a sleeve or insert, such as insert 400, can be provided with one or more sealing rings, such as sealing rings 500, in respective sealing grooves formed in an inner surface of the insert 400. The relatively thin portion of the liner 300 can provide room for the insert 400 and sealing ring(s) 500 of sufficient configuration (e.g., cross-sectional size) to provide a suitable seal with the liner 300. That is, the outer diameter of the insert 400 can be constrained by the maximum counterbore diameter that can be machined in the block. Hence, making the bottom portion of the liner 300 relatively thin can provide space in the radially outward direction to accommodate the insert 400 and sealing ring(s) 500 of suitable configuration without running afoul of the constraints on the outer diameter of the insert 400. In this regard, according to one or more embodiments, the one or more sealing rings 500 can be o-rings, rather than D-rings, for instance, thereby affording the opportunity to provide a sealing ring with greater relative cross-sectional area.
Use of the insert 400 (with the sealing ring(s) 500) can enable cost-effective reconditioning of the block 100 at overhaul (e.g., first or subsequent overhauls), for instance, as compared to a situation where the sealing ring(s) are placed in the block 100 itself, because the insert 400 can be replaced, if needed, rather than having to machine the sealing groove(s) in situ.
As noted above, the block 100 can include a plurality of cylinders, such as cylinders 200, where cylinders 200 may be machined or bored out. Bored out can mean that some of the parent material of the block 100 that defines the cylinder 200 has been bored or machined such that the geometry of the cylinder 200 is changed relative to a previous operational geometry of the internal combustion engine. Previous operational geometry can mean an initial build of the internal combustion engine or a prior rebuild of the internal combustion engine.
An assembly according to embodiments of the disclosed subject matter, which can be comprised of a liner 300, an insert 400, and one or more sealing rings 500, can be individually provided for some or all of the cylinders 200. Generally, the insert 400 can be provided in the block 100, along with the one or more sealing rings 500, radially around the bottom portion 330 of the liner 300, such as shown in
Referring to
The outer surface 414 of the insert 400 can be chamfered at the first end 402 of the insert 400 and/or at the second end 406 of the insert 400. Such chamfered outer surface 414 can assist with ease of installation of the insert 400 into the pocket 130. Such chamfered outer surface 414 may also assist with ease of installation of the insert 400 through the upper portion of the cylinder 200 when the first end 402 or the second end 406 of the insert 400 is the lead end of the insert 400 into the cylinder 200. In this regard, the insert 400 may be symmetrical entirely or at least with respect to the outer surface 414 at the first end 402 and the second end 406 of the insert 400. Thus, according to embodiments of the disclosed subject matter, the orientation of the insert 400 for installation, i.e., whether the first end 402 or the second end 406 of the insert 400 forms the leading end of the insert 400 into the cylinder 200, may not form a consideration for installation. In any case, the lead end of the insert 400, whether the second end 406 or the first end 402, such as shown in
One or more sealing rings 500 may be provided in respective one or more sealing grooves 450 formed in the inner surface 410 of the insert 400. As shown in
Providing the sealing ring(s) 500 in the insert 400 rather than the liner 300 can allow for the use of relatively thick (e.g., greater in cross-sectional diameter) sealing ring(s) 500, particularly o-rings, since the sealing ring(s) 500 are already in place upon insertion of the liner 300 in the cylinder 200. According to one or more embodiments, the one or more sealing rings 500 can have dimensions (e.g., cross-sectional dimension, such as diameter) greater than a depth of respective ones of the one or more sealing grooves 450 such that a portion of the sealing ring 500 extends from the sealing groove 450, past the inner surface 410 of the insert 400, at least when the insert 400 is provided with the one or more sealing rings 500 and the liner 300 is not provided radially inward of the insert 400.
The liner 300 can be provided in the cylinder 200 after the insert 400 and sealing ring(s) 500. As noted above, the liner 300 can be removably provided (e.g., inserted, pressed, etc.) in the cylinder 200 and subject to relatively tight fit with the sidewall portions defining the cylinder 200. According to one or more embodiments, the liner 300 can be locked in the cylinder 200. In this regard, the portion(s) of the liner 300 in the cylinder 200 having a maximum outer diameter can be constrained, particularly by an inner diameter of one or more sidewall portions of an upper portion of the block 100. Some or all such sidewall portion(s) may be referred to as pilot(s) (e.g., upper block pilot(s)), and may be used to locate the liner 300 in the cylinder 200.
When the liner 300 is provided in the cylinder 200 the insert 400 and sealing ring(s) 500 can radially surround an outer or external wall or surface 302 at a portion of the bottom portion 330 of the liner 300, such as shown in
The inner surface 410 of the insert 400 can be chamfered at the first end 402 of the insert 400 and/or the second end 406 of the insert 400 (the insert 400 can be symmetrical in this regard), wherein when the trailing end of the first end 402 and the second end 406 of the insert 400 has a chamfered inner surface 410 the chamfer can facilitate placement of the liner 300 through the inner volume of the insert 400. Additionally, as the liner 300 is seated in the cylinder 200 the outer surface 302 of the liner 300 can contact the sealing ring(s) 500 such that the sealing ring(s) 500 compress. In that the sealing ring(s) 500 can be retained in respective sealing groove(s) 450 and the liner 300 can have the thin portion 332 that can taper, from the outer surface 302, to a thinnest portion of the body 301 of the liner 300, each sealing ring 500 can interface with the outer surface 302 of the liner 300 such that the sealing ring(s) 500 do not roll or are less likely to roll as the liner 300 is moved down in the cylinder 200 over a length of insertion.
In any case, a seal may be formed by each of the one or more sealing rings 500 and the outer surface 302 of the liner 300. Such seals may be collectively referred to herein as the seal 600. As noted above, the seal 600 can be relative to the thin portion 332 of the liner 300, below the transition 329.
The transition 329 in thickness from the thick portion 322 to the thin portion 332 can occur at the bottom portion 330 of the liner 300. As noted above, according to one or more embodiments, the transition 329 may be effected by change in elevation of the outer surface 302 of the liner 300. Referring to
In terms of relative thickness, generally, the middle portion 320 may thicker than the bottom portion 330, particularly a so-called thin portion 332 of the bottom portion 330. In this regard, the middle portion 320 may have a so-called thick portion 322, which may form a thickest part of the middle portion 320 (though other portions of the middle portion 320 may have a same thickness). Optionally, the thick portion 322 may be characterized as a pilot portion for placement of the liner 300 in the cylinder 200.
The thick portion 322 may be provided at least at a midway point along the longitudinal length of the liner 300 between the top end 306 and the bottom end 308. In the embodiment of
The thin portion 332 of the liner 330 can extend from the transition 329 to the bottom end 308 of the liner 300. According to one or more embodiments, no portion of the thin portion 322 can be greater in thickness than any portion of the thick portion 322. Likewise, except at the interface with the thick portion 322, no portion of the transition 329 may be greater in thickness than the thick portion 322. Additionally, according to one or more embodiments, no portion of the thin portion 322 may be thicker than any portion of the middle portion 320. In the case of the top portion 310 being at least as thick as the thick portion 322, the thickness comparisons above naturally apply to the top portion 310 relative to the bottom portion 330 of the liner 300.
Non-limiting examples of thickness characteristics for one or more embodiments of the disclosed subject matter are provided below.
The thickness of the body 301 of the liner 300 above the transition 329 can have an average wall thickness to bore ratio between 3.5 to 4.5%. Below 3.5% may cause concern for the structural strength, whereas greater than 4.5% may not be practical without sacrificing engine displacement.
The thickness of the body 301 of the liner 300 below the transition 329 can have a thickness to bore ratio between 1.5 to 2.5%. Below 1.5% may cause concern for structural strength (even at this lower stress area of the liner 300), whereas greater than 2.5% may not provide enough room to use suitable sealing rings 500 (e.g., o-rings).
The ratio of the thickness of the body 301 of the liner 300 above the transition 329 and the thickness of the body 301 below the transition 329 can be between 1.5 to 3.
The thickness of the thin portion 332 can represent 20-40% of the total liner length. Less than 20% may not provide enough length to place the sealing ring(s) 500, whereas greater than 40% may not provide sufficient strength for stresses occurring higher in the cylinder 200.
The ratio between the thickness of the thin portion 332 and the diameter of the sealing ring 500 (e.g., o-ring) can be less than one. This can enable a relatively large o-ring 500 against a relatively thin liner 300.
While aspects of the present disclosure have been particularly shown and described with reference to the embodiments above, it will be understood by those skilled in the art that various additional embodiments may be contemplated by the modification of the disclosed machines, systems and methods without departing from the spirit and scope of what is disclosed. Such embodiments should be understood to fall within the scope of the present disclosure as determined based upon the claims and any equivalents thereof
Number | Name | Date | Kind |
---|---|---|---|
3882842 | Bailey et al. | May 1975 | A |
4305348 | Martin | Dec 1981 | A |
5676096 | Nishi et al. | Oct 1997 | A |
6328001 | Kirtley et al. | Dec 2001 | B1 |
7726273 | Azevedo et al. | Jun 2010 | B2 |
9534559 | Donahue | Jan 2017 | B2 |
10480499 | Hebrard et al. | Nov 2019 | B2 |
20050173091 | Cantu-Gonzalez | Aug 2005 | A1 |
20070227475 | Hiramitsu et al. | Oct 2007 | A1 |
20100139607 | Herbst-Dederichs | Jun 2010 | A1 |
20140165955 | Graham | Jun 2014 | A1 |
20140325840 | Morgan | Nov 2014 | A1 |
20150377177 | Morgan | Dec 2015 | A1 |
20160047331 | Graham | Feb 2016 | A1 |
20160053707 | Batta | Feb 2016 | A1 |
20200248645 | Bochart | Aug 2020 | A1 |
Number | Date | Country |
---|---|---|
19847865 | Aug 2000 | DE |
2006233761 | Sep 2006 | JP |
5300285 | Sep 2013 | JP |
6528736 | Jun 2019 | JP |