Liner for use with respiratory mask

Information

  • Patent Grant
  • 11305082
  • Patent Number
    11,305,082
  • Date Filed
    Monday, September 10, 2018
    5 years ago
  • Date Issued
    Tuesday, April 19, 2022
    2 years ago
Abstract
A liner for use with a respiratory mask having a frame portion which is detachable from a cushion portion is provided, the liner including a body constructed from an absorbent material, the body having a first end and a second end, the body including a hose aperture adjacent the first end and sized for placement over a hose connector of the respiratory mask, and a mouth aperture adjacent the second end for placement over a mouth opening of the mask to allow air to flow into a user's mouth.
Description
TECHNICAL FIELD

Embodiments relate to a liner for use with a respiratory mask, such as a CPAP mask.


BACKGROUND

Obstructive sleep apnea is a serious and potentially fatal medical condition in which a person's airway becomes physically blocked multiple times during sleep, restricting oxygen intake and causing the person to awake gasping for breath. Possible effects of the condition include extreme fatigue, high blood pressure, strokes, heart attacks, and sometimes even death.


One of the most common treatments of obstructive sleep apnea is the use of a continuous positive airway pressure (CPAP) machine. These machines deliver a continuous flow of pressurized air to the airway through a hose and mask fitted to the face. Patient compliance is a major problem with CPAP users, however, due to discomfort, air leaks, and general ineffectiveness. It is estimated that up to 50% of users discontinue use.


Most CPAP masks currently available are made from silicone, rubber, vinyl, or a nylon-based fabric. These materials are typically water and gas impermeable, which can block off pores, cause sweating, and create pressure marks on the face, increasing the discomfort of the mask. Furthermore, most mask manufacturers recommend against the use of skin or face cream with CPAP masks since the mask material directly contacts the skin. This is a problem for many users, especially those that have dry skin and depend on night cream for skin care.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a top plan view of a liner according to an embodiment, such as for use with a full-face respiratory mask;



FIG. 2 is a top plan view of a liner according to an embodiment, such as for use with a nasal respiratory mask;



FIG. 3 is a top plan view of a liner according to an embodiment, such as for use with a partial-face respiratory mask;



FIG. 4 is a top plan view of a forehead liner according to an aspect of the present invention;



FIG. 5 is a perspective view of an exemplary full-face respiratory mask;



FIG. 6 is an illustration of placement of a liner in accordance with an embodiment on the face-engaging portion of a respiratory mask;



FIG. 7 is an illustration of a user engaging the liner placed on the mask, fitting her nose and mouth into the liner opening;



FIG. 8 is an illustration of a user returning her head to an upright position while holding the mask and liner against her face;



FIG. 9 is an illustration of a user attaching the mask straps;



FIG. 10 is an illustration of a user adjusting the positioning of the liner by pulling on the second portion of the liner body protruding beyond the perimeter of the face-engaging portion;



FIG. 11 is a top plan view of a liner according to an embodiment, such as for use with a nasal pillow mask;



FIG. 12 is a top plan view of a liner according to another embodiment for use with a nasal pillow mask;



FIG. 13 is a top plan view of a liner according to an embodiment, such as for use with a hybrid nasal pillow/partial face mask;



FIG. 14 is a photograph of placement of a first pair of apertures of a liner as in FIG. 11 in accordance with an embodiment over the nasal pillows of a nasal pillow mask;



FIG. 15 is a photograph illustrating a user folding the liner of FIG. 11 so that a second pair of apertures is aligned with the nasal pillows;



FIG. 16 is a photograph illustrating a user adjusting the positioning of the liner of FIG. 11 by pulling on the portion of the liner body protruding beyond the perimeter of the nasal pillow mask;



FIG. 17 is a photograph of placement of a first pair of apertures of a liner as in FIG. 13 in accordance with an embodiment over the nasal pillows of a hybrid nasal pillow/partial face mask:



FIG. 18 is a photograph illustrating a user folding the liner of FIG. 13 so that a second pair of apertures is aligned with the nasal pillows;



FIG. 19 is a photograph illustrating alignment of the opening of the liner of FIG. 13 with the face-engaging portion of the hybrid mask;



FIG. 20 is a photograph illustrating a user engaging the liner of FIG. 13 placed on the hybrid mask, fitting his nose to the nasal pillows and mouth into the liner opening;



FIG. 21 is a top plan view of a liner according to another embodiment for use with a respiratory mask having a detachable frame;



FIG. 22 is a top plan of the liner of FIG. 21 annotated with exemplary, non-limiting dimensions for construction;



FIG. 23 is a photograph of an exemplary respiratory mask having a detachable frame;



FIG. 24 is a photograph of the liner of FIG. 21 placed on the mask of FIG. 23 with the frame detached;



FIG. 25 is a photograph of the liner of FIG. 21 placed on the mask of FIG. 23 with the frame attached;



FIG. 26 is a top plan view of a liner according to an embodiment, such as for use with a hybrid nasal pillow/partial face mask;



FIG. 27 is a top plan view of a liner with flaps, wherein the liner is annotated with exemplary, non-limiting dimensions for construction;



FIG. 28 is a photograph of a liner according to FIG. 27 positioned on a respiratory mask and tethered with a strap;



FIG. 29 is a side view of a one end of a liner according to FIG. 27 tethered to a respiratory mask;



FIG. 30 is a side view of another end of a liner according to FIG. 27 tethered to a respiratory mask;



FIG. 31 is a top plan view of another liner with flaps, such as for pediatric use, wherein the liner is annotated with exemplary, non-limiting dimensions for construction;



FIG. 32 is a photograph of a liner according to FIG. 31 positioned on a respiratory mask and tethered with a strap;



FIG. 33 is a side view of a one end of a liner according to FIG. 31 tethered to a respiratory mask; and



FIG. 34 is a side view of another end of a liner according to FIG. 31 tethered to a respiratory mask.





DETAILED DESCRIPTION

As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.


One or more embodiments disclosed herein provide an accessory capable of improving the comfort, effectiveness, and/or patient compliance of CPAP and other respiratory masks.


With reference to FIGS. 1-3, a liner for use with a respiratory mask, such as a CPAP mask (see FIG. 5) is illustrated and designated generally by reference numeral 10. In use, the liner 10 may be positioned between and held in place by the respiratory mask and the face of a user in order to absorb moisture, maintain proper positioning of the mask M, and greatly reduce or eliminate air from leaking between the mask M and the user's face. Although the liner 10 is described herein primarily in relation to use with a CPAP mask, it is understood that the liner 10 may also be used with other types of respiratory masks such as, but not limited to, oxygen masks, respirators, and filtering masks.


In one embodiment, the liner 10 includes a body 12 having an outer edge 14, an inner edge 16, and an opening 18 bounded by the inner edge 16. The body 12 may be generally oval-shaped, elliptical, round, or triangular, or have any other shape appropriate for use with a respiratory mask and is not limited to those shapes depicted herein. The opening 18 is configured to at least partially receive the nose, mouth, or both nose and mouth, depending upon the type of mask, allowing air flow from an air source to be received by the user through the mask M. The opening 18 may be generally elliptical or oval-shaped as shown but is not intended to be limited to these shapes.


Referring to FIGS. 1 and 5, the outer edge 14 of liner 10 may have a shape scaled to a general shape of a face-engaging portion F of the respiratory mask M. As best shown in FIGS. 6-10, a perimeter of the liner outer edge 14, which may be continuous or discontinuous, is larger than a perimeter of the face-engaging portion F, wherein the liner 10 is configured to be releasably held between the mask M and a user's face such that the outer edge 14 extends beyond the mask face-engaging portion F around at least part of its perimeter. As such, as illustrated in an exemplary manner in FIG. 1, the body 12 has a first portion 20 inward of the perimeter of the face-engaging portion F and a second, extending portion 22 outward of the perimeter of the face-engaging portion F. The extending portion 22 extends outwardly from the face-engaging portion F and may generally follow the contours of the user's face. Thus, when the liner 10 is releasably held by the mask M and the user's face, the outer edge 14 is spaced apart from the mask M.


In one embodiment, the outer edge 14 may extend beyond the perimeter of the mask face-engaging portion F by between about 0.25 to 1.0 inches, or more particularly may extend between about 0.5 and 0.75 inches. In general, the area of the extending portion 22 may comprise at least about 5%, 10%, or 15% of the area of the body 12, but larger proportions of area represented by the extending portion 22 are also contemplated. By allowing the outer edge 14 of the liner 10 to loosely protrude beyond the mask M, the extending portion 22 is configured to be in non-adhering communication with a user's face and serves to reduce air leaks from the perimeter of the mask M by acting as a baffle to regulate, limit, or diffuse air flow between the mask M and the skin, thus also stopping any resulting squealing-type noises created by such air leaks.


According to an embodiment, the body 12 is constructed from a single layer of absorbent material, wherein the thickness of the body 12 may be between about 0.005 to 0.05 inches, although these dimensions are not intended to be limiting. In one embodiment, the material may include cotton. In another embodiment, the material may include another material, such as silicone, with cotton embedded therein. However, it is understood that any material with suitable absorption and comfort properties may be used. In further accordance with an embodiment, the material used for the construction of the body 12 may be stretchable to aid in adjusting and customizing the fit of the liner 10 to a particular user as described below. The absorbent material may function to absorb moisture and/or oils from the user's skin and enable the mask M to maintain a consistent and comfortable position with respect to the user's face when in use.


In a CPAP system, an air source (not shown) delivers a constant flow of pressurized and humidified air to the CPAP mask M. Due to the moisture of the humidified air, facial perspiration (such as due to contact with the mask material), and oil from the skin, the mask M may slip on the user's face, thus leaking air and awakening the user during sleep. The liner 10 may absorb such moisture and wick it away from the face and mask surfaces. As a result, proper positioning of the mask M with respect to the skin may be maintained, thus eliminating or greatly reducing air leaks and facilitating the ability for a user to wear their CPAP mask successfully throughout the night.


The single layer construction of the liner 10 may act as a sort of “second skin” upon the user's face. As such, the liner 10 is able to provide its baffle function without detracting from the prescribed fit of the mask M since the liner 10 does not appreciably alter the distance of the face-engaging portion F from the user's face. Pressure markings from the mask M may also be reduced or eliminated by use of the liner 10. Furthermore, the absorbent liner material may make use of facial creams possible while wearing the mask M, since direct contact of the skin with the mask material is avoided.


According to an embodiment, the liner 10 is held in place by the pressure of the respiratory mask M upon the face (e.g., by straps around the head). While it is contemplated that the liner 10 could be at least partially fastened to the mask M, advantageously neither elastic nor another mechanism for securing the liner 10 to the mask M is required, allowing for ease of use and manufacture. The position of the liner 10 can be adjusted if necessary while the mask M is secured, and the liner 10 is easily removable and replaceable when the mask M is removed.


Respiratory masks, more particularly CPAP masks, are offered in various shapes and sizes, including full-face, nasal, child-sized, and partial-face (hybrid) configurations. Full-face masks typically include a wider bottom region for covering the mouth area and a narrower upper region for covering the nasal area. Nasal masks generally cover the nasal area and not the mouth area. Child-sized masks may have a proportionally smaller size. Partial-face (hybrid) masks generally cover the mouth and may include a nasal interface. It is therefore contemplated that the outer edge 14 of liner 10 may have a shape similar to a general shape of the face-engaging portion for a selected mask M, wherein the shape of the outer edge 14 may represent a scaled version of the general shape of the face-engaging portion F.


If the liner 10 is to be used with a full-face CPAP mask, the opening 18 may be sized to at least partially receive the user's nose and mouth (see FIG. 1). In this embodiment, the opening 18 may have a length of between about 1.0 to 3.0 inches and a width of between about 1.0 to 1.75 inches, and the body 12 may have a length of between about 4.5 to 7.5 inches and a width of between about 4.5 to 6.5 inches. If the liner 10 is to be used with a nasal CPAP mask, the opening 18 may be sized to at least partially receive the user's nose (see FIG. 2). In this embodiment, the opening 18 may have a length of between about 1.25 to 1.75 inches and a width of between about 0.75 to 1.5 inches, and the body 12 may have a length of between about 3.0 to 4.0 inches and a width of between about 3.0 to 5.0 inches. If the liner 10 is to be used with a partial-face CPAP mask, the opening 18 may be sized to at least partially receive the user's mouth (see FIG. 3). In this embodiment, the opening 18 may have a length of between about 0.5 and 1.0 inches and a width of between about 1.75 and 2.25 inches, and the body 12 may have a length of between about 2.5 to 4.0 inches and a width of between about 4.25 and 6.0 inches. It is understood, however, that these embodiments are not intended to be limiting, and the liner 11 could be configured to fit any size or shape of CPAP mask M.


Turning to FIG. 4, a forehead liner 24 may also be provided to interface with a forehead stabilizer portion S of a respiratory mask M (see FIG. 5) to create a two-piece liner system. In accordance with an embodiment. The forehead liner 24 is configured to be releasably held by the forehead stabilizer portion S and the user's face, and may have an area at least as large as an area of the forehead stabilizer portion S. The forehead liner 24 may have a generally rectangular shape and may comprise a single or multi-layer material such as, but not limited to, cotton. In one embodiment, the forehead liner 24 comprises three layers of an absorbent material. The forehead liner 24 may have a shape that is generally similar to the shape of the forehead stabilizer portion S and may extend beyond the perimeter of the forehead stabilizer portion S by between about 0.5 to 0.75 inches, although it is understood that the forehead liner 24 is not limited to this configuration. Liner 10 and forehead liner 24 may be used together but may also be used separately as desired by a user.


Referring now to FIGS. 6-10, a method of using the liner 10 according to an embodiment will be described. As shown in FIG. 6, the liner 10 may be placed over the face-engaging portion F such that the outer edge 14 extends beyond and is spaced apart from the face-engaging portion F. Although not shown in this figure, the forehead liner 24 can also be placed on the forehead stabilizer portion S if desired. The user may then lean his/her face downward toward the mask M, fitting his/her nose and/or mouth (as applicable) into the opening 18 as depicted in FIG. 7. Next, the user may press his/her face against the liner 10 and mask M while returning his/her head to a normal upright position as shown in FIG. 8. As illustrated in FIG. 9, the user may then snap the mask fasteners into place and adjust their tightness to secure the mask M. Securing the mask M releasably holds the liner 10 between the face-engaging portion F and a user's face, such that the liner 10 regulates air flow and reduces air leaks between the face-engaging portion F and the user's face. Lastly, with reference to FIG. 10, the liner 10 may be adjusted, such as around the nose and mouth, by pulling outward on the protruding extending portion 22, thereby providing a customized fit for a particular user. Of course, it is understood that variations on the above-described use of liner 10 and forehead liner 24 are fully contemplated.


In another embodiment, a liner 100 as illustrated in FIG. 11 is provided which includes a plurality of apertures, such as for use with a nasal pillow mask, as shown in FIG. 14, for example. The liner 100 includes a body 112 having an outer edge 114, a first pair of apertures 116 which may be adjacent a first end 118 of the liner 100, and a second pair of apertures 120 which may be adjacent a second end 122 of the liner 100. The body 112 may be generally oval-shaped, elliptical, round, triangular, or rectangular, or have any other shape appropriate for use with a respiratory mask and is not limited to the shape depicted herein. The first pair of apertures 116 are sized to be placed over the nasal pillows of a nasal pillow mask for maintaining proper position or the liner 100 and, in a non-limiting example, may be approximately 0.5 to 1.0 inches in diameter. The second pair of apertures 120 are sized to lay on top of the nasal pillows to provide comfort to a user's nostrils and allow air to flow through the nasal pillows and into the user's nostrils. The second pair of apertures 120 may be generally circular or oval-shaped as shown but are not intended to be limited to these shapes.


In another embodiment, which may be for use with a nasal pillow mask, the liner 100 may include an additional aperture 124 sized for placement over the hose connection of the mask for possible added stability. In this embodiment, the second pair of apertures 120 may be disposed more centrally along the length of the liner 100.


For a hybrid face-nasal pillow mask, the embodiment of FIG. 13 may be utilized. The liner 200 includes a body 212 having an outer edge 214, an inner edge 216, and an opening 218 bounded by the inner edge 216. The body 212 may be generally oval-shaped, elliptical, round, triangular, or rectangular, or have any other shape appropriate for use with a respiratory mask and is not limited to the shape depicted herein. The opening 218 is configured to at least partially receive the mouth, allowing air flow from an air source to be received by the user through the mask. The opening 218 may be generally elliptical or oval-shaped as shown but is not intended to be limited to these shapes. The liner 200 further includes a first pair of apertures 220, which may be adjacent an end of the liner 200, and a second pair of apertures 222 set inward from the first pair of apertures 220. The first pair of apertures 220 are sized to be placed over the nasal pillows for maintaining proper position of the liner 100 and, in a non-limiting example, may be approximately 0.5 to 1.0 inches in diameter. The second pair of apertures 222 are sized to lay on lop of the nasal pillows to provide comfort for a user's nostrils and allow air to flow through the nasal pillows and into the user's nostrils. The second pair of apertures 222 may be generally circular or oval-shaped as shown but are not intended to be limited to these shapes. FIG. 26 illustrated another, related embodiment, wherein the description of FIG. 13 may also be applicable.


In the embodiment of FIG. 11, the body 112 may have a length of between about 4.0 to 5.0 inches and a width of between about 2.0 to 3.0 inches. In the embodiment of FIG. 12, the length of the body 112 may be between 6.0 and 7.0 inches and the width of the body may be between about 2.0 to 3.0 inches. In the embodiment of FIG. 13, the opening 218 may have a length of between about 1.0 to 3.0 inches and a width of between about 1.0 to 1.75 inches, and the body 212 may have a length of between about 6.0 to 7.0 inches. The body 212 may have a width of between about 5.0 to 6.0 inches at a bottom portion thereof adjacent the opening 218 and between about 2.5 to 3.5 inches at a top portion thereof adjacent the first pair of apertures 220. It is understood, however, that these embodiments are not intended to be limiting, and the liners 100, 200 could be configured to fit any size or shape of CPAP mask.


In use, the liners 100, 200 may be positioned between and held in place by the respiratory mask and the face of a user in order to absorb moisture, maintain proper positioning of the mask, and greatly reduce or eliminate air from leaking between the mask and the user's face. A perimeter of the liner outer edge 114, 214, which may be continuous or discontinuous, is larger than a perimeter of the face-engaging portion (including nasal pillows) of the mask, wherein the liners 100, 200 are configured to be releasably held between the mask and a user's face such that the outer edge 114, 214 extends beyond the mask face-engaging portion around at least part of its perimeter. As such, the body 112, 212 has an extending portion outward of the perimeter of the face-engaging portion. By allowing the outer edge 114, 214 of the liner 100, 200 to loosely protrude beyond the mask, the extending portion is configured to be in non-adhering communication with a user's face and serves to reduce air leaks from the perimeter of the mask by acting as a baffle to regulate, limit, or diffuse air flow between the mask and the skin, thus also stopping any resulting squealing-type noises created by such air leaks. It is understood that the other features described above with reference to liner 10 may also be applicable to liners 100, 200.


With reference to FIGS. 14-16, a method of using liner 100 according to an embodiment is described below. FIG. 14 illustrates placement of the first pair of apertures 116 over the nasal pillows of a nasal pillow mask. FIG. 15 illustrates a user folding the liner 100 so that the second pair of apertures 120 is aligned with the nasal pillows, wherein in one embodiment the fold may occur approximately at a location as indicated by dashed lines in FIG. 11. The user may then place his/her nostrils over the top of the nasal pillows with the liner 100 in between and proceed to secure the mask. FIG. 16 illustrates a user adjusting the positioning of the liner 100 if desired by pulling on the extending portion of the liner body 112 protruding beyond the perimeter of the nasal pillow mask.


With reference to FIGS. 17-20, a method of using liner 200 according to an embodiment is described below. FIG. 17 illustrates placement of the first pair of apertures 220 over the nasal pillows of a hybrid nasal pillow partial face mask. FIG. 18 illustrates a user folding the liner 200 so that the second pair of apertures 222 is aligned with the nasal pillows, wherein in one embodiment the fold may occur approximately at a location as indicated by dashed lines in FIG. 13. FIG. 19 illustrates alignment of the opening 218 with the mouthpiece and face-engaging portion of the hybrid mask. FIG. 20 illustrates a user engaging the liner 200 placed on the hybrid mask, fitting his nostrils to the nasal pillows and mouth into the liner opening 218, after which the user can proceed to secure the mask. The liner 200 may then be adjusted, such as around the nose and mouth, by pulling outward on the protruding extending portion, thereby providing a customized fit for a particular user. Of course, it is understood that variations on the above-described use of liners 100, 200 are fully contemplated.


In another embodiment, a liner 300 as illustrated in FIG. 21 is provided which includes a plurality of apertures, such as for use with a respiratory mask wherein the frame portion is detachable from the cushion portion, as shown in FIG. 23, for example. The liner 300 includes a body 312 having an outer edge 314, and a hose aperture 350 which may be adjacent a first end 318 of the liner 300 and sized for placement over the hose connector of the mask. The liner 300 includes a mouth aperture 352 which may be adjacent a second end 322 of the liner 300 and configured for placement over the mouth opening of the mask to allow air to flow into the user's mouth, and a nasal aperture 354 set farther inward from the second end 322 compared to the mouth aperture 352 and configured for placement over the nasal opening of the mask to allow air to flow into the user's nostrils. In an alternative embodiment, it is contemplated that a combined mouth and nasal opening could be provided in the mask, such that mouth aperture 352 and nasal aperture 354 could be formed as a single aperture. In addition, the liner 300 may include an export aperture 356 disposed between the hose aperture 350 and the nasal aperture 354, wherein the export aperture 356 is configured for placement over an export air portion of the mask, such as the plurality of air holes illustrated in FIG. 23.


The body 312 may be generally oval-shaped, elliptical, round, triangular, or rectangular, or have any other shape appropriate for use with a respiratory mask and is not limited to the shape depicted herein. The apertures 350, 352, 354 and 356 may be generally circular or elongate or oval-shaped as shown but are not intended to be limited to these shapes. With reference to FIG. 22, exemplary dimensions for the configuration of liner 300 are shown. It is understood, however, that these dimensions are not intended to be limiting, and the liner 300 could be configured to fit any size or shape of CPAP mask.


In use, the liner 300 may be positioned between and held in place by the respiratory mask and the face of a user in order to absorb moisture, maintain proper positioning of the mask, and greatly reduce or eliminate air from leaking between the mask and the user's face. A perimeter of the liner outer edge 314, which may be continuous or discontinuous, is larger than a perimeter of the face-engaging portion of the mask, wherein the liner 300 is configured to be releasably held between the mask and a user's face such that the outer edge 314 extends beyond the mask face-engaging portion around at least part of its perimeter. As such, the body 312 has an extending portion outward of the perimeter of the face-engaging portion. By allowing the outer edge 314 of the liner 300 to loosely protrude beyond the mask, the extending portion is configured to be in non-adhering communication with a user's face and serves to reduce air leaks from the perimeter of the mask by acting as a baffle to regulate, limit, or diffuse air flow between the mask and the skin, thus also stopping any resulting squealing-type noises created by such air leaks. It is understood that the other features described above with reference to liners 10, 100 and 200 may also be applicable to liner 300.


With reference to FIGS. 24-25, a method of using liner 300 according to an embodiment is described below. FIG. 24 illustrates placement of the liner 300 with the frame detached such that the hose aperture 350 is received over the hose connector of the mask, the export aperture 356 is aligned with an export air portion of the mask, the nasal aperture 354 is aligned with a nasal opening of the mask, and the mouth aperture 352 is aligned with a mouth opening of the mask. The user may then align his/her nostrils with the nasal aperture 354 and his/her mouth with the mouth aperture 352 and proceed to secure the mask. FIG. 24 illustrates the frame attached to the mask with the liner 300 in place. A user may adjust the positioning of the liner 300 if desired by pulling outward on the extending portion of the liner body 312 protruding beyond the perimeter of the respiratory mask, thereby providing a customized fit for a particular user. In one embodiment (FIG. 22), at least one adhesive tab 360 may be provided at liner first end 318 for securing the liner 300 to the mask, such as near the hose connection, thus helping to ensure that export aperture 356 does not in any way obstruct the export air portion of the mask when the liner 300 is in use with the mask. Tabs 360 do not change the configuration of the outer edge 314 of the liner 300 in the area of the nasal and mouth openings of the mask, where the outer edge 314 still loosely protrudes beyond the mask as described above. Of course, it is understood that variations on the above-described use of liner 300 are fully contemplated.


In some situations, it may be desirable to temporarily tether or secure at least part of the liner to the respiratory mask. For example, in hospital environments where respiratory masks may need to be removed or adjusted frequently by medical personnel during patient care, retaining the liner on the mask during these manipulations may be helpful. With reference to FIG. 27, a liner 400 is shown which may be utilized in such instances. The liner 400 includes a body 412 having an outer edge 414, an inner edge 416, and an opening 418 bounded by the inner edge 416. The body 412 may be generally oval-shaped, elliptical, round, triangular, or rectangular, or have any other shape appropriate for use with a respiratory mask and is not limited to the shape depicted herein. The opening 418 is configured to at least partially receive the mouth, allowing air flow from an air source to be received by the user through the mask. The opening 418 may be generally elliptical or oval-shaped as shown but is not intended to be limited to these shapes. The liner 400 may further include a flap 420 at one or both of a top end 422 and bottom end 424 of the liner 400, wherein the flaps 420 are aligned with the opening 418 along a longitudinal axis of the body 412 and may be used to tether the liner 400 to the respiratory mask M.


In one or more embodiments, the flaps 420 do not include adhesive or any other affixing material for securing the liner 400 to the mask M. Instead, the flaps 420 may be temporarily tethered to the respiratory mask by a strap S such as, for example, a rubber band. In one or more embodiments, each flap 420 may have a width approximately as wide as the opening 418. In one or more embodiments, each flap 420 may have a length that is between about 20% to 50% of the length from the opening 418 to the top end 422 or from the opening 418 to the bottom end 424. Such dimensions may help in providing adequate material to facilitate gripping of the flaps 420 by the strap S. Of course, other dimensions for the flaps 420 are also fully contemplated.


The flaps 420 may be curved to minimize unnecessary material and possible obstruction with respect to the mask. In one or more embodiments, the flaps 420 may be formed as a reverse curve departing from the curved trajectory of the outer edge 414 at one or both of the top 422 and bottom 424 ends of the liner 400. Of course, other shapes of the flaps 420 may alternatively be utilized.


In the embodiment of FIG. 27, the body 412 may have a length of about 7¾ inches, with a length of about 2⅝ inches from the opening 418 to the top end 422 and a length of about 3½ inches from the opening 418 to the bottom end 424 of the liner 400. The liner 400 may have a width of about 6¼ inches, and the opening 418 may have a length of about 1¾ inches and a width of about 1 inches. It is understood, however, that these dimensions are not intended to be limiting, and the liner 400 could be configured to fit any size or shape of respiratory mask.


In use, the liner 400 may be positioned between and held in place by the respiratory mask M and the face of a user in order to absorb moisture, maintain proper positioning of the mask, and greatly reduce or eliminate air from leaking between the mask and the user's face. A perimeter of the liner outer edge 414, which may be continuous or discontinuous, is larger than a perimeter of the face-engaging portion of the mask, wherein the liner 400 is configured to be releasably held between the mask and a user's face such that the outer edge 414 extends beyond the mask face-engaging portion around at least part of its perimeter. As such, the body 412 has an extending portion outward of the perimeter of the face-engaging portion. By allowing the outer edge 414 of the liner 400 to loosely protrude beyond the mask, the extending portion is configured to be in non-adhering communication with a user's face and serves to reduce air leaks from the perimeter of the mask by acting as a baffle to regulate, limit, or diffuse air flow between the mask and the skin, thus also stopping any resulting squealing-type noises created by such air leaks. It is understood that the other features described above with reference to liners 10, 100, 200 and 300 may also be applicable to liner 400.



FIGS. 28-30 illustrate placement of the liner 400 on a respiratory mask M such that the opening 418 is aligned with a mouth opening of the mask, where a strap S is used to engage the flaps 420 and tether the liner 400 to the mask M. As shown, tethering the liner 400 to the mask via the flaps 420 does not change the configuration of the outer edge 414 of the liner 400 in the area of the mouth opening of the mask, where the outer edge 414 still loosely protrudes beyond the mask as described above. Of course, it is understood that variations on the above-described use of the liner 400 are fully contemplated.



FIG. 31 depicts an embodiment of the liner 400 which may be suitable for use with a pediatric respiratory mask. In the embodiment of FIG. 31, the body 412 may have a length of about 3⅝ inches, with a length of about 1 9/16 inches from the opening 418 to the top end 422 and a length of about 1⅝ inches from the opening 418 to the bottom end 424 of the liner 400. The liner 400 may have a width of about 2½ inches, and the opening 418 may have a length of about 9/16 inches and a width of about ½ inch. Again, it is understood that these dimensions are not intended to be limiting, and the liner 400 could be configured to fit any size or shape of CPAP mask. As above, FIGS. 32-34 illustrate placement of the liner 400 on a respiratory mask M such that the opening 418 is aligned with a mouth opening of the mask, where a strap S is used to engage the flaps 420 and tether the liner 400 to the mask M while allowing the liner outer edge 414 to loosely protrude beyond the mask.


Copper is a natural mineral having human nutritional benefit. Copper is also known to provide antimicrobial and potential wound healing properties. In one embodiment, the liners 10, 100, 200, 300, 400 described herein may be manufactured with a copper or copper oxide material, such as CUPRON®.


CPAP therapy is the most widely used method for treating sleep apnea, but it is only successful when the equipment fits and works properly and allows the user to stay asleep and experience deep-sleep, rapid eye movement (REM) cycles, the sleep cycle in which the most beneficial rest takes place. The liners 10, 100, 200, 300, 400 may facilitate a more comfortable and effective CPAP therapy by contributing to a good fit of the CPAP mask M, providing comfort to the user, and reducing or eliminating air leaks, thus resulting in less disruption of sleep.


While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.

Claims
  • 1. A kit for use with a respiratory mask having a face-engaging portion, the kit comprising: a liner including a body constructed from an absorbent material, the body having an outer edge, an inner edge, and an opening bounded by the inner edge, the body having a first end and a second end, the liner having a flap extending from each of the first and second ends; anda strap separate from the liner and the respiratory mask and arranged to engage the flaps to releasably tether the liner to the respiratory mask.
  • 2. The kit of claim 1, wherein the strap includes an elastic band.
  • 3. The kit of claim 1, wherein each flap has a length that is between about 20% to 50% of a length from the opening to the first end or from the opening to the second end.
  • 4. The kit of claim 1, wherein each flap has a width approximately as wide as a width of the opening.
  • 5. The kit of claim 1, wherein the flaps are curved.
  • 6. The kit of claim 1, wherein the flaps are formed as a reverse curve departing from a curved trajectory of the outer edge at the first and second ends of the liner.
  • 7. The kit of claim 1, wherein the flaps are devoid of affixing material for securing the liner to the mask.
  • 8. The kit of claim 1, wherein a perimeter of the outer edge is larger than a perimeter of the face-engaging portion of the respiratory mask for forming an extending portion of the body, wherein the extending portion is configured to be in non-adhering communication with a user's face.
  • 9. The kit of claim 8, wherein the extending portion is a baffle for regulating the flow of air away from the face-engaging portion.
  • 10. The kit of claim 1, wherein the flaps are aligned with the opening along a longitudinal axis of the body.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. application Ser. No. 14/831,371 filed Aug. 20, 2015, which is a continuation-in-part of U.S. application Ser. No. 13/758,783 filed Feb. 4, 2013, now U.S. Pat. No. 9,113,667, which is a continuation-in-part of U.S. application Ser. No. 12/469,998 filed May 21, 2009, now U.S. Pat. No. 8,365,733, which, in turn, claims the benefit of U.S. provisional Application No. 61/056,893 filed May 29, 2008, the disclosures of which are incorporated in their entirety by reference herein.

US Referenced Citations (94)
Number Name Date Kind
1990199 Nemzek Feb 1935 A
2008677 Booharin Jul 1935 A
2435721 Lehmann Feb 1948 A
2931356 Schwarz Apr 1960 A
3130722 Dempsey et al. Apr 1964 A
3272502 Beachum Sep 1966 A
3357426 Cohen Dec 1967 A
4069516 Watkins, Jr. Jan 1978 A
D257063 Galindo Sep 1980 S
4856508 Tayebi Aug 1989 A
5003633 Itoh Apr 1991 A
5146914 Sturrock Sep 1992 A
5243971 Sullivan et al. Sep 1993 A
5921239 McCall et al. Jul 1999 A
6016805 Burns et al. Jan 2000 A
6082360 Rudolph et al. Jul 2000 A
6196223 Belter et al. Mar 2001 B1
D442352 Benjamin et al. May 2001 S
6338340 Finch et al. Jan 2002 B1
6468222 Mault et al. Oct 2002 B1
6629531 Gleason et al. Oct 2003 B2
6698427 Clowers Mar 2004 B1
6698727 Shaw Mar 2004 B1
6851429 Bishop Feb 2005 B2
6926004 Schumacher Aug 2005 B2
6955650 Mault et al. Oct 2005 B2
7000614 Lang et al. Feb 2006 B2
7017577 Matich Mar 2006 B2
7077138 Bateman et al. Jul 2006 B2
7178525 Matula, Jr. et al. Feb 2007 B2
7219670 Jones, Jr. et al. May 2007 B2
7234466 Kwok et al. Jun 2007 B2
7243650 Thornton Jul 2007 B2
7296574 Ho et al. Nov 2007 B2
7370652 Matula, Jr. et al. May 2008 B2
7427703 Geier Sep 2008 B2
D644729 Ferris et al. Sep 2011 S
8171934 Ho May 2012 B1
8365733 Rutan Feb 2013 B2
D717939 Koehler Nov 2014 S
D735318 Roblin-Lee Jul 2015 S
D738514 Tagami et al. Sep 2015 S
D755951 Roblin-Sharp May 2016 S
10357626 Baker Jul 2019 B1
20030023182 Mault et al. Jan 2003 A1
20040194784 Bertrand Oct 2004 A1
20040244799 Landis Dec 2004 A1
20040244804 Olsen et al. Dec 2004 A1
20040261797 White et al. Dec 2004 A1
20050199239 Lang et al. Sep 2005 A1
20050268907 McFarlane Dec 2005 A1
20050279367 Klemperer Dec 2005 A1
20050284481 Meyer et al. Dec 2005 A1
20060060200 Ho et al. Mar 2006 A1
20060081251 Hernandez et al. Apr 2006 A1
20060107431 Curran et al. May 2006 A1
20060130845 Schegerin Jun 2006 A1
20060144399 Davidwoski et al. Jul 2006 A1
20060283452 Woodard et al. Dec 2006 A1
20070006879 Thornton Jan 2007 A1
20070017525 Madaus et al. Jan 2007 A1
20070050883 Matich Mar 2007 A1
20070157934 Lang et al. Jul 2007 A1
20070175479 Groll Aug 2007 A1
20070175480 Gradon et al. Aug 2007 A1
20080047560 Veliss et al. Feb 2008 A1
20080110469 Weinberg May 2008 A1
20080127984 Thornton Jun 2008 A1
20080257354 Davidson et al. Oct 2008 A1
20080302365 Cohen et al. Dec 2008 A1
20090050144 Pierce et al. Feb 2009 A1
20090107507 Moore Apr 2009 A1
20090139525 Schirm Jun 2009 A1
20090211581 Bansal Aug 2009 A1
20090293880 Rutan Dec 2009 A1
20100031958 Stewart Feb 2010 A1
20100326445 Veliss et al. Dec 2010 A1
20110005524 Veliss et al. Jan 2011 A1
20110061656 Matich Mar 2011 A1
20110226240 Navalesi et al. Sep 2011 A1
20120080035 Guney et al. Apr 2012 A1
20120180795 Knight Jul 2012 A1
20120204881 Davidson Aug 2012 A1
20130139290 Barski Jun 2013 A1
20130139829 Rutan Jun 2013 A1
20140150799 Daly Jun 2014 A1
20140190492 Noh et al. Jul 2014 A1
20140345621 Zack et al. Nov 2014 A1
20150352309 Daly Dec 2015 A1
20150374943 Alexani Dec 2015 A1
20150374945 Anthony Dec 2015 A1
20160279359 Chang et al. Sep 2016 A1
20160339196 Bowsher Nov 2016 A1
20170049983 Ellis Feb 2017 A1
Foreign Referenced Citations (25)
Number Date Country
1681551 Oct 2005 CN
1681553 Oct 2005 CN
101653632 Feb 2010 CN
102065786 May 2011 CN
102448550 May 2012 CN
162526 May 1921 GB
162526 May 1921 GB
4420956 Sep 1969 JP
S05041702 Apr 1975 JP
61185446 Nov 1986 JP
551364 Jul 1993 JP
2000217940 Aug 2000 JP
2003501220 Jan 2003 JP
2003052845 Feb 2003 JP
2005537904 Dec 2005 JP
2012530561 Dec 2012 JP
20090092237 Aug 2009 KR
20100003822 Jan 2010 KR
9925410 May 1999 WO
0050121 Aug 2000 WO
0076568 Dec 2000 WO
2004022145 Mar 2004 WO
2008011683 Jan 2008 WO
2008137644 Nov 2008 WO
2014120492 Aug 2014 WO
Non-Patent Literature Citations (22)
Entry
International Search Report and Written Opinion for corresponding Application No. PCT/US2016/047121, dated Nov. 17, 2016, 11 pages.
European Search Report for corresponding Application No. 14746739.3-1662, dated Aug. 17, 2016, 9 pages.
Chinese Office Action and English translation for corresponding Application No. 201480017575.2, dated Sep. 1, 2016, 16 pages.
www.cpaptalk.com, May 6, 2006-Nov. 30, 2005.
International Search Report for the corresponding International Application No. PCT/US2009/045256, dated Jul. 20, 2009.
International Preliminary Report on Patentability and Written Opinion for PCT/US2009/045256, dated Dec. 9, 2010.
Japanese Patent and Trademark Office, Notice of Rejection for Japanese Patent Application No. 2011-511770, dated Jul. 22, 2014.
English Summary of Notice of Rejection for Japanese Patent Application No. 2011-511770, dated Jul. 22, 2014.
Korean Intellectual Property Office, International Search Report and the Written Opinion for the corresponding International Application No. PCT/US2014/012163, dated May 7, 2014.
“Mirage Micro Nasal Mask”, ResMed, 2007, from www.resmed.com.
(2006), CPAP Community—View Topic—Mask Gasket [Web log post]. Retrieved from http://www.cpaptalk.com/viewtopic.
(2006), CPAP Community—View Topic—Mask Experiment Success [Web log post]. Retrieved from http://www.cpaptalk.com/viewtopic.
(2005-2011), CPAP Community—View Topic—Directions for Toilet Seat Covering [Web log post]. Retrieved from http://www.cpaptalk.com/viewtopic.
“Pad a Cheek”, PAC_OptiLife, from http://www.padacheek.com/PAC_Maskliner.html, obtained from www.archive.org, published at least as early as Apr. 8, 2012.
(Nov. 22, 2007), CPAP Community, “Deconstructed Aura” [Web log post]. Retrieved from http://www.cpaptalk.com/viewtopic.
(2007), CPAP Community, “Decapitating a Twilite NP Mask” [Web log post]. Retrieved from http://cpaptalk.com/viewtopic.
(2007), CPAP Community, by Wulfman [Web log post]. Retrieved from http://cpaptalk.com/viewtopic.
(Nov. 30, 2007), CPAP Community, “what is wrong with me” [Web log post]. Retrieved from http://www.cpaptalk.com/viewtopic.
(Dec. 12, 2008), CPAP Community, “Any one tried a mask cover—gasket” [Web log post}. Retrieved from http://www.cpaptalk.com/viewtopic.
(2005), CPAP Community, “As long as I don't wake up” [Web log post}. Retrieved from http://www.cpaptalk.com/viewtopic.
European Search Report for Application No. 09755675.7, dated Nov. 16, 2017, 10 pages.
Brazilian Preliminary Examination Report for Application No. PI0909558-6, dated Jul. 14, 2020, 4 pages.
Related Publications (1)
Number Date Country
20190001093 A1 Jan 2019 US
Provisional Applications (1)
Number Date Country
61056893 May 2008 US
Continuation in Parts (3)
Number Date Country
Parent 14831371 Aug 2015 US
Child 16126642 US
Parent 13758783 Feb 2013 US
Child 14831371 US
Parent 12469998 May 2009 US
Child 13758783 US