This invention relates generally to wellbore casings, and in particular to wellbore casings that are formed using expandable tubing.
Conventionally, when a wellbore is created, a number of casings are installed in the borehole to prevent collapse of the borehole wall and to prevent undesired outflow of drilling fluid into the formation or inflow of fluid from the formation into the borehole. The borehole is drilled in intervals whereby a casing which is to be installed in a lower borehole interval is lowered through a previously installed casing of an upper borehole interval. As a consequence of this procedure the casing of the lower interval is of smaller diameter than the casing of the upper interval. Thus, the casings are in a nested arrangement with casing diameters decreasing in downward direction. Cement annuli are provided between the outer surfaces of the casings and the borehole wall to seal the casings from the borehole wall. As a consequence of this nested arrangement a relatively large borehole diameter is required at the upper part of the wellbore. Such a large borehole diameter involves increased costs due to heavy casing handling equipment, large drill bits and increased volumes of drilling fluid and drill cuttings. Moreover, increased drilling rig time is involved due to required cement pumping, cement hardening, required equipment changes due to large variations in hole diameters drilled in the course of the well, and the large volume of cuttings drilled and removed.
The present invention is directed to overcoming one or more of the limitations of the existing procedures for forming wellbores.
According to one aspect of the invention, a method of forming a wellbore casing within a borehole within a subterranean formation is provided that includes positioning an expandable tubular member within the borehole, injecting fluidic materials into the expandable tubular member, fluidicly isolating a first region from a second region within the expandable tubular member, fluidicly coupling the first and second regions, injecting a hardenable fluidic sealing material into the expandable tubular member, fluidicly decoupling the first and second regions, and injecting a non-hardenable fluidic material into the expandable tubular member to radially expand the tubular member.
According to another aspect of the present invention, an apparatus for forming a wellbore casing within a borehole within a subterranean formation is provided that includes means for positioning an expandable tubular member within the borehole, means for injecting fluidic materials into the expandable tubular member, means for fluidicly isolating a first region from a second region within the expandable tubular member, means for fluidicly coupling the first and second regions, means for injecting a hardenable fluidic sealing material into the expandable tubular member, means for fluidicly decoupling the first and second regions, and means for injecting a non-hardenable fluidic material into the expandable tubular member to radially expand the tubular member.
According to another aspect of the present invention, a method of forming a wellbore casing within a borehole within a subterranean formation is provided that includes positioning an expandable tubular member within the borehole; injecting fluidic materials into the expandable tubular member, fluidicly isolating a first region from a second region within the expandable tubular member, injecting a non-hardenable fluidic material into the expandable tubular member to radially expand at least a portion of the tubular member, fluidicly coupling the first and second regions, injecting a hardenable fluidic sealing material into the expandable tubular member, fluidicly decoupling the first and second regions, and injecting a non-hardenable fluidic material into the expandable tubular member to radially expand another portion of the tubular member.
According to another aspect of the present invention, an apparatus for forming a wellbore casing within a borehole within a subterranean formation is provided that includes means for positioning an expandable tubular member within the borehole, means for injecting fluidic materials into the expandable tubular member, means for fluidicly isolating a first region from a second region within the expandable tubular member, means for injecting a non-hardenable fluidic material into the expandable tubular member to radially expand at least a portion of the tubular member, means for fluidicly coupling the first and second regions, means for injecting a hardenable fluidic sealing material into the expandable tubular member, means for fluidicly decoupling the first and second regions, and means for injecting a non-hardenable fluidic material into the expandable tubular member to radially expand another portion of the tubular member.
According to another aspect of the present invention, an apparatus for forming a wellbore casing within a borehole within a subterranean formation is provided that includes a first annular support member defining a first fluid passage and one or more first radial passages having pressure sensitive valves fluidicly coupled to the first fluid passage, an annular expansion cone coupled to the first annular support member, an expandable tubular member movably coupled to the expansion cone, a second annular support member defining a second fluid passage coupled to the expandable tubular member, an annular valve member defining a third fluid passage fluidicly coupled to the first and second fluid passages having first and second throat passages, defining second and third radial passages fluidicly coupled to the third fluid passage, coupled to the second annular support member, and movably coupled to the first annular support member, and an annular sleeve releasably coupled to the first annular support member and movably coupled to the annular valve member for controllably fluidicly coupling the second and third radial passages. An annular region is defined by the region between the tubular member and the first annular support member, the second annular support member, the annular valve member, and the annular sleeve.
According to another aspect of the present invention, an apparatus for forming a wellbore casing in a borehole in a subterranean formation is provided that includes means for radially expanding an expandable tubular member and means for injecting a hardenable fluidic sealing material into an annulus between the expandable tubular member and the borehole.
According to another aspect of the present invention, a method of operating an apparatus for forming a wellbore casing within a borehole within a subterranean formation is provided. The apparatus includes a first annular support member defining a first fluid passage and one or more first radial passages having pressure sensitive valves fluidicly coupled to the first fluid passage, an annular expansion cone coupled to the first annular support member, an expandable tubular member movably coupled to the expansion cone, a second annular support member defining a second fluid passage coupled to the expandable tubular member, an annular valve member defining a third fluid passage fluidicly coupled to the first and second fluid passages having top and bottom throat passages, defining second and third radial passages fluidicly coupled to the third fluid passage, coupled to the second annular support member, and movably coupled to the first annular support member, and an annular sleeve releasably coupled to the first annular support member and movably coupled to the annular valve member for controllably fluidicly coupling the second and third radial passages. An annular region is defined by the region between the tubular member and the first annular support member, the second annular support member, the annular valve member, and the annular sleeve. The method includes positioning the apparatus within the borehole, injecting fluidic materials into the first, second and third fluid passages, positioning a bottom plug in the bottom throat passage, displacing the annular sleeve to fluidicly couple the second and third radial passages, injecting a hardenable fluidic sealing material through the first, second, and third fluid passages, and the second and third radial passages, displacing the annular sleeve to fluidicly decouple the second and third radial passages, and injecting a non-hardenable fluidic material through the first fluid passage and the first radial passages and pressure sensitive valves into the annular region to radially expand the expandable tubular member.
According to another aspect of the present invention, a method of operating an apparatus for forming a wellbore casing within a borehole within a subterranean formation is provided in which the apparatus includes a first annular support member defining a first fluid passage and one or more first radial passages having pressure sensitive valves fluidicly coupled to the first fluid passage, an annular expansion cone coupled to the first annular support member, an expandable tubular member movably coupled to the expansion cone, a second annular support member defining a second fluid passage coupled to the expandable tubular member, an annular valve member defining a third fluid passage fluidicly coupled to the first and second fluid passages having top and bottom throat passages, defining second and third radial passages fluidicly coupled to the third fluid passage, coupled to the second annular support member, and movably coupled to the first annular support member, and an annular sleeve releasably coupled to the first annular support member and movably coupled to the annular valve member for controllably fluidicly coupling the second and third radial passages. An annular region is defined by the region between the tubular member and the first annular support member, the second annular support member, the annular valve member, and the annular sleeve. The method includes positioning the apparatus within the borehole, injecting fluidic materials into the first, second and third fluid passages, positioning a bottom plug in the bottom throat passage, injecting a non-hardenable fluidic material through the first fluid passages and the first radial passages and pressure sensitive valves into the annular region to radially expand a portion of the expandable tubular member, displacing the annular sleeve to fluidicly couple the second and third radial passages, injecting a hardenable fluidic sealing material through the first, second, and third fluid passages, and the second and third radial passages, displacing the annular sleeve to fluidicly decouple the second and third radial passages, and injecting a non-hardenable fluidic material through the first fluid passage and the first radial passages and pressure sensitive valves into the annular region to radially expand another portion of the expandable tubular member.
According to one aspect of the invention, a method of coupling an expandable tubular member to a preexisting structure is provided that includes positioning an expandable tubular member within the preexisting structure, injecting fluidic materials into the expandable tubular member, fluidicly isolating a first region from a second region within the expandable tubular member, fluidicly coupling the first and second regions, injecting a hardenable fluidic sealing material into the expandable tubular member, fluidicly decoupling the first and second regions, and injecting a non-hardenable fluidic material into the expandable tubular member to radially expand the tubular member.
According to another aspect of the present invention, an apparatus for coupling an expandable tubular member to a preexisting structure is provided that includes means for positioning the expandable tubular member within the preexisting structure, means for injecting fluidic materials into the expandable tubular member, means for fluidicly isolating a first region from a second region within the expandable tubular member, means for fluidicly coupling the first and second regions, means for injecting a hardenable fluidic sealing material into the expandable tubular member, means for fluidicly decoupling the first and second regions, and means for injecting a non-hardenable fluidic material into the expandable tubular member to radially expand the tubular member.
According to another aspect of the present invention, a method of coupling an expandable tubular member to a preexisting structure is provided that includes positioning the expandable tubular member within the preexisting structure, injecting fluidic materials into the expandable tubular member, fluidicly isolating a first region from a second region within the expandable tubular member, injecting a non-hardenable fluidic material into the expandable tubular member to radially expand at least a portion of the tubular member, fluidicly coupling the first and second regions, injecting a hardenable fluidic sealing material into the expandable tubular member, fluidicly decoupling the first and second regions, and injecting a non-hardenable fluidic material into the expandable tubular member to radially expand another portion of the tubular member.
According to another aspect of the present invention, an apparatus for coupling an expandable tubular member to a preexisting structure is provided that includes means for positioning the expandable tubular member within the preexisting structure, means for injecting fluidic materials into the expandable tubular member, means for fluidicly isolating a first region from a second region within the expandable tubular member, means for injecting a non-hardenable fluidic material into the expandable tubular member to radially expand at least a portion of the tubular member, means for fluidicly coupling the first and second regions, means for injecting a hardenable fluidic sealing material into the expandable tubular member, means for fluidicly decoupling the first and second regions, and means for injecting a non-hardenable fluidic material into the expandable tubular member to radially expand another portion of the tubular member.
According to another aspect of the present invention, an apparatus for coupling an expandable tubular member to a preexisting structure is provided that includes a first annular support member defining a first fluid passage and one or more first radial passages having pressure sensitive valves fluidicly coupled to the first fluid passage, an annular expansion cone coupled to the first annular support member, an expandable tubular member movably coupled to the expansion cone, a second annular support member defining a second fluid passage coupled to the expandable tubular member, an annular valve member defining a third fluid passage fluidicly coupled to the first and second fluid passages having first and second throat passages, defining second and third radial passages fluidicly coupled to the third fluid passage, coupled to the second annular support member, and movably coupled to the first annular support member, and an annular sleeve releasably coupled to the first annular support member and movably coupled to the annular valve member for controllably fluidicly coupling the second and third radial passages. An annular region is defined by the region between the tubular member and the first annular support member, the second annular support member, the annular valve member, and the annular sleeve.
According to another aspect of the present invention, an apparatus for coupling an expandable tubular member to a preexisting structure is provided that includes means for radially expanding an expandable tubular member and means for injecting a hardenable fluidic sealing material into an annulus between the expandable tubular member and the borehole.
According to another aspect of the present invention, a method of operating an apparatus for coupling an expandable tubular member to a preexisting structure is provided. The apparatus includes a first annular support member defining a first fluid passage and one or more first radial passages having pressure sensitive valves fluidicly coupled to the first fluid passage, an annular expansion cone coupled to the first annular support member, an expandable tubular member movably coupled to the expansion cone, a second annular support member defining a second fluid passage coupled to the expandable tubular member, an annular valve member defining a third fluid passage fluidicly coupled to the first and second fluid passages having top and bottom throat passages, defining second and third radial passages fluidicly coupled to the third fluid passage, coupled to the second annular support member, and movably coupled to the first annular support member, and an annular sleeve releasably coupled to the first annular support member and movably coupled to the annular valve member for controllably fluidicly coupling the second and third radial passages. An annular region is defined by the region between the tubular member and the first annular support member, the second annular support member, the annular valve member, and the annular sleeve. The method includes positioning the apparatus within the preexisting structure, injecting fluidic materials into the first, second and third fluid passages, positioning a bottom plug in the bottom throat passage, displacing the annular sleeve to fluidicly couple the second and third radial passages, injecting a hardenable fluidic sealing material through the first, second, and third fluid passages, and the second and third radial passages, displacing the annular sleeve to fluidicly decouple the second and third radial passages, and injecting a non-hardenable fluidic material through the first fluid passage and the first radial passages and pressure sensitive valves into the annular region to radially expand the expandable tubular member.
According to another aspect of the present invention, a method of operating an apparatus for coupling an expandable tubular member to a preexisting structure is provided in which the apparatus includes a first annular support member defining a first fluid passage and one or more first radial passages having pressure sensitive valves fluidicly coupled to the first fluid passage, an annular expansion cone coupled to the first annular support member, an expandable tubular member movably coupled to the expansion cone, a second annular support member defining a second fluid passage coupled to the expandable tubular member, an annular valve member defining a third fluid passage fluidicly coupled to the first and second fluid passages having top and bottom throat passages, defining second and third radial passages fluidicly coupled to the third fluid passage, coupled to the second annular support member, and movably coupled to the first annular support member, and an annular sleeve releasably coupled to the first annular support member and movably coupled to the annular valve member for controllably fluidicly coupling the second and third radial passages. An annular region is defined by the region between the tubular member and the first annular support member, the second annular support member, the annular valve member, and the annular sleeve. The method includes positioning the apparatus within the preexisting structure, injecting fluidic materials into the first, second and third fluid passages, positioning a bottom plug in the bottom throat passage, injecting a non-hardenable fluidic material through the first fluid passages and the first radial passages and pressure sensitive valves into the annular region to radially expand a portion of the expandable tubular member, displacing the annular sleeve to fluidicly couple the second and third radial passages, injecting a hardenable fluidic sealing material through the first, second, and third fluid passages, and the second and third radial passages, displacing the annular sleeve to fluidicly decouple the second and third radial passages, and injecting a non-hardenable fluidic material through the first fluid passage and the first radial passages and pressure sensitive valves into the annular region to radially expand another portion of the expandable tubular member.
a–1c are cross sectional illustrations of an embodiment of a liner hanger assembly including a sliding sleeve valve assembly.
a–2b is a flow chart illustration of an embodiment of a method for forming a wellbore casing using the liner hanger assembly of
a–3c are cross sectional illustrations of the placement of the liner hanger assembly of
a–4c are cross sectional illustrations of the injection of a fluidic materials into the liner hanger assembly of
a–5c are cross sectional illustrations of the placement of a bottom plug into the liner hanger assembly of
a–6c are cross sectional illustrations of the downward displacement of sliding sleeve of the liner hanger assembly of
a–7c are cross sectional illustrations of the injection of a hardenable fluidic sealing material into the liner hanger assembly of
a–8c are cross sectional illustrations of the placement of a top plug into the liner hanger assembly of
a–9c are cross sectional illustrations of the upward displacement of sliding sleeve of the liner hanger assembly of
a–10c are cross sectional illustrations of the injection of a pressurized fluidic material into the liner hanger assembly of
a–11b is a flow chart illustration of an alternative embodiment of a method for forming a wellbore casing using the liner hanger assembly of
a–12c are cross sectional illustrations of the injection of a pressurized fluidic material into the liner hanger assembly of
a–13c are cross sectional illustrations of the downward displacement of the sliding sleeve of the liner hanger assembly of
a–14c are cross sectional illustrations of the injection of a hardenable fluidic sealing material through the liner hanger assembly of
a–15c are cross sectional illustrations of the injection and placement of a top plug into the liner hanger assembly of
a–16c are cross sectional illustrations of the upward displacement of the sliding sleeve of the liner hanger assembly of
a–17c are cross sectional illustrations of the injection of a pressurized fluidic material into the liner hanger assembly of
a–19b is a flow chart illustration of an embodiment of a method for forming a wellbore casing using the liner hanger assembly of
a–20c are cross sectional illustrations of the placement of the liner hanger assembly of
a–21c are cross sectional illustrations of the injection of a fluidic materials into the liner hanger assembly of
a–22c are cross sectional illustrations of the placement of a bottom plug into the liner hanger assembly of
a–23c are cross sectional illustrations of the downward displacement of sliding sleeve of the liner hanger assembly of
a–24c are cross sectional illustrations of the injection of a hardenable fluidic sealing material into the liner hanger assembly, of
a–25c are cross sectional illustrations of the placement of a top plug into the liner hanger assembly of
a–26c are cross sectional illustrations of the upward displacement of sliding sleeve of the liner hanger assembly of
a–27c are cross sectional illustrations of the injection of a pressurized fluidic material into the liner hanger assembly of
a–28b is a flow chart illustration of an alternative embodiment of a method for forming a wellbore casing using the liner hanger assembly of
a–29c are cross sectional illustrations of the injection of a pressurized fluidic material into the liner hanger assembly of
a–30c are cross sectional illustrations of the downward displacement of the sliding sleeve of the liner hanger assembly of
a–31c are cross sectional illustrations of the injection of a hardenable fluidic sealing material through the liner hanger assembly of
a–32c are cross sectional illustrations of the injection and placement of a top plug into the liner hanger assembly of
a–33c are cross sectional illustrations of the upward displacement of the sliding sleeve of the liner hanger assembly of
a–34c are cross sectional illustrations of the injection of a pressurized fluidic material into the liner hanger assembly of
A liner hanger assembly having sliding sleeve bypass valve is provided. In several alternative embodiments, the liner hanger assembly provides a method and apparatus for forming or repairing a wellbore casing, a pipeline or a structural support.
Referring initially to
An annular expansion cone 18 defining an internal passage 18a for receiving the second and third tubular support members, 14 and 16, includes a counterbore 18b at one end, and a counterbore 18c at another end for receiving the flange 16b of the second tubular support member 16. The annular expansion cone 18 further includes an end face 18d that mates with an end face 16j of the flange 16c of the second tubular support member 16, and an exterior surface 18e having a conical shape in order to facilitate the radial expansion of tubular members. A tubular expansion cone launcher 20 is movably coupled to the exterior surface 18e of the expansion cone 18 and includes a first portion 20a having a first wall thickness, a second portion 20b having a second wall thickness, a threaded portion 20c at one end, and a threaded portion 20d at another end. In a preferred embodiment, the second portion 20b of the expansion cone launcher 20 mates with the conical outer surface 18e of the expansion cone 18. In a preferred embodiment, the second wall thickness is less than the first wall thickness in order to optimize the radial expansion of the expansion cone launcher 20 by the relative axial displacement of the expansion cone 18. In a preferred embodiment, one or more expandable tubulars are coupled to the threaded connection 20c of the expansion cone launcher 20. In this manner, the assembly 10 may be used to radially expand and plastically deform, for example, thousands of feet of expandable tubulars.
An annular spacer 22 defining an internal passage 22a for receiving the second tubular support member 14 is received within the counterbore 18b of the expansion cone 18, and is positioned between an end face 12d of the first tubular support member 12 and an end face of the counterbore 18b of the expansion cone 18. A fourth tubular support member 24 defining an internal passage 24a for receiving the second tubular support member 14 includes a flange 24b that is received within the counterbore 16d of the third tubular support member 16. A fifth tubular support member 26 defining an internal passage 26a for receiving the second tubular support member 14 includes an internal flange 26b for mating with the flange 14c of the second tubular support member and a flange 26c for mating with the internal flange 16g of the third tubular support member 16.
An annular sealing member 28, an annular sealing and support member 30, an annular sealing member 32, and an annular sealing and support member 34 are received within the counterbore 14d of the second tubular support member 14. The annular sealing and support member 30 further includes a radial opening 30a for supporting a rupture disc 36 within the radial opening 14g of the second tubular support member 14 and a sealing member 30b for sealing the radial opening 14h of the second tubular support member. The annular sealing and support member 34 further includes sealing members 34a and 34b for sealing the radial openings 14i and 14j, respectively, of the second tubular support member 14. In an exemplary embodiment, the rupture disc 36 opens when the operating pressure within the radial opening 30b is about 1000 to 5000 psi. In this manner, the rupture disc 36 provides a pressure sensitive valve for controlling the flow of fluidic materials through the radial opening 30a. In several alternative embodiments, the assembly 10 includes a plurality of radial passages 30a, each with corresponding rupture discs 36.
A sixth tubular support member 38 defining an internal passage 38a for receiving the second tubular support member 14 includes a threaded portion 38b at one end that is coupled to the threaded portion 16f of the third tubular support member 16 and a flange 38c at another end that is movably coupled to the interior of the expansion cone launcher 20. An annular collet 40 includes a threaded portion 40a that is coupled to the threaded portion 14e of the second tubular support member 14, and a resilient coupling 40b at another end.
An annular sliding sleeve 42 defining an internal passage 42a includes an internal flange 42b, having sealing members 42c and 42d, and an external groove 42e for releasably engaging the coupling 40b of the collet 40 at one end, and an internal flange 42f, having sealing members 42g and 42h, at another end. During operation the coupling 40b of the collet 40 may engage the external groove 42e of the sliding sleeve 42 and thereby displace the sliding sleeve in the longitudinal direction. Since the coupling 40b of the collet 40 is resilient, the collet 40 may be disengaged or reengaged with the sliding sleeve 42. An annular valve member 44 defining an internal passage 44a, having a first throat 44aa and a second throat 44ab, includes a flange 44b at one end, having external splines 44c for engaging the internal splines 14f of the second tubular support member 14, a first set of radial passages, 44da and 44db, a second set of radial passages, 44ea and 44eb, and a threaded portion 44f at another end. The sliding sleeve 42 and the valve member 44 define an annular bypass passage 46 that, depending upon the position of the sliding sleeve 42, permits fluidic materials to flow from the passage 44 through the first radial passages, 44da and 44db, the bypass passage 46, and the second radial passages, 44ea and 44eb, back into the passage 44. In this manner, fluidic materials may bypass the portion of the passage 44 between the first and second radial passages, 44ea, 44eb, 44da, and 44db. Furthermore, the sliding sleeve 42 and the valve member 44 together define a sliding sleeve valve for controllably permitting fluidic materials to bypass the intermediate portion of the passage 44a between the first and second passages, 44da, 44db, 44ea, and 44eb. During operation, the flange 44b limits movement of the sliding sleeve 42 in the longitudinal direction.
In a preferred embodiment, the collet 40 includes a set of couplings 40b such as, for example, fingers, that engage the external groove 42e of the sliding sleeve 42. During operation, the collet couplings 40b latch over and onto the external groove 42e of the sliding sleeve 42. In a preferred embodiment, a longitudinal force of at least about 10,000 to 13,000 lbf is required to pull the couplings 40b off of, and out of engagement with, the external groove 42e of the sliding sleeve 42. In an exemplary embodiment, the application of a longitudinal force less than about 10,000 to 13,000 lbf indicates that the collet couplings 40b are latched onto the external shoulder of the sliding sleeve 42, and that the sliding sleeve 42 is in the up or the down position relative to the valve member 44. In a preferred embodiment, the collet 40 includes a conventional internal shoulder that transfers the weight of the first tubular support member 12 and expansion cone 18 onto the sliding sleeve 42. In a preferred embodiment, the collet 40 further includes a conventional set of internal lugs for engaging the splines 44c of the valve member 44.
An annular valve seat 48 defining a conical internal passage 48a for receiving a conventional float valve element 50 includes an annular recess 48b, having an internally threaded portion 48c for engaging the threaded portion 44f of the valve member 44, at one end, and an externally threaded portion 48d at another end. In an alternative embodiment, the float valve element 50 is omitted. An annular valve seat mounting element 52 defining an internal passage 52a for receiving the valve seat 48 and float valve 50 includes an internally threaded portion 52b for engaging the externally threaded portion 48d of the valve seat 48, an externally threaded portion 52c, an internal flange 52d, radial passages, 52ea and 52eb, and an end member 52f, having axial passages, 52fa and 52fb.
A shoe 54 defining an internal passage 54a for receiving the valve seat mounting element 52 includes a first annular recess 54b, having an externally threaded portion 54c, and a second annular recess 54d, having an externally threaded portion 54e for engaging the threaded portion 20d of the expansion cone launcher 20, at one end, a first threaded counterbore 54f for engaging the threaded portion 52c of the of the mounting element, and a second counterbore 54g for mating with the end member 52f of the mounting element. In a preferred embodiment, the shoe 54 is fabricated from a ceramic and/or a composite material in order to facilitate the subsequent removal of the shoe by drilling. A seventh tubular support member 56 defining an internal passage 56a for receiving the sliding sleeve 42 and the valve member 44 is positioned within the expansion cone launcher 20 that includes an internally threaded portion 56b at one end for engaging the externally threaded portion 54c of the annular recess 54b of the shoe 54. In a preferred embodiment, during operation of the assembly, the end of the seventh tubular support member 56 limits the longitudinal movement of the expansion cone 18 in the direction of the shoe 54 by limiting the longitudinal movement of the sixth tubular support member 38. An annular centralizer 58 defining an internal passage 58a for movably supporting the sliding sleeve 42 is positioned within the seventh tubular support member 56 that includes axial passages 58b and 58c. In a preferred embodiment, the centralizer 58 maintains the sliding sleeve 42 and valve member 44 is a central position within the assembly 10.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
In an alternative embodiment of the method 200, the injection and placement of the top plug 116 into the liner hanger assembly 10 in step 212 may omitted.
In an alternative embodiment of the method 200, in step 202, the assembly 10 is positioned at the bottom of the wellbore 100.
In an alternative embodiment, as illustrated in
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
In an alternative embodiment of the method 250, the injection and placement of the top plug 116 into the liner hanger assembly 10 in step 264 may omitted.
In an alternative embodiment of the method 250, in step 252, the assembly 10 is positioned at the bottom of the wellbore 100.
In an alternative embodiment of the method 250: (1) in step 252, the assembly 10 is positioned proximate a position below a preexisting section of the wellbore casing 102, and (2) in step 258, the expansion cone launcher 20, and any expandable tubulars coupled to the threaded portion 20c of the expansion cone launcher, are radially expanded and plastically deformed until the shoe 54 of the assembly 10 is proximate the bottom of the wellbore 100. In this manner, the radial expansion process using the assembly 10 provides a telescoping of the radially expanded tubulars into the wellbore 100.
In several alternative embodiments, the assembly 10 may be operated to form a wellbore casing by including or excluding the float valve 50.
In several alternative embodiments, the float valve 50 may be operated in an auto-fill configuration in which tabs are positioned between the float valve 50 and the valve seat 48. In this manner, fluidic materials within the wellbore 100 may flow into the assembly 10 from below thereby decreasing surge pressures during placement of the assembly 10 within the wellbore 100. Furthermore, pumping fluidic materials through the assembly 10 at rate of about 6 to 8 bbl/min will displace the tabs from the valve seat 48 and thereby allow the float valve 50 to close.
In several alternative embodiments, prior to the placement of any of the plugs, 110 and 116, into the assembly 10, fluidic materials can be circulated through the assembly 10 and into the wellbore 100.
In several alternative embodiments, once the bottom plug 110 has been positioned into the assembly 10, fluidic materials can only be circulated through the assembly 10 and into the wellbore 100 if the sliding sleeve 42 is in the down position.
In several alternative embodiments, once the sliding sleeve 42 is positioned in the down position, the passage 30a and rupture disc 36 are fluidicly isolated from pressurized fluids within the assembly 10.
In several alternative embodiments, once the top plug 116 has been positioned into the assembly 10, no fluidic materials can be circulated through the assembly 10 and into the wellbore 100.
In several alternative embodiments, the assembly 10 may be operated to form or repair a wellbore casing, a pipeline, or a structural support.
Referring to
A third tubular support member 316 defining an internal passage 316a for receiving the second tubular support member 314 includes a first flange 316b, a second flange 316c, a first counterbore 316d, a second counterbore 316e having an internally threaded portion 316f, and an internal flange 316g. The second flange 316c further includes radial passages 316h and 316i.
An annular expansion cone 318 defining an internal passage 318a for receiving the second and third tubular support members, 314 and 316, includes a counterbore 318b at one end, and a counterbore 318c at another end for receiving the flange 316b of the second tubular support member 316. The annular expansion cone 318 further includes an end face 318d that mates with an end face 316j of the flange 316c of the second tubular support member 316, and an exterior surface 318e having a conical shape in order to facilitate the radial expansion of tubular members. A tubular expansion cone launcher 320 is movably coupled to the exterior surface 318e of the expansion cone 318 and includes a first portion 320a having a first wall thickness, a second portion 320b having a second wall thickness, a threaded portion 320c at one end, and a threaded portion 320d at another end. In a preferred embodiment, the second portion 320b of the expansion cone launcher 320 mates with the conical outer surface 318e of the expansion cone 318. In a preferred embodiment, the second wall thickness of the second portion 320b is less than the first wall thickness of the first portion 320a in order to optimize the radial expansion of the expansion cone launcher 320 by the relative axial displacement of the expansion cone 318. In a preferred embodiment, one or more expandable tubulars are coupled to the threaded connection 320c of the expansion cone launcher 320. In this manner, the assembly 300 may be used to radially expand and plastically deform, for example, thousands of feet of expandable tubulars.
An annular spacer 322 defining an internal passage 322a for receiving the second tubular support member 314 is received within the counterbore 318b of the expansion cone 318, and is positioned between an end face 312d of the first tubular support member 312 and an end face of the counterbore 318b of the expansion cone 318. A fourth tubular support member 324 defining an internal passage 324a for receiving the second tubular support member 314 includes a flange 324b that is received within the counterbore 316d of the third tubular support member 316. A fifth tubular support member 326 defining an internal passage 326a for receiving the second tubular support member 314 includes an internal flange 326b for mating with the flange 314c of the second tubular support member and a flange 326c for mating with the internal flange 316g of the third tubular support member 316.
An annular sealing member 328, an annular sealing and support member 330, an annular sealing member 332, and an annular sealing and support member 334 are received within the counterbore 314d of the second tubular support member 314. The annular sealing and support member 330 further includes a radial opening 330a for supporting a rupture disc 336 within the radial opening 314g of the second tubular support member 314 and a sealing member 330b for sealing the radial opening 314h of the second tubular support member. The annular sealing and support member 334 further includes sealing members 334a and 334b for sealing the radial openings 314i and 314j, respectively, of the second tubular support member 314. In an exemplary embodiment, the rupture disc 336 opens when the operating pressure within the radial opening 330b is about 1000 to 5000 psi. In this manner, the rupture disc 336 provides a pressure sensitive valve for controlling the flow of fluidic materials through the radial opening 330a. In several alternative embodiments, the assembly 300 includes a plurality of radial passages 330a, each with corresponding rupture discs 336.
A sixth tubular support member 338 defining an internal passage 338a for receiving the second tubular support member 314 includes a threaded portion 338b at one end that is coupled to the threaded portion 316f of the third tubular support member 316 and a flange 338c at another end that is movably coupled to the interior of the expansion cone launcher 320. An annular collet 340 includes a threaded portion 340a that is coupled to the threaded portion 314e of the second tubular support member 314, and a resilient coupling 340b at another end.
An annular sliding sleeve 342 defining an internal passage 342a includes an internal flange 342b, having sealing members 342c and 342d, and an external groove 342e for releasably engaging the coupling 340b of the collet 340 at one end, and an internal flange 342f, having sealing members 342g and 342h, at another end. During operation, the coupling 340b of the collet 340 may engage the external groove 342e of the sliding sleeve 342 and thereby displace the sliding sleeve in the longitudinal direction. Since the coupling 340b of the collet 340 is resilient, the collet 340 may be disengaged or reengaged with the sliding sleeve 342. An annular valve member 344 defining an internal passage 344a, having a throat 344aa, includes a flange 344b at one end, having external splines 344c for engaging the internal splines 314f of the second tubular support member 314, an interior flange 344d having a first set of radial passages, 344da and 344db, and a counterbore 344e, a second set of radial passages, 344fa and 344fb, and a threaded portion 344g at another end.
An annular valve member 346 defining an internal passage 346a, having a throat 346aa, includes an end portion 346b that is received in the counterbore 344e of the annular valve member 344, a set of radial openings, 346ca and 346cb, and a flange 346d at another end. An annular valve member 348 defining an internal passage 348a for receiving the annular valve members 344 and 346 includes a flange 348b having a threaded counterbore 348c at one end for engaging the threaded portion 344g of the annular valve member, a counterbore 348d for mating with the flange 346d of the annular valve member, and a threaded annular recess 348e at another end.
The annular valve members 344, 346, and 348 define an annular passage 350 that fluidicly couples the radial passages 344fa, 344fb, 346ca, and 346cb. Furthermore, depending upon the position of the sliding sleeve 342, the fluid passages, 344da and 344db, may be fluidicly coupled to the passages 344fa, 344fb, 346ca, 346cb, and 350. In this manner, fluidic materials may bypass the portion of the passage 346a between the passages 344da, 344db, 346ca, and 346cb.
Furthermore, the sliding sleeve 342 and the valve members 344, 346, and 348 together define a sliding sleeve valve for controllably permitting fluidic materials to bypass the intermediate portion of the passage 346a between the passages, 344da, 344db, 346ca, and 346cb. During operation of the sliding sleeve valve, the flange 348b limits movement of the sliding sleeve 342 in the longitudinal direction.
In a preferred embodiment, the collet 340 includes a set of couplings 340b that engage the external groove 342e of the sliding sleeve 342. During operation, the collet couplings 340b latch over and onto the external groove 342e of the sliding sleeve 342. In a preferred embodiment, a longitudinal force of at least about 10,000 to 13,000 lbf is required to pull the couplings 340b off of, and out of engagement with, the external groove 342e of the sliding sleeve 342. In an exemplary embodiment, the application of a longitudinal force less than about 10,000 to 13,000 lbf indicates that the collet couplings 340b are latched onto the external shoulder of the sliding sleeve 342, and that the sliding sleeve 342 is in the up or the down position relative to the valve member 344. In a preferred embodiment, the collet 340 includes a conventional internal shoulder that transfers the weight of the first tubular support member 312 and expansion cone 318 onto the sliding sleeve 342. In a preferred embodiment, the collet 340 further includes a conventional set of internal lugs for engaging the splines 344c of the valve member 344.
An annular valve seat 352 defining a conical internal passage 352a for receiving a conventional float valve element 354 includes a threaded annular recess 352b for engaging the threaded portion 348e of the valve member 348, at one end, and an externally threaded portion 352c at another end. In an alternative embodiment, the float valve element 354 is omitted. An annular valve seat mounting element 356 defining an internal passage 356a for receiving the valve seat 352 and float valve 354 includes an internally threaded portion 356b for engaging the externally threaded portion 352c of the valve seat 352, an externally threaded portion 356c, an internal flange 356d, radial passages, 356ea and 356eb, and an end member 356f, having axial passages, 356fa and 356fb.
A shoe 358 defining an internal passage 358a for receiving the valve seat mounting element 356 includes a first threaded annular recess 358b, and a second threaded annular recess 358c for engaging the threaded portion 320d of the expansion cone launcher 320, at one end, a first threaded counterbore 358d for engaging the threaded portion 356c of the of the valve seat mounting element, and a second counterbore 358e for mating with the end member 356f of the mounting element. In a preferred embodiment, the shoe 358 is fabricated from a ceramic and/or a composite material in order to facilitate the subsequent removal of the shoe by drilling.
A seventh tubular support member 360 defining an internal passage 360a for receiving the sliding sleeve 342 and the valve members 344, 346, and 348 is positioned within the expansion cone launcher 320 that includes an internally threaded portion 360b at one end for engaging the externally threaded portion of the annular recess 358b of the shoe 358. In a preferred embodiment, during operation of the assembly, the end of the seventh tubular support member 360 limits the longitudinal movement of the expansion cone 318 in the direction of the shoe 358 by limiting the longitudinal movement of the sixth tubular support member 338. An annular centralizer 362 defining an internal passage 362 for supporting the valve member 348 is positioned within the seventh tubular support member 360 that includes axial passages 362b and 362c.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
In an alternative embodiment of the method 400, the injection and placement of the top plug 1016 into the liner hanger assembly 300 in step 412 may omitted.
In an alternative embodiment of the method 400, in step 402, the assembly 300 is positioned at the bottom of the wellbore 1000.
In an alternative embodiment, as illustrated in
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
In an alternative embodiment of the method 450, the injection and placement of the top plug 1016 into the liner hanger assembly 300 in step 464 may omitted.
In an alternative embodiment of the method 450, in step 452, the assembly 300 is positioned at the bottom of the wellbore 1000.
In an alternative embodiment of the method 450: (1) in step 452, the assembly 300 is positioned proximate a position below a preexisting section of the wellbore casing 1002, and (2) in step 458, the expansion cone launcher 320, and any expandable tubulars coupled to the threaded portion 320c of the expansion cone launcher, are radially expanded and plastically deformed until the shoe 358 of the assembly 300 is proximate the bottom of the wellbore 1000. In this manner, the radial expansion process using the assembly 300 provides a telescoping of the radially expanded tubulars into the wellbore 1000.
In several alternative embodiments, the assembly 300 may be operated to form a wellbore casing by including or excluding the float valve 354.
In several alternative embodiments, the float valve 354 may be operated in an auto-fill configuration in which tabs are positioned between the float valve 354 and the valve seat 352. In this manner, fluidic materials within the wellbore 1000 may flow into the assembly 300 from below thereby decreasing surge pressures during placement of the assembly 300 within the wellbore 1000. Furthermore, pumping fluidic materials through the assembly 300 at rate of about 6 to 8 bbl/min will displace the tabs from the valve seat 352 and thereby allow the float valve 354 to close.
In several alternative embodiments, prior to the placement of any of the plugs, 1010 and 1016, into the assembly 300, fluidic materials can be circulated through the assembly 300 and into the wellbore 1000.
In several alternative embodiments, once the bottom plug 1010 has been positioned into the assembly 300, fluidic materials can only be circulated through the assembly 300 and into the wellbore 1000 if the sliding sleeve 342 is in the down position.
In several alternative embodiments, once the sliding sleeve 342 is positioned in the down position, the passage 330a and rupture disc 336 are fluidicly isolated from pressurized fluids within the assembly 300.
In several alternative embodiments, once the top plug 1016 has been positioned into the assembly 300, no fluidic materials can be circulated through the assembly 300 and into the wellbore 1000.
In several alternative embodiments, the assembly 300 may be operated to form or repair a wellbore casing, a pipeline, or a structural support.
In a preferred embodiment, the design and operation of the liner hanger assemblies 10 and 300 are provided substantially as described and illustrated in Appendix A to the present application.
This application is related to the following co-pending applications: (1) U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, (2) U.S. patent application Ser. No. 09/510,913, filed on Feb. 23, 2000, (3) U.S. patent application Ser. No. 09/502,350, filed on Feb. 10, 2000, (4) U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, (5) U.S. patent application Ser. No. 09/523,460, filed on Mar. 10, 2001, (6) U.S. patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, (7) U.S. patent application Ser. No. 09/511,941, filed on Feb. 24, 2000, (8) U.S. patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, (9) U.S. patent application Ser. No. 09/559,122, filed on Apr. 26, 2000, (10) U.S. patent application Ser. No. 10/030,593, filed on Jan. 8, 2002, (11) U.S. provisional patent application Ser. No. 60/162,671, filed on Nov. 1, 1999, (12) U.S. provisional patent application Ser. No. 60/154,047, filed on Sep. 16, 1999, (13) U.S. provisional patent application Ser. No. 60/159,082, filed on Oct. 12, 1999, (14) U.S. provisional patent application Ser. No. 60/159,039, filed on Oct. 12, 1999, (15) U.S. provisional patent application Ser. No. 60/159,033, filed on Oct. 12, 1999, (16) U.S. provisional patent application Ser. No. 60/212,359, filed on Jun. 19, 2000, (17) U.S. provisional patent application Ser. No. 60/165,228, filed on Nov. 12, 1999, (18) U.S. provisional patent application Ser. No. 60/221,443, filed on Jul. 28, 2000, and (19) U.S. provisional patent application Ser. No. 60/221,645, filed on Jul. 28, 2000. Applicants incorporate by reference the disclosures of these applications.
A method of forming a wellbore casing within a borehole within a subterranean formation has been described that includes positioning an expandable tubular member within the borehole, injecting fluidic materials into the expandable tubular member, fluidicly isolating a first region from a second region within the expandable tubular member, fluidicly coupling the first and second regions, injecting a hardenable fluidic sealing material into the expandable tubular member, fluidicly decoupling the first and second regions and injecting a non-hardenable fluidic material into the expandable tubular member to radially expand the tubular member. In an exemplary embodiment, positioning the expandable tubular member within the borehole includes positioning an end of the expandable tubular member adjacent to the bottom of the borehole. In an exemplary embodiment, the method further includes fluidicly isolating the second region from a third region within the expandable tubular member.
An apparatus for forming a wellbore casing within a borehole within a subterranean formation has also been described that includes means for positioning an expandable tubular member within the borehole, means for injecting fluidic materials into the expandable tubular member, means for fluidicly isolating a first region from a second region within the expandable tubular member, means for fluidicly coupling the first and second regions, means for injecting a hardenable fluidic sealing material into the expandable tubular member, means for fluidicly decoupling the first and second regions, and means for injecting a non-hardenable fluidic material into the expandable tubular member to radially expand the tubular member. In an exemplary embodiment, the means for positioning the expandable tubular member within the borehole includes means for positioning an end of the expandable tubular member adjacent to the bottom of the borehole. In an exemplary embodiment, the apparatus further includes means for fluidicly isolating the second region from a third region within the expandable tubular member.
A method of forming a wellbore casing within a borehole within a subterranean formation has also been described that includes positioning an expandable tubular member within the borehole, injecting fluidic materials into the expandable tubular member, fluidicly isolating a first region from a second region within the expandable tubular member, injecting a non-hardenable fluidic material into the expandable tubular member to radially expand at least a portion of the tubular member, fluidicly coupling the first and second regions, injecting a hardenable fluidic sealing material into the expandable tubular member, fluidicly decoupling the first and second regions, and injecting a non-hardenable fluidic material into the expandable tubular member to radially expand another portion of the tubular member. In an exemplary embodiment, positioning the expandable tubular member within the borehole includes positioning an end of the expandable tubular member adjacent to the bottom of the borehole. In an exemplary embodiment, positioning the expandable tubular member within the borehole includes positioning an end of the expandable tubular member adjacent to a preexisting section of wellbore casing within the borehole. In an exemplary embodiment, injecting a non-hardenable fluidic material into the expandable tubular member to radially expand at least a portion of the tubular member includes injecting a non-hardenable fluidic material into the expandable tubular member to radially expand at least a portion of the tubular member until an end portion of the tubular member is positioned proximate the bottom of the borehole. In an exemplary embodiment, the method further includes fluidicly isolating the second region from a third region within the expandable tubular member.
An apparatus for forming a wellbore casing within a borehole within a subterranean formation has also been described that includes means for positioning an expandable tubular member within the borehole, means for injecting fluidic materials into the expandable tubular member, means for fluidicly isolating a first region from a second region within the expandable tubular member, means for injecting a non-hardenable fluidic material into the expandable tubular member to radially expand at least a portion of the tubular member, means for fluidicly coupling the first and second regions, means for injecting a hardenable fluidic sealing material into the expandable tubular member, means for fluidicly decoupling the first and second regions, and means for injecting a non-hardenable fluidic material into the expandable tubular member to radially expand another portion of the tubular member. In an exemplary embodiment, the means for positioning the expandable tubular member within the borehole includes means for positioning an end of the expandable tubular member adjacent to the bottom of the borehole. In an exemplary embodiment, the means for positioning the expandable tubular member within the borehole includes means for positioning an end of the expandable tubular member adjacent to a preexisting section of wellbore casing within the borehole. In an exemplary embodiment, the means for injecting a non-hardenable fluidic material into the expandable tubular member to radially expand at least a portion of the tubular member includes means for injecting a non-hardenable fluidic material into the expandable tubular member to radially expand at least a portion of the tubular member until an end portion of the tubular member is positioned proximate the bottom of the borehole. In an exemplary embodiment, the apparatus further includes means for fluidicly isolating the second region from a third region within the expandable tubular member.
An apparatus for forming a wellbore casing within a borehole within a subterranean formation has also been described that includes a first annular support member defining a first fluid passage and one or more first radial passages having pressure sensitive valves fluidicly coupled to the first fluid passage, an annular expansion cone coupled to the first annular support member, an expandable tubular member movably coupled to the expansion cone, a second annular support member defining a second fluid passage coupled to the expandable tubular member, an annular valve member defining a third fluid passage fluidicly coupled to the first and second fluid passages having first and second throat passages, defining second and third radial passages fluidicly coupled to the third fluid passage, coupled to the second annular support member, and movably coupled to the first annular support member, and an annular sleeve releasably coupled to the first annular support member and movably coupled to the annular valve member for controllably fluidicly coupling the second and third radial passages. An annular region is defined by the region between the tubular member and the first annular support member, the second annular support member, the annular valve member, and the annular sleeve.
An apparatus for forming a wellbore casing in a borehole in a subterranean formation has also been described that includes means for radially expanding an expandable tubular member, and means for injecting a hardenable fluidic sealing material into an annulus between the expandable tubular member and the borehole. In an exemplary embodiment, the means for injecting a hardenable fluidic sealing material into an annulus between the expandable tubular member and the borehole includes a sliding sleeve valve.
A method of operating an apparatus for forming a wellbore casing within a borehole within a subterranean formation has also been described in which the apparatus includes a first annular support member defining a first fluid passage and one or more first radial passages having pressure sensitive valves fluidicly coupled to the first fluid passage, an annular expansion cone coupled to the first annular support member, an expandable tubular member movably coupled to the expansion cone, a second annular support member defining a second fluid passage coupled to the expandable tubular member, an annular valve member defining a third fluid passage fluidicly coupled to the first and second fluid passages having top and bottom throat passages, defining second and third radial passages fluidicly coupled to the third fluid passage, coupled to the second annular support member, and movably coupled to the first annular support member, and an annular sleeve releasably coupled to the first annular support member and movably coupled to the annular valve member for controllably fluidicly coupling the second and third radial passages. An annular region is defined by the region between the tubular member and the first annular support member, the second annular support member, the annular valve member, and the annular sleeve. The method includes positioning the apparatus within the borehole, injecting fluidic materials into the first, second and third fluid passages, positioning a bottom plug in the bottom throat passage, displacing the annular sleeve to fluidicly couple the second and third radial passages, injecting a hardenable fluidic sealing material through the first, second, and third fluid passages, and the second and third radial passages, displacing the annular sleeve to fluidicly decouple the second and third radial passages, and injecting a non-hardenable fluidic material through the first fluid passage and the first radial passages and pressure sensitive valves into the annular region to radially expand the expandable tubular member. In an exemplary embodiment, positioning the apparatus within the borehole includes positioning an end of the expandable tubular member adjacent to the bottom of the borehole. In an exemplary embodiment, the method further includes positioning a top plug in the top throat passage.
A method of operating an apparatus for forming a wellbore casing within a borehole within a subterranean formation has also been described in which the apparatus includes a first annular support member defining a first fluid passage and one or more first radial passages having pressure sensitive valves fluidicly coupled to the first fluid passage, an annular expansion cone coupled to the first annular support member, an expandable tubular member movably coupled to the expansion cone, a second annular support member defining a second fluid passage coupled to the expandable tubular member, an annular valve member defining a third fluid passage fluidicly coupled to the first and second fluid passages having top and bottom throat passages, defining second and third radial passages fluidicly coupled to the third fluid passage, coupled to the second annular support member, and movably coupled to the first annular support member, and an annular sleeve releasably coupled to the first annular support member and movably coupled to the annular valve member for controllably fluidicly coupling the second and third radial passages. An annular region is defined by the region between the tubular member and the first annular support member, the second annular support member, the annular valve member, and the annular sleeve. The method includes positioning the apparatus within the borehole, injecting fluidic materials into the first, second and third fluid passages, positioning a bottom plug in the bottom throat passage, injecting a non-hardenable fluidic material through the first fluid passages and the first radial passages and pressure sensitive valves into the annular region to radially expand a portion of the expandable tubular member, displacing the annular sleeve to fluidicly couple the second and third radial passages, injecting a hardenable fluidic sealing material through the first, second, and third fluid passages, and the second and third radial passages, displacing the annular sleeve to fluidicly decouple the second and third radial passages, and injecting a non-hardenable fluidic material through the first fluid passage and the first radial passages and pressure sensitive valves into the annular region to radially expand another portion of the expandable tubular member. In an exemplary embodiment, positioning the apparatus within the borehole includes positioning an end of the expandable tubular member adjacent to the bottom of the borehole. In an exemplary embodiment, positioning the apparatus within the borehole includes positioning an end of the expandable tubular member adjacent to a preexisting section of wellbore casing within the borehole. In an exemplary embodiment, injecting a non-hardenable fluidic material into the first fluid passage and first radial passages and pressure sensitive valves to radially expand a portion of the expandable tubular member includes injecting a non-hardenable fluidic material into the first fluid passage and first radial passages and pressure sensitive valves to radially expand the expandable tubular member until an end portion of the tubular member is positioned proximate the bottom of the borehole. In an exemplary embodiment, the method further includes positioning a top plug in the top throat passage.
A method of coupling an expandable tubular member to a preexisting structure such as, for example, a wellbore casing, a pipeline, or a structural support has also been described that includes positioning an expandable tubular member within the preexisting structure, injecting fluidic materials into the expandable tubular member, fluidicly isolating a first region from a second region within the expandable tubular member, fluidicly coupling the first and second regions, injecting a hardenable fluidic sealing material into the expandable tubular member, fluidicly decoupling the first and second regions and injecting a non-hardenable fluidic material into the expandable tubular member to radially expand the tubular member. In an exemplary embodiment, positioning the expandable tubular member within the preexisting structure includes positioning an end of the expandable tubular member adjacent to the bottom of the preexisting structure. In an exemplary embodiment, the method further includes fluidicly isolating the second region from a third region within the expandable tubular member.
An apparatus for coupling an expandable tubular member to a preexisting structure such as, for example, a wellbore casing, a pipeline, or a structural support has also been described that includes means for positioning the expandable tubular member within the preexisting structure, means for injecting fluidic materials into the expandable tubular member, means for fluidicly isolating a first region from a second region within the expandable tubular member, means for fluidicly coupling the first and second regions, means for injecting a hardenable fluidic sealing material into the expandable tubular member, means for fluidicly decoupling the first and second regions, and means for injecting a non-hardenable fluidic material into the expandable tubular member to radially expand the tubular member. In an exemplary embodiment, the means for positioning the expandable tubular member within the preexisting structure includes means for positioning an end of the expandable tubular member adjacent to the bottom of the preexisting structure. In an exemplary embodiment, the apparatus further includes means for fluidicly isolating the second region from a third region within the expandable tubular member.
A method of coupling an expandable tubular member to a preexisting structure has also been described that includes positioning the expandable tubular member within the preexisting structure, injecting fluidic materials into the expandable tubular member, fluidicly isolating a first region from a second region within the expandable tubular member, injecting a non-hardenable fluidic material into the expandable tubular member to radially expand at least a portion of the tubular member, fluidicly coupling the first and second regions, injecting a hardenable fluidic sealing material into the expandable tubular member, fluidicly decoupling the first and second regions, and injecting a non-hardenable fluidic material into the expandable tubular member to radially expand another portion of the tubular member. In an exemplary embodiment, positioning the expandable tubular member within the preexisting structure includes positioning an end of the expandable tubular member adjacent to the bottom of the preexisting structure. In an exemplary embodiment, positioning the expandable tubular member within the preexisting structure includes positioning an end of the expandable tubular member adjacent to a preexisting section of a structural element within the preexisting structure. In an exemplary embodiment, injecting a non-hardenable fluidic material into the expandable tubular member to radially expand at least a portion of the tubular member includes injecting a non-hardenable fluidic material into the expandable tubular member to radially expand at least a portion of the tubular member until an end portion of the tubular member is positioned proximate the bottom of the preexisting structure. In an exemplary embodiment, the method further includes fluidicly isolating the second region from a third region within the expandable tubular member.
An apparatus for coupling an expandable tubular member to a preexisting structure such as, for example, a wellbore casing, a pipeline, or a structural support has also been described that includes means for positioning the expandable tubular member within the preexisting structure, means for injecting fluidic materials into the expandable tubular member, means for fluidicly isolating a first region from a second region within the expandable tubular member, means for injecting a non-hardenable fluidic material into the expandable tubular member to radially expand at least a portion of the tubular member, means for fluidicly coupling the first and second regions, means for injecting a hardenable fluidic sealing material into the expandable tubular member, means for fluidicly decoupling the first and second regions, and means for injecting a non-hardenable fluidic material into the expandable tubular member to radially expand another portion of the tubular member. In an exemplary embodiment, the means for positioning the expandable tubular member within the preexisting structure includes means for positioning an end of the expandable tubular member adjacent to the bottom of the preexisting structure. In an exemplary embodiment, the means for positioning the expandable tubular member within the preexisting structure includes means for positioning an end of the expandable tubular member adjacent to a preexisting structural element within the preexisting structure. In an exemplary embodiment, the means for injecting a non-hardenable fluidic material into the expandable tubular member to radially expand at least a portion of the tubular member includes means for injecting a non-hardenable fluidic material into the expandable tubular member to radially expand at least a portion of the tubular member until an end portion of the tubular member is positioned proximate the bottom of the preexisting structure. In an exemplary embodiment, the apparatus further includes means for fluidicly isolating the second region from a third region within the expandable tubular member.
An apparatus for coupling an expandable tubular member to a preexisting structure such as, for example, a wellbore casing, a pipeline, or a structural support has also been described that includes a first annular support member defining a first fluid passage and one or more first radial passages having pressure sensitive valves fluidicly coupled to the first fluid passage, an annular expansion cone coupled to the first annular support member, an expandable tubular member movably coupled to the expansion cone, a second annular support member defining a second fluid passage coupled to the expandable tubular member, an annular valve member defining a third fluid passage fluidicly coupled to the first and second fluid passages having first and second throat passages, defining second and third radial passages fluidicly coupled to the third fluid passage, coupled to the second annular support member, and movably coupled to the first annular support member, and an annular sleeve releasably coupled to the first annular support member and movably coupled to the annular valve member for controllably fluidicly coupling the second and third radial passages. An annular region is defined by the region between the tubular member and the first annular support member, the second annular support member, the annular valve member, and the annular sleeve.
An apparatus for coupling an expandable tubular member to a preexisting structure such as, for example, a wellbore casing, a pipeline, or a structural support has also been described that includes means for radially expanding an expandable tubular member, and means for injecting a hardenable fluidic sealing material into an annulus between the expandable tubular member and the borehole. In an exemplary embodiment, the means for injecting a hardenable fluidic sealing material into an annulus between the expandable tubular member and the borehole includes a sliding sleeve valve.
A method of operating an apparatus for coupling an expandable tubular member to a preexisting structure such as, for example, a wellbore casing, a pipeline, or a structural support has also been described in which the apparatus includes a first annular support member defining a first fluid passage and one or more first radial passages having pressure sensitive valves fluidicly coupled to the first fluid passage, an annular expansion cone coupled to the first annular support member, an expandable tubular member movably coupled to the expansion cone, a second annular support member defining a second fluid passage coupled to the expandable tubular member, an annular valve member defining a third fluid passage fluidicly coupled to the first and second fluid passages having top and bottom throat passages, defining second and third radial passages fluidicly coupled to the third fluid passage, coupled to the second annular support member, and movably coupled to the first annular support member, and an annular sleeve releasably coupled to the first annular support member and movably coupled to the annular valve member for controllably fluidicly coupling the second and third radial passages. An annular region is defined by the region between the tubular member and the first annular support member, the second annular support member, the annular valve member, and the annular sleeve. The method includes positioning the apparatus within the preexisting structure, injecting fluidic materials into the first, second and third fluid passages, positioning a bottom plug in the bottom throat passage, displacing the annular sleeve to fluidicly couple the second and third radial passages, injecting a hardenable fluidic sealing material through the first, second, and third fluid passages, and the second and third radial passages, displacing the annular sleeve to fluidicly decouple the second and third radial passages, and injecting a non-hardenable fluidic material through the first fluid passage and the first radial passages and pressure sensitive valves into the annular region to radially expand the expandable tubular member. In an exemplary embodiment, positioning the apparatus within the preexisting structure includes positioning an end of the expandable tubular member adjacent to the bottom of the preexisting structure. In an exemplary embodiment, the method further includes positioning a top plug in the top throat passage.
A method of operating an apparatus for coupling an expandable tubular member to a preexisting structure such as, for example, a wellbore casing, a pipeline, or a structural support has also been described in which the apparatus includes a first annular support member defining a first fluid passage and one or more first radial passages having pressure sensitive valves fluidicly coupled to the first fluid passage, an annular expansion cone coupled to the first annular support member, an expandable tubular member movably coupled to the expansion cone, a second annular support member defining a second fluid passage coupled to the expandable tubular member, an annular valve member defining a third fluid passage fluidicly coupled to the first and second fluid passages having top and bottom throat passages, defining second and third radial passages fluidicly coupled to the third fluid passage, coupled to the second annular support member, and movably coupled to the first annular support member, and an annular sleeve releasably coupled to the first annular support member and movably coupled to the annular valve member for controllably fluidicly coupling the second and third radial passages. An annular region is defined by the region between the tubular member and the first annular support member, the second annular support member, the annular valve member, and the annular sleeve. The method includes positioning the apparatus within the preexisting structure, injecting fluidic materials into the first, second and third fluid passages, positioning a bottom plug in the bottom throat passage, injecting a non-hardenable fluidic material through the first fluid passages and the first radial passages and pressure sensitive valves into the annular region to radially expand a portion of the expandable tubular member, displacing the annular sleeve to fluidicly couple the second and third radial passages, injecting a hardenable fluidic sealing material through the first, second, and third fluid passages, and the second and third radial passages, displacing the annular sleeve to fluidicly decouple the second and third radial passages, and injecting a non-hardenable fluidic material through the first fluid passage and the first radial passages and pressure sensitive valves into the annular region to radially expand another portion of the expandable tubular member. In an exemplary embodiment, positioning the apparatus within the preexisting structure includes positioning an end of the expandable tubular member adjacent to the bottom of the preexisting structure. In an exemplary embodiment, positioning the apparatus within the preexisting structure includes positioning an end of the expandable tubular member adjacent to a preexisting section of a structural element casing within the preexisting structure. In an exemplary embodiment, injecting a non-hardenable fluidic material into the first fluid passage and first radial passages and pressure sensitive valves to radially expand a portion of the expandable tubular member includes injecting a non-hardenable fluidic material into the first fluid passage and first radial passages and pressure sensitive valves to radially expand the expandable tubular member until an end portion of the tubular member is positioned proximate the bottom of the preexisting structure. In an exemplary embodiment, the method further includes positioning a top plug in the top throat passage.
Although this detailed description has shown and described illustrative embodiments of the invention, this description contemplates a wide range of modifications, changes, and substitutions. In some instances, one may employ some features of the present invention without a corresponding use of the other features. Accordingly, it is appropriate that readers should construe the appended claims broadly, and in a manner consistent with the scope of the invention.
This application is a divisional of U.S. application Ser. No. 10/351,160, filed Jan. 22, 2003, which is based on National Phase of the International Application No. PCT/US01/28960, which is based on U.S. application Ser. No. 60/233,638, filed on Sep. 18, 2000, the disclosure of which is incorporated herein by reference. This application is related to the following applications: (1) U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999 now U.S. Pat. No. 6,497,289, (2) U.S. patent application Ser. No. 09/510,913, filed on Feb. 23, 2000, (3) U.S. patent application Ser. No. 09/502,350, filed on Feb. 10, 2000, now U.S. Pat. No. 6,823,937, (4) U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, now U.S. Pat. No. 6,328,113, (5) U.S. patent application Ser. No. 09/523,460, filed on Mar. 10, 2000, now U.S. Pat. No. 6,640,903, (6) U.S. patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, now U.S. Pat. No. 6,568,471, (7) U.S. patent application Ser. No. 09/511,941, filed on Feb. 24, 2000, now U.S. Pat. No. 6,575,240, (8) U.S. patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, now U.S. Pat. No. 6,557,640, (9) U.S. patent application Ser. No. 09/559,122, filed on Apr. 26, 2000, now U.S. Pat. No. 6,604,763, (10) PCT patent application Ser. No. PCT/US00/18635, filed on Jul. 9, 2000, (11) U.S. provisional patent application Ser. No. 60/162,671, filed on Nov. 1, 1999, (12) U.S. provisional patent application Ser. No. 60/154,047, filed on Sep. 16, 1999, (13) U.S. provisional patent application Ser. No. 60/159,082, filed on Oct. 12, 1999, (14) U.S. provisional patent application Ser. No. 60/159,039, filed on Oct. 12, 1999, (15) U.S. provisional patent application Ser. No. 60/159,033, filed on Oct. 12, 1999(16) U.S. provisional patent application Ser. No. 60/212,359, filed on Jun. 19, 2000, (17) U.S. provisional patent application Ser. No. 60/165,228, filed on Nov. 12, 1999, (18) U.S. provisional patent application Ser. No. 60/221,443, filed on Jul. 28, 2000, and (19) U.S. provisional patent application Ser. No. 60/221,645, filed on Jul. 28, 2000, Applicants incorporate by reference the disclosures of these applications. This application is related to the following co-pending applications: (1) U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (2) U.S. patent application Ser. No. 09/510,913, filed on Feb. 23, 2000, which claims priority from provisional application 60/121,702, filed on Feb. 25, 1999, (3) U.S. patent application Ser. No. 09/502,350, filed on Feb. 10, 2000, which claims priority from provisional application 60/119,611, filed on Feb. 11, 1999, (4) U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998(5) U.S. patent application Ser. No. 10/169,434, filed on Jul. 1, 2002, which claims priority from provisional application 60/183,546, filed on Feb. 18, 2000, (6) U.S. Pat. No. 6,640,903 which was filed as U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (7) U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (8) U.S. Pat. No. 6,575,240which was filed as patent application Ser. No. 09/511,941, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,907, filed on Feb. 26, 1999, (9) U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (10) U.S. patent application Ser. No. 09/981,916, filed on Oct. 18, 2001, as a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (11) U.S. Pat. No. 6,604,763, which was filed as application Ser. No. 09/559,122, filed on Apr. 26, 2000, which claims priority from provisional application 60/131,106, filed on Apr. 26, 1999, (12) U.S. patent application Ser. No. 10/030,593, filed on Jan. 8, 2002, which claims priority from provisional application 60/146,203, filed on Jul. 29, 1999, (13) U.S. provisional patent application Ser. No. 60/143,039, filed on Jul. 9, 1999, (14) U.S. patent application Ser. No. 10/111,982, filed on Apr. 30, 2002, which claims priority from provisional patent application Ser. No. 60/162,671, filed on Nov. 1, 1999, (15) U.S. provisional patent application Ser. No. 60/154,047, filed on Sep. 16, 1999, (16) U.S. provisional patent application Ser. No. 60/438,828, filed on Jan. 9, 2003, (17) U.S. Pat. No. 6,564,875, which was filed as application Ser. No. 09/679,907, on Oct. 5, 2000, which claims priority from provisional patent application Ser. No. 60/159,082, filed on Oct. 12, 1999, (18) U.S. patent application Ser. No. 10/089,419, filed on Mar. 27, 2002, which claims priority from provisional patent application Ser. No. 60/159,039, filed on Oct. 12, 1999, (19) U.S. patent application Ser. No. 09/679,906, filed on Oct. 5, 2000, which claims priority from provisional patent application Ser. No. 60/159,033, filed on Oct. 12, 1999, (20) U.S. patent application Ser. No. 10/303,992, filed on Nov. 22, 2002, which claims priority from provisional patent application Ser. No. 60/212,359, filed on Jun. 19, 2000, (21) U.S. provisional patent application Ser. No. 60/165,228, filed on Nov. 12, 1999, (22) U.S. provisional patent application Ser. No. 60/455,051, filed on Mar. 14, 2003, (23) PCT application US02/2477, filed on Jun. 26, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/303,711, filed on Jul. 6, 2001, (24) U.S. patent application Ser. No. 10/311,412, filed on Dec. 12, 2002, which claims priority from provisional patent application Ser. No. 60/221,443, filed on Jul. 28, 2000, (25) U.S. patent application Ser. No. 10/, filed on Dec. 18, 2002, which claims priority from provisional patent application Ser. No. 60/221,645, filed on Jul. 28, 2000, (26) U.S. patent application Ser. No. 10/322,947, filed on Jan. 22, 2003, which claims priority from provisional patent application Ser. No. 60/233,638, filed on Sep. 18, 2000, (27) U.S. patent application Ser. No. 10/406,648, filed on Mar. 31, 2003, which claims priority from provisional patent application Ser. No. 60/237,334, filed on Oct. 2, 2000, (28) PCT application US02/04353, filed on Feb. 14, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/270,007, filed on Feb. 20, 2001, (29) U.S. patent application Ser. No. 10/465,835, filed on Jun. 13, 2003, which claims priority from provisional patent application Ser. No. 60/262,434, filed on Jan. 17, 2001, (30) U.S. patent application Ser. No. 10/465,831, filed on Jun. 13, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/259,486, filed on Jan. 3, 2001, (31) U.S. provisional patent application Ser. No. 60/452,303, filed on Mar. 5, 2003, (32) U.S. Pat. No. 6,470,966, which was filed as patent application Ser. No. 09/850,093, filed on May 7, 2001, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (33) U.S. Pat. No. 6,561,227, which was filed as patent application Ser. No. 09/852,026, filed on May 9, 2001, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (34) U.S. patent application Ser. No. 09/852,027, filed on May 9, 2001, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7,1998, (35) PCT Application US02/25608, filed on Aug. 13, 2002, which claims priority from provisional application 60/318,021, filed on Sep. 7, 2001, (36) PCT Application US02/24399, filed on Aug. 1, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/313,453, filed on Aug. 20, 2001, (37) PCT Application US02/29856, filed on Sep. 19, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/326,886, filed on Oct. 3, 2001, (38) PCT Application US02/20256, filed on Jun. 26, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/303,740, filed on Jul. 6, 2001, (39) U.S. patent application Ser. No. 09/962,469, filed on Sep. 25, 2001, which is a divisional of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (40) U.S. patent application Ser. No. 09/962,470, filed on Sep. 25, 2001, which is a divisional of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (41) U.S. patent application Ser. No. 09/962,471, filed on Sep. 25, 2001, which is a divisional of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (42) U.S. patent application Ser. No. 09/962,467, filed on Sep. 25, 2001, which is a divisional of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (43) U.S. patent application Ser. No. 09/962,468, filed on Sep. 25, 2001, which is a divisional of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (44) PCT application US 02/25727, filed on Aug. 14, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/317,985, filed on Sep. 6, 2001, and U.S. provisional patent application Ser. no, 60/318,386, filed on Sep. 10, 2001, (45) PCT application US 02/39425, filed on Dec. 10, 2002, which claims priority from U.S. Provisional patent application Ser. No. 60/343,674, filed on Dec. 27, 2001, (46) U.S. utility patent application Ser. No. 09/969,922, filed on Oct. 3, 2001, (now U.S. Pat. No. 6,634,431 which issued Oct. 21, 2003), which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (47) U.S. utility patent application Ser. No. 10/516,467, filed on Dec. 10, 2001, which is a continuation application of U.S. utility patent application Ser. No. 09/969,922, filed on Oct. 3, 2001, (now U.S. Pat. No. 6,634,431 which issued Oct. 21, 2003), which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, which claims priorityfrom provisional application 60/108,558, filed on Nov. 16, 1998, (48) PCT application US 03/00609, filed on Jan. 9, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/357,372, filed on Feb. 15, 2002, (49) U.S. patent application Ser. No. 10/074,703, filed on Feb. 12, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (50) U.S. patent application Ser. No. 10/074,244, filed on Feb. 12, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (51) U.S. patent application Ser. No. 10/076,660, filed on Feb. 15, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (52) U.S. patent application Ser. No. 10/076,661, filed on Feb. 15, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (53) U.S. patent application Ser. No. 10/076,659, filed on Feb. 15, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (54) U.S. patent application Ser. No. 10/078,928, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (55) U.S. patent application Ser. No. 10/078,922, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (56) U.S. patent application Ser. No. 10/078,921, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (57) U.S. patent application Ser. No. 10/261,928, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (58) U.S. patent application Ser. No. 10/079,276, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (59) U.S. patent application Ser. No. 10/262,009, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,988, filed on Jun. 7, 1999, (60) U.S. patent application Ser. No. 10/092,481, filed on Mar. 7, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (61) U.S. patent application Ser. No. 10/261,926, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,988, filed on Jun. 7, 1999, (62) PCT application US 02/36157, filed on Nov. 12, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/338,996, filed on Nov. 12, 2001, (63) PCT application US 02/36267, filed on Nov. 12, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/339,013, filed on Nov. 12, 2001, (64) PCT application US 03/11765, filed on Apr. 16, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/383,917, filed on May 29, 2002, (65) PCT application US 03/15020, filed on May 12, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/391,703, filed on Jun. 26, 2002, (66) PCT application US 02/39418, filed on Dec. 10, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/346,309, filed on Jan. 7, 2002, (67) PCT application US 03/06544, filed on Mar. 4, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/372,048, filed on Apr. 12, 2002, (68) U.S. patent application Ser. No. 10/331,718, filed on Dec. 30, 2002, which is a divisional U.S. patent application Ser. No. 09/679,906, filed on Oct. 5, 2000, which claims priority from provisional patent application Ser. No. 60/159,033, filed on Oct. 12, 1999, (69) PCT application US 03/04837, filed on Feb. 29, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/363,829, filed on Mar. 13, 2002, (70) U.S. patent application Ser. No. 10/261,927, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,988, filed on Jun. 7, 1999, (71) U.S. patent application Ser. No. 10/262,008, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,988, filed on Jun. 7, 1999, (72) U.S. patent application Ser. No. 10/261,925, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,988, filed on Jun. 7, 1999, (73) U.S. patent application Ser. No. 10/199,524, filed on Jul. 19, 2002, which is a continuation of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (74) PCT application US 03/10144, filed on Mar. 28, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/372,632, filed on Apr. 15, 2002, (75) U.S. provisional patent application Ser. No. 60/412,542, filed on Sep. 20, 2002, (76) PCT application US 03/14153, filed on May 6, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/380,147, filed on May 6, 2002, (77) PCT application US 03/19993, filed on Jun. 24, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/397,284, filed on Jul. 19, 2002, (78) PCT application US 03/13787, filed on May 5, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/387,486, filed on Jun. 10, 2002, (79) PCT application US 03/18530, filed on Jun. 11, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/387,961, filed on Jun. 12, 2002, (80) PCT application US 03/20694, filed on Jul. 1, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/398,061, filed on Jul. 24, 2002, (81) PCT application US 03/20870filed on Jul. 2, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/399,240, filed on Jul. 29, 2002, (82) U.S. provisional patent application Ser. No. 60/412,487, filed on Sep. 20, 2002, (83) U.S. provisional patent application Ser. No. 60/412,488, filed on Sep. 20, 2002, (84) U.S. patent application Ser. No. 10/280,356, filed on Oct. 25, 2002, which is a continuation of U.S. Pat. No. 6,470,966, which was filed as patent application Ser. No. 09/850,093, filed on May 7, 2001, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (85) U.S. provisional patent application Ser. No. 60/412,177, filed on Sep. 20, 2002, (86) U.S. provisional patent application Ser. No. 60/412,653, filed on Sep. 20, 2002, (87) U.S. provisional patent application Ser. No. 60/405,610, filed on Aug. 23, 2002, (88) U.S. provisional patent application Ser. No. 60/405,394, filed on Aug. 23, 2002, (89) U.S. provisional patent application Ser. No. 60/412,544filed on Sep. 20, 2002, (90) PCT application US 03/24779, filed on Aug. 8, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/407,442, filed on Aug. 30, 2002, (91) U.S. provisional patent application Ser. No. 60/423,363, filed on Dec. 10, 2002, (92) U.S. provisional patent application Ser. No. 60/412,196, filed on Sep. 20, 2002, (93) U.S. provisional patent application Ser. No. 60/412,187, filed on Sep. 20, 2002, (94) U.S. provisional patent application Ser. No. 60/412,371, filed on Sep. 20, 2002, (95) U.S. patent application Ser. No. 10/382,325, filed on Mar. 3, 2003, which is a continuation of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,988, filed on Jun. 7, 1999, (96) U.S. patent application Ser. No. 10/624,842, filed on Jul. 22, 2003, which is a divisional of U.S. patent application Ser. No. 09/502,350, filed on Feb. 10, 2000, which claims priority from provisional application 60/119,611, filed on Feb. 11, 1999, (97) U.S. provisional patent application Ser. No. 60/431,184, filed on Dec. 5, 2002, (98) U.S. provisional patent application Ser. No. 60/448,526, filed on Feb. 18, 2003, (99) U.S. provisional patent application Ser. No. 60/461,539, filed on Apr. 9, 2003, (100) U.S. provisional patent application Ser. No. 60/462,750, filed on Apr. 14, 2003, (101) U.S. provisional patent application Ser. No. 60/436,106, filed on Dec. 23, 2002, (102) U.S. provisional patent application Ser. No. 60/442,942, filed on Jan. 27, 2003, (103) U.S. provisional patent application Ser. No. 60/442,938, filed on Jan. 27, 2003, (104) U.S. provisional patent application Ser. No. 60/418,687, filed on Apr. 18, 2003, (105) U.S. provisional patent application Ser. No. 60/454,896, filed on Mar. 14, 2003, (106) U.S. provisional patent application Ser. No. 60/450,504, filed on Feb. 26, 2003, (107) U.S. provisional patent application Ser. No. 60/451,152, filed on Mar. 9, 2003, (108) U.S. provisional patent application Ser. No. 60/455,124, filed on Mar. 17, 2003, (109) U.S. provisional patent application Ser. No. 60/453,678, filed on Mar. 11, 2003, (110) U.S. patent application Ser. No. 10/421,682, filed on Apr. 23, 2003, which is a continuation of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003). which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (111) U.S. provisional patent application Ser. No. 60/457,965, filed on Mar. 27, 2003, (112) U.S. provisional patent application Ser. No. 60/455,718, filed on Mar. 18, 2003, (113) U.S. Pat. No. 6,550,821, which was filed as patent application Ser. No. 09/811,734, filed on Mar. 19, 2001, (114) U.S. patent application Ser. No. 10/436,467, filed on May 12, 2003, which is a continuation of U.S. Pat. No. 6,604,763, which was filed as application Ser. No. 09/559,122, filed on Apr. 26, 2000, which claims priority from provisional application 60/131,106, filed on Apr. 26, 1999, (115) U.S. provisional patent application Ser. No. 60/459,776, filed on Apr. 2, 2003, (116) U.S. provisional patent application Ser. No. 60/461,094, filed on Apr. 8, 2003, (117) U.S. provisional patent application Ser. No. 60/461,038, filed on Apr. 7, 2003, (118) U.S. provisional patent application Ser. No. 60/463,586, filed on Apr. 17, 2003, (119) U.S. provisional patent application Ser. No. 60/472,240, filed on May 20, 2003, (120) U.S. patent application Ser. No. 10/619,285, filed on Jul. 14, 2003, which is a continuation-in-part of U.S. utility patent application Ser. No. 09/969,922, filed on Oct. 3, 2001, (now U.S. Pat. No. 6,634,431 which issued Oct. 21, 2003). which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (121) U.S. utility patent application Ser. No. 10/418,688, which was filed on Apr. 18, 2003, as a division of U.S. utility patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999; (122) PCT patent application Ser. No. PCT/US2004/06246, filed on Feb, 26, 2004; (123) PCT patent application Ser. No. PCT/US2004/08170, filed on Mar. 15, 2004; (124) PCT patent application Ser. No. PCT/US2004/08171, filed on Mar. 15, 2004; (125) PCT patent application Ser. No. PCT/US2004/08073, filed on Mar. 18, 2004; (126) PCT patent application Ser. No. PCT/US2004/07711, filed on Mar. 11, 2004; (127) PCT patent application Ser. No. PCT/US2004/029025, filed on Mar. 26, 2004; (128) PCT patent application Ser. No. PCT/US2004/010317, filed on Apr. 2, 2004; (129) PCT patent application Ser. No. PCT/US2004/010712, filed on Apr. 6, 2004; (130) PCT patent application Ser. No. PCT/US2004/010762, filed on Apr. 6, 2004; (131) PCT patent application Ser. No. PCT/US2004/011973, filed on Apr. 15, 2004; (132) U.S. provisional patent application Ser. No. 60/495,056, filed on Aug. 14, 2003; (133) U.S. provisional patent application Ser. No. 60/600,679, filed on Aug. 11, 2004; (134) PCT patent application Ser. No. PCT/US2005/027318, filed on Jul. 29, 2005; (135) PCT patent application Ser. No. PCT/US2005/028936, filed on Aug. 12, 2005; (136) PCT patent application Ser. No. PCT/US2005/028669, filed on Aug. 11, 2005; (137) PCT patent application Ser. No. PCT/US2005/028453, filed on Aug. 11, 2005; (138) PCT patent application Ser. No. PCT/US2005/028641, filed on Aug. 11, 2005; (139) PCT patent application Ser. No. PCT/US2005/028819, filed on Aug. 11, 2005; (140) PCT patent application Ser. No. PCT/US2005/028446, filed on Aug. 11, 2005; (141) PCT patent application Ser. No. PCT/US2005/028642, filed on Aug. 11, 2005; (142) PCT patent application Ser. No. PCT/US2005/028451, filed on Aug. 11, 2005, and (143). PCT patent application Ser. No. PCT/US2005/028473, filed on Aug. 11, 2005, (144) U.S. utility patent application Ser. No. 10/546082, filed on Aug. 16, 2005, (145) U.S. utility patent application Ser. No. 10/546,076, filed on Aug. 16, 2005, (146) U.S. utility patent application Ser. No. 10/545,936, filed on Aug. 16, 2005, (147) U.S. utility patent application Ser. No. 10/546,079, filed on Aug. 16, 2005 (148) U.S. utility patent application Ser. No. 10/545,941, filed on Aug. 16, 2005, (149) U.S. utility patent application Ser. No. 546,078, filed on Aug. 16, 2005, filed on Aug. 11, 2005, (150) U.S. utility patent application Ser. No. 10/545,941, filed on Aug. 16, 2005, (151) U.S. utility patent application Ser. No. 11/249,967, filed on Oct. 13, 2005, (152) U.S. provisional patent application Ser. No. 60/734,302, filed on Nov. 7, 2005, (153) U.S. provisional patent application Ser. No. 60/725,181, filed on Oct. 11, 2005, (154) PCT patent application Ser. No. PCT/US2005/023391, filed Jun. 29, 2005 which claims priority from U.S. provisional patent application Ser. No. 60/585,370, filed on Jul. 2, 2004, (155) U.S. provisional patent application Ser. No. 60/721,579, filed on Sep. 28, 2005, (156) U.S. provisional patent application Ser. No. 60/717,391, filed on Sep. 15, 2005, (157) U.S. provisional patent application Ser. No. 60/702,935, filed on Jul. 27, 2005, (158) U.S. provisional patent application Ser. No. 60/663,913, filed on Mar. 21, 2005, (159) U.S. provisional patent application Ser. No. 60/652,564, filed on Feb. 14, 2005, (160) U.S. provisional patent application Ser. No. 60/645,840, filed on Jan. 21, 2005, (161) PCT patent application Ser. No. PCT/US2005/043122, filed on Nov. 29, 2005 which claims priority from U.S. provisional patent application Ser. No. 60/631,703, filed on Nov. 30, 2004, (162) U.S. provisional patent application Ser. No. 60/752,787, filed on Dec. 22, 2005, (163) U.S. National Stage application Ser. No. 10/548,934, filed on Sep. 12, 2005; (164) U.S. National Stage application Ser. No. 10/549,410, filed on Sep. 13, 2005; (165) U.S. Provisional Patent Application No. 60/717,391, filed on Sep. 15, 2005; (166) U.S. National Stage application Ser. No. 10/550,906, filed on Sep. 27, 2005; (167) U.S. National Stage application Ser. No. 10/551,880, filed on Sep. 30, 2005; (168) U.S. National Stage application Ser. No. 10/552,253, filed on Oct. 4, 2005; (169) U.S. National Stage application Ser. No. 10/552,790, filed on Oct. 11, 2005; (170) U.S. Provisional Patent Application No. 60/725,181, filed on Oct. 11, 2005; (171) U.S. National Stage application Ser. No. 10/553,094, filed on Oct. 13, 2005; (172) U.S. National Stage application Ser. No. 10/553,566, filed on Oct. 17, 2005; (173) PCT Patent Application No. PCT/US2006/002449, filed on Jan. 20, 2006, and (174) PCT Patent Application No. PCT/US2006/004809, filed on Feb. 9, 2006; (175) U.S. utility patent application Ser. No. 11/356,899, filed on Feb. 17, 2006, (176) U.S. National Stage application Ser. No. 10/568,200, filed on Feb. 13, 2006, (177) U.S. National Stage application Ser. No. 10/568,719, filed on Feb. 16, 2006, (178) U.S. National Stage application Ser. No. 10/569,323, (179) U.S. National State patent application Ser. No. 10/571,041, filed on Mar. 3, 2006, (180) U.S. National State patent application Ser. No. 10/571,017, filed on Mar. 3, 2006; (181) U.S. National State patent application Ser. No. 10/571,086, filed on Mar. 6, 2006; and (182) U.S. National State patent application Ser. No. 10/571,085, filed on Mar. 3, 2006, (183) U.S. utility patent application Ser. No. 10/938,788, filed on Sep. 10, 2004, (184) U.S. utility patent application Ser. No. 10/938,225, filed on Sep. 10, 2004, (185) U.S. utility patent application Ser. No. 10/952,288, filed on Sep. 28, 2004, (186) U.S. utility patent application Ser. No. 10/952,416, filed on Sep. 28, 2004, (187) U.S. utility patent application Ser. No. 10/950,749, filed on Sep. 27, 2004, and (188) U.S. utility patent application Ser. No. 10/950,869, filed on Sep. 27, 2004.
Number | Name | Date | Kind |
---|---|---|---|
46818 | Patterson | Mar 1865 | A |
331940 | Bole | Dec 1885 | A |
332184 | Bole | Dec 1885 | A |
341237 | Healey | May 1886 | A |
519805 | Bavier | May 1894 | A |
802880 | Phillips, Jr. | Oct 1905 | A |
806156 | Marshall | Dec 1905 | A |
958517 | Mettler | May 1910 | A |
984449 | Stewart | Feb 1911 | A |
1166040 | Burlingham | Dec 1915 | A |
1233888 | Leonard | Jul 1917 | A |
1494128 | Primrose | May 1924 | A |
1589781 | Anderson | Jun 1926 | A |
1590357 | Feisthamel | Jun 1926 | A |
1597212 | Spengler | Aug 1926 | A |
1613461 | Johnson | Jan 1927 | A |
1756531 | Aldeen et al. | Apr 1930 | A |
1880218 | Simmons | Oct 1932 | A |
1981525 | Price | Nov 1934 | A |
2046870 | Clasen et al. | Jul 1936 | A |
2087185 | Dillom | Jul 1937 | A |
2122757 | Scott | Jul 1938 | A |
2145168 | Flagg | Jan 1939 | A |
2160263 | Fletcher | May 1939 | A |
2187275 | McLennan | Jan 1940 | A |
2204586 | Grau | Jun 1940 | A |
2214226 | English | Sep 1940 | A |
2226804 | Carroll | Dec 1940 | A |
2246038 | Graham | Jun 1941 | A |
2273017 | Boynton | Feb 1942 | A |
2301495 | Abegg | Nov 1942 | A |
2305282 | Taylor, Jr. et al. | Dec 1942 | A |
2371840 | Otis | Mar 1945 | A |
2383214 | Prout | Aug 1945 | A |
2447629 | Beissinger et al. | Aug 1948 | A |
2500276 | Church | Mar 1950 | A |
2546295 | Boice | Mar 1951 | A |
2583316 | Bannister | Jan 1952 | A |
2609258 | Taylor, Jr. et al. | Nov 1952 | A |
2627891 | Clark | Feb 1953 | A |
2647847 | Black et al. | Aug 1953 | A |
2664952 | Losey | Jan 1954 | A |
2691418 | Connolly | Oct 1954 | A |
2723721 | Corsette | Nov 1955 | A |
2734580 | Layne | Feb 1956 | A |
2796134 | Binkley | Jun 1957 | A |
2812025 | Teague et al. | Nov 1957 | A |
2877822 | Buck | Mar 1959 | A |
2907589 | Knox | Oct 1959 | A |
2919741 | Strock et al. | Jan 1960 | A |
2929741 | Strock et al. | Jan 1960 | A |
3015362 | Moosman | Jan 1962 | A |
3015500 | Barnett | Jan 1962 | A |
3018547 | Marskell | Jan 1962 | A |
3039530 | Condra | Jun 1962 | A |
3067801 | Sortor | Dec 1962 | A |
3067819 | Gore | Dec 1962 | A |
3068563 | Reverman | Dec 1962 | A |
3104703 | Rike et al. | Sep 1963 | A |
3111991 | O'Neal | Nov 1963 | A |
3167122 | Lang | Jan 1965 | A |
3175618 | Lang et al. | Mar 1965 | A |
3179168 | Vincent | Apr 1965 | A |
3188816 | Koch | Jun 1965 | A |
3191677 | Kinley | Jun 1965 | A |
3191680 | Vincent | Jun 1965 | A |
3203451 | Vincent | Aug 1965 | A |
3203483 | Vincent | Aug 1965 | A |
3209546 | Lawton | Oct 1965 | A |
3210102 | Joslin | Oct 1965 | A |
3233315 | Lavake | Feb 1966 | A |
3245471 | Howard | Apr 1966 | A |
3270817 | Papaila | Sep 1966 | A |
3297092 | Jennings | Jan 1967 | A |
3326293 | Skipper | Jun 1967 | A |
3343252 | Reesor | Sep 1967 | A |
3353599 | Swift | Nov 1967 | A |
3354955 | Berry | Nov 1967 | A |
3358760 | Blagg | Dec 1967 | A |
3358769 | Berry | Dec 1967 | A |
3364993 | Skipper | Jan 1968 | A |
3371717 | Chenoweth | Mar 1968 | A |
3412565 | Lindsey et al. | Nov 1968 | A |
3419080 | Lebourg | Dec 1968 | A |
3422902 | Bouchillon | Jan 1969 | A |
3424244 | Kinley | Jan 1969 | A |
3427707 | Nowosadko | Feb 1969 | A |
3477506 | Malone | Nov 1969 | A |
3489220 | Kinley | Jan 1970 | A |
3498376 | Sizer et al. | Mar 1970 | A |
3504515 | Reardon | Apr 1970 | A |
3520049 | Lysenko et al. | Jul 1970 | A |
3528498 | Carothers | Sep 1970 | A |
3532174 | Diamantides et al. | Oct 1970 | A |
3568773 | Chancellor | Mar 1971 | A |
3578081 | Bodine | May 1971 | A |
3579805 | Kast | May 1971 | A |
3605887 | Lambie | Sep 1971 | A |
3631926 | Young | Jan 1972 | A |
3665591 | Kowal | May 1972 | A |
3667547 | Ahlstone | Jun 1972 | A |
3669190 | Sizer et al. | Jun 1972 | A |
3682256 | Stuart | Aug 1972 | A |
3687196 | Mullins | Aug 1972 | A |
3691624 | Kinley | Sep 1972 | A |
3693717 | Wuenschel | Sep 1972 | A |
3704730 | Witzig | Dec 1972 | A |
3709306 | Curington | Jan 1973 | A |
3711123 | Arnold | Jan 1973 | A |
3712376 | Owen et al. | Jan 1973 | A |
3746068 | Deckert et al. | Jul 1973 | A |
3746091 | Owen et al. | Jul 1973 | A |
3746092 | Land | Jul 1973 | A |
3764168 | Kisling, III et al. | Oct 1973 | A |
3776307 | Young | Dec 1973 | A |
3779025 | Godley et al. | Dec 1973 | A |
3780562 | Kinley | Dec 1973 | A |
3781966 | Lieberman | Jan 1974 | A |
3785193 | Kinely et al. | Jan 1974 | A |
3797259 | Kammerer, Jr. | Mar 1974 | A |
3805567 | Agius-Sincero | Apr 1974 | A |
3812912 | Wuenschel | May 1974 | A |
3818734 | Bateman | Jun 1974 | A |
3834742 | McPhillips | Sep 1974 | A |
3866954 | Slator et al. | Feb 1975 | A |
3885298 | Pogonowski | May 1975 | A |
3887006 | Pitts | Jun 1975 | A |
3893718 | Powell | Jul 1975 | A |
3898163 | Mott | Aug 1975 | A |
3915478 | Al et al. | Oct 1975 | A |
3935910 | Gaudy et al. | Feb 1976 | A |
3942824 | Sable | Mar 1976 | A |
3945444 | Knudson | Mar 1976 | A |
3948321 | Owen et al. | Apr 1976 | A |
3970336 | O'Sickey et al. | Jul 1976 | A |
3977473 | Page, Jr. | Aug 1976 | A |
3989280 | Schwarz | Nov 1976 | A |
3997193 | Tsuda et al. | Dec 1976 | A |
3999605 | Braddick | Dec 1976 | A |
4011652 | Black | Mar 1977 | A |
4019579 | Thuse | Apr 1977 | A |
4026583 | Gottlieb | May 1977 | A |
4053247 | Marsh, Jr. | Oct 1977 | A |
4069573 | Rogers, Jr. et al. | Jan 1978 | A |
4076287 | Bill et al. | Feb 1978 | A |
4096913 | Kenneday et al. | Jun 1978 | A |
4098334 | Crowe | Jul 1978 | A |
4099563 | Hutchison et al. | Jul 1978 | A |
4125937 | Brown et al. | Nov 1978 | A |
4152821 | Scott | May 1979 | A |
4168747 | Youmans | Sep 1979 | A |
4190108 | Webber | Feb 1980 | A |
4204312 | Tooker | May 1980 | A |
4205422 | Hardwick | Jun 1980 | A |
4226449 | Cole | Oct 1980 | A |
4253687 | Maples | Mar 1981 | A |
4257155 | Hunter | Mar 1981 | A |
4274665 | Marsh, Jr. | Jun 1981 | A |
RE30802 | Rogers, Jr. | Nov 1981 | E |
4304428 | Grigorian et al. | Dec 1981 | A |
4328983 | Gibson | May 1982 | A |
4355664 | Cook et al. | Oct 1982 | A |
4359889 | Kelly | Nov 1982 | A |
4363358 | Ellis | Dec 1982 | A |
4366971 | Lula | Jan 1983 | A |
4368571 | Cooper, Jr. | Jan 1983 | A |
4379471 | Kuenzel | Apr 1983 | A |
4380347 | Sable | Apr 1983 | A |
4384625 | Roper et al. | May 1983 | A |
4388752 | Vinciguerra et al. | Jun 1983 | A |
4391325 | Baker et al. | Jul 1983 | A |
4393931 | Muse et al. | Jul 1983 | A |
4396061 | Tamplen et al. | Aug 1983 | A |
4401325 | Tsuchiya et al. | Aug 1983 | A |
4402372 | Cherrington | Sep 1983 | A |
4407681 | Ina et al. | Oct 1983 | A |
4411435 | McStravick | Oct 1983 | A |
4413395 | Garnier | Nov 1983 | A |
4413682 | Callihan et al. | Nov 1983 | A |
4420866 | Mueller | Dec 1983 | A |
4421169 | Dearth et al. | Dec 1983 | A |
4422317 | Mueller | Dec 1983 | A |
4422507 | Reimert | Dec 1983 | A |
4423889 | Weise | Jan 1984 | A |
4423986 | Skogberg | Jan 1984 | A |
4424865 | Payton, Jr. | Jan 1984 | A |
4429741 | Hyland | Feb 1984 | A |
4440233 | Baugh et al. | Apr 1984 | A |
4442586 | Ridenour | Apr 1984 | A |
4444250 | Keithahn et al. | Apr 1984 | A |
4449713 | Ishido et al. | May 1984 | A |
4462471 | Hipp | Jul 1984 | A |
4467630 | Kelly | Aug 1984 | A |
4468309 | White | Aug 1984 | A |
4469356 | Duret et al. | Sep 1984 | A |
4473245 | Raulins et al. | Sep 1984 | A |
4483399 | Colgate | Nov 1984 | A |
4485847 | Wentzell | Dec 1984 | A |
4491001 | Yoshida et al. | Jan 1985 | A |
4501327 | Retz | Feb 1985 | A |
4505017 | Schukei | Mar 1985 | A |
4505987 | Yamada et al. | Mar 1985 | A |
4507019 | Thompson | Mar 1985 | A |
4508129 | Brown | Apr 1985 | A |
4511289 | Herron | Apr 1985 | A |
4519456 | Cochran | May 1985 | A |
4526232 | Hughson et al. | Jul 1985 | A |
4526839 | Herman et al. | Jul 1985 | A |
4530231 | Main | Jul 1985 | A |
4541655 | Hunter | Sep 1985 | A |
4550782 | Lawson | Nov 1985 | A |
4553776 | Dodd | Nov 1985 | A |
4573248 | Hackett | Mar 1986 | A |
4576386 | Benson et al. | Mar 1986 | A |
4581817 | Kelly | Apr 1986 | A |
4590227 | Nakamura et al. | May 1986 | A |
4590995 | Evans | May 1986 | A |
4592577 | Ayres et al. | Jun 1986 | A |
4595063 | Jennings et al. | Jun 1986 | A |
4601343 | Lindsey, Jr. et al. | Jul 1986 | A |
4605063 | Ross | Aug 1986 | A |
4611662 | Harrington | Sep 1986 | A |
4614233 | Menard | Sep 1986 | A |
4629218 | Dubois | Dec 1986 | A |
4630849 | Fukui et al. | Dec 1986 | A |
4632944 | Thompson | Dec 1986 | A |
4634317 | Skogberg et al. | Jan 1987 | A |
4635333 | Finch | Jan 1987 | A |
4637436 | Stewart, Jr. et al. | Jan 1987 | A |
4646787 | Rush et al. | Mar 1987 | A |
4649492 | Sinha et al. | Mar 1987 | A |
4651831 | Baugh et al. | Mar 1987 | A |
4651836 | Richards | Mar 1987 | A |
4656779 | Fedeli | Apr 1987 | A |
4660863 | Bailey et al. | Apr 1987 | A |
4662446 | Brisco et al. | May 1987 | A |
4669541 | Bissonnette | Jun 1987 | A |
4674572 | Gallus | Jun 1987 | A |
4682797 | Hildner | Jul 1987 | A |
4685191 | Mueller et al. | Aug 1987 | A |
4685834 | Jordan | Aug 1987 | A |
4693498 | Baugh et al. | Sep 1987 | A |
4711474 | Patrick | Dec 1987 | A |
4714117 | Dech | Dec 1987 | A |
4730851 | Watts | Mar 1988 | A |
4735444 | Skipper | Apr 1988 | A |
4739654 | Pilkington et al. | Apr 1988 | A |
4739916 | Ayres et al. | Apr 1988 | A |
4754781 | Putter | Jul 1988 | A |
4758025 | Frick | Jul 1988 | A |
4776394 | Lynde et al. | Oct 1988 | A |
4778088 | Miller | Oct 1988 | A |
4779445 | Rabe | Oct 1988 | A |
4793382 | Szalvay | Dec 1988 | A |
4796668 | Depret | Jan 1989 | A |
4817710 | Edwards et al. | Apr 1989 | A |
4817712 | Bodine | Apr 1989 | A |
4817716 | Taylor et al. | Apr 1989 | A |
4826347 | Baril et al. | May 1989 | A |
4827594 | Cartry et al. | May 1989 | A |
4828033 | Frison | May 1989 | A |
4830109 | Wedel | May 1989 | A |
4832382 | Kapgan | May 1989 | A |
4836579 | Wester et al. | Jun 1989 | A |
4842082 | Springer | Jun 1989 | A |
4848459 | Blackwell et al. | Jul 1989 | A |
4854338 | Grantham | Aug 1989 | A |
4856592 | Van Bilderbeek et al. | Aug 1989 | A |
4865127 | Koster | Sep 1989 | A |
4871199 | Ridenour et al. | Oct 1989 | A |
4872253 | Carstensen | Oct 1989 | A |
4887646 | Groves | Dec 1989 | A |
4888975 | Soward et al. | Dec 1989 | A |
4892337 | Gunderson et al. | Jan 1990 | A |
4893658 | Kimura et al. | Jan 1990 | A |
4904136 | Matsumoto | Feb 1990 | A |
4907828 | Change | Mar 1990 | A |
4911237 | Melenyzer | Mar 1990 | A |
4913758 | Koster | Apr 1990 | A |
4915177 | Claycomb | Apr 1990 | A |
4915426 | Skipper | Apr 1990 | A |
4917409 | Reeves | Apr 1990 | A |
4919989 | Colangelo | Apr 1990 | A |
4930573 | Lane et al. | Jun 1990 | A |
4934038 | Caudill | Jun 1990 | A |
4934312 | Koster et al. | Jun 1990 | A |
4938291 | Lynde et al. | Jul 1990 | A |
4941512 | McParland | Jul 1990 | A |
4941532 | Hurt et al. | Jul 1990 | A |
4942925 | Themig | Jul 1990 | A |
4942926 | Lessi | Jul 1990 | A |
4958691 | Hipp | Sep 1990 | A |
4968184 | Reid | Nov 1990 | A |
4971152 | Koster et al. | Nov 1990 | A |
4976322 | Abdrakhmanov et al. | Dec 1990 | A |
4981250 | Persson | Jan 1991 | A |
4995464 | Watkins et al. | Feb 1991 | A |
5014779 | Meling et al. | May 1991 | A |
5015017 | Geary | May 1991 | A |
5026074 | Hoes et al. | Jun 1991 | A |
5031370 | Jewett | Jul 1991 | A |
5031699 | Artynov et al. | Jul 1991 | A |
5040283 | Pelgrom | Aug 1991 | A |
5044676 | Burton et al. | Sep 1991 | A |
5052483 | Hudson | Oct 1991 | A |
5059043 | Kuhne | Oct 1991 | A |
5064004 | Lundel | Nov 1991 | A |
5079837 | Vanselow | Jan 1992 | A |
5083608 | Abdrakhmanov et al. | Jan 1992 | A |
5093015 | Oldiges | Mar 1992 | A |
5095991 | Milberger | Mar 1992 | A |
5101653 | Hermes et al. | Apr 1992 | A |
5105888 | Pollock et al. | Apr 1992 | A |
5107221 | N'Guyen et al. | Apr 1992 | A |
5119661 | Abdrakhmanov et al. | Jun 1992 | A |
5134891 | Canevet | Aug 1992 | A |
5150755 | Cassel et al. | Sep 1992 | A |
5156043 | Ose | Oct 1992 | A |
5156213 | George et al. | Oct 1992 | A |
5156223 | Hipp | Oct 1992 | A |
5174376 | Singeetham | Dec 1992 | A |
5181571 | Mueller et al. | Jan 1993 | A |
5195583 | Toon et al. | Mar 1993 | A |
5197553 | Leturno | Mar 1993 | A |
5209600 | Koster | May 1993 | A |
5226492 | Solaeche P. et al. | Jul 1993 | A |
5242017 | Hailey | Sep 1993 | A |
5253713 | Gregg et al. | Oct 1993 | A |
5275242 | Payne | Jan 1994 | A |
5282508 | Ellingsen et al. | Feb 1994 | A |
5286393 | Oldiges et al. | Feb 1994 | A |
5306101 | Rockower et al. | Apr 1994 | A |
5309621 | O'Donnell et al. | May 1994 | A |
5314014 | Tucker | May 1994 | A |
5314209 | Kuhne | May 1994 | A |
5318122 | Murray et al. | Jun 1994 | A |
5318131 | Baker | Jun 1994 | A |
5325923 | Surjaatmadja et al. | Jul 1994 | A |
5326137 | Lorenz et al. | Jul 1994 | A |
5327964 | O'Donnell et al. | Jul 1994 | A |
5330850 | Suzuki et al. | Jul 1994 | A |
5332038 | Tapp et al. | Jul 1994 | A |
5332049 | Tew | Jul 1994 | A |
5333692 | Baugh et al. | Aug 1994 | A |
5335736 | Windsor | Aug 1994 | A |
5337808 | Graham | Aug 1994 | A |
5337823 | Nobileau | Aug 1994 | A |
5337827 | Hromas et al. | Aug 1994 | A |
5339894 | Stotler | Aug 1994 | A |
5343949 | Ross et al. | Sep 1994 | A |
5346007 | Dillon et al. | Sep 1994 | A |
5348087 | Williamson, Jr. | Sep 1994 | A |
5348093 | Wood et al. | Sep 1994 | A |
5348095 | Worrall et al. | Sep 1994 | A |
5348668 | Oldiges et al. | Sep 1994 | A |
5351752 | Wood et al. | Oct 1994 | A |
5360239 | Klementich | Nov 1994 | A |
5360292 | Allen et al. | Nov 1994 | A |
5361843 | Shy et al. | Nov 1994 | A |
5366010 | Zwart | Nov 1994 | A |
5366012 | Lohbeck | Nov 1994 | A |
5368075 | Bäro et al. | Nov 1994 | A |
5370425 | Dougherty et al. | Dec 1994 | A |
5375661 | Daneshy et al. | Dec 1994 | A |
5388648 | Jordan, Jr. | Feb 1995 | A |
5390735 | Williamson, Jr. | Feb 1995 | A |
5390742 | Dines et al. | Feb 1995 | A |
5396957 | Surjaatmadja et al. | Mar 1995 | A |
5400827 | Baro et al. | Mar 1995 | A |
5405171 | Allen et al. | Apr 1995 | A |
5413180 | Ross et al. | May 1995 | A |
5425559 | Nobileau | Jun 1995 | A |
5426130 | Thurder et al. | Jun 1995 | A |
5431831 | Vincent | Jul 1995 | A |
5435395 | Connell | Jul 1995 | A |
5439320 | Abrams | Aug 1995 | A |
5443129 | Bailey et al. | Aug 1995 | A |
5447201 | Mohn | Sep 1995 | A |
5454419 | Vloedman | Oct 1995 | A |
5456319 | Schmidt et al. | Oct 1995 | A |
5458194 | Brooks | Oct 1995 | A |
5462120 | Gondouin | Oct 1995 | A |
5467822 | Zwart | Nov 1995 | A |
5472055 | Simson et al. | Dec 1995 | A |
5474334 | Eppink | Dec 1995 | A |
5492173 | Kilgore et al. | Feb 1996 | A |
5494106 | Gueguen et al. | Feb 1996 | A |
5507343 | Carlton et al. | Apr 1996 | A |
5511620 | Baugh et al. | Apr 1996 | A |
5524937 | Sides, III et al. | Jun 1996 | A |
5535824 | Hudson | Jul 1996 | A |
5536422 | Oldiges et al. | Jul 1996 | A |
5540281 | Round | Jul 1996 | A |
5554244 | Ruggles et al. | Sep 1996 | A |
5566772 | Coone et al. | Oct 1996 | A |
5576485 | Serata | Nov 1996 | A |
5584512 | Carstensen | Dec 1996 | A |
5606792 | Schafer | Mar 1997 | A |
5611399 | Richard et al. | Mar 1997 | A |
5613557 | Blount et al. | Mar 1997 | A |
5617918 | Cooksey et al. | Apr 1997 | A |
5642560 | Tabuchi et al. | Jul 1997 | A |
5642781 | Richard | Jul 1997 | A |
5662180 | Coffman et al. | Sep 1997 | A |
5664327 | Swars | Sep 1997 | A |
5667011 | Gill et al. | Sep 1997 | A |
5667252 | Schafer et al. | Sep 1997 | A |
5678609 | Washburn | Oct 1997 | A |
5685369 | Ellis et al. | Nov 1997 | A |
5689871 | Carstensen | Nov 1997 | A |
5695008 | Bertet et al. | Dec 1997 | A |
5695009 | Hipp | Dec 1997 | A |
5697442 | Baldridge | Dec 1997 | A |
5697449 | Hennig et al. | Dec 1997 | A |
5718288 | Bertet et al. | Feb 1998 | A |
5738146 | Abe | Apr 1998 | A |
5743335 | Bussear | Apr 1998 | A |
5749419 | Coronado et al. | May 1998 | A |
5749585 | Lembcke | May 1998 | A |
5755895 | Tamehiro et al. | May 1998 | A |
5775422 | Wong et al. | Jul 1998 | A |
5785120 | Smalley et al. | Jul 1998 | A |
5787933 | Russ et al. | Aug 1998 | A |
5791419 | Valisalo | Aug 1998 | A |
5794702 | Nobileau | Aug 1998 | A |
5797454 | Hipp | Aug 1998 | A |
5829520 | Johnson | Nov 1998 | A |
5829524 | Flanders et al. | Nov 1998 | A |
5833001 | Song et al. | Nov 1998 | A |
5845945 | Carstensen | Dec 1998 | A |
5849188 | Voll et al. | Dec 1998 | A |
5857524 | Harris | Jan 1999 | A |
5862866 | Springer | Jan 1999 | A |
5875851 | Vick, Jr. et al. | Mar 1999 | A |
5885941 | Sateva et al. | Mar 1999 | A |
5895079 | Carstensen et al. | Apr 1999 | A |
5901789 | Donnelly et al. | May 1999 | A |
5918677 | Head | Jul 1999 | A |
5924745 | Campbell | Jul 1999 | A |
5931511 | DeLange et al. | Aug 1999 | A |
5944100 | Hipp | Aug 1999 | A |
5944107 | Ohmer | Aug 1999 | A |
5944108 | Baugh et al. | Aug 1999 | A |
5951207 | Chen | Sep 1999 | A |
5957195 | Bailey et al. | Sep 1999 | A |
5971443 | Noel et al. | Oct 1999 | A |
5975587 | Wood et al. | Nov 1999 | A |
5979560 | Nobileau | Nov 1999 | A |
5984369 | Crook et al. | Nov 1999 | A |
5984568 | Lohbeck | Nov 1999 | A |
6012521 | Zunkel et al. | Jan 2000 | A |
6012522 | Donnelly et al. | Jan 2000 | A |
6012523 | Campbell et al. | Jan 2000 | A |
6012874 | Groneck et al. | Jan 2000 | A |
6015012 | Reddick | Jan 2000 | A |
6017168 | Fraser et al. | Jan 2000 | A |
6021850 | Woo et al. | Feb 2000 | A |
6029748 | Forsyth et al. | Feb 2000 | A |
6035954 | Hipp | Mar 2000 | A |
6044906 | Saltel | Apr 2000 | A |
6047505 | Willow | Apr 2000 | A |
6047774 | Allen | Apr 2000 | A |
6050341 | Metcalf | Apr 2000 | A |
6050346 | Hipp | Apr 2000 | A |
6056059 | Ohmer | May 2000 | A |
6056324 | Reimert et al. | May 2000 | A |
6062324 | Hipp | May 2000 | A |
6065500 | Metcalfe | May 2000 | A |
6070671 | Cumming et al. | Jun 2000 | A |
6073692 | Wood et al. | Jun 2000 | A |
6073698 | Shultz et al. | Jun 2000 | A |
6074133 | Kelsey | Jun 2000 | A |
6078031 | Bliault et al. | Jun 2000 | A |
6079495 | Ohmer | Jun 2000 | A |
6085838 | Vercaemer et al. | Jul 2000 | A |
6089320 | LaGrange | Jul 2000 | A |
6098717 | Bailey et al. | Aug 2000 | A |
6102119 | Raines | Aug 2000 | A |
6109355 | Reid | Aug 2000 | A |
6112818 | Campbell | Sep 2000 | A |
6131265 | Bird | Oct 2000 | A |
6135208 | Gano et al. | Oct 2000 | A |
6138761 | Freeman et al. | Oct 2000 | A |
6142230 | Smalley et al. | Nov 2000 | A |
6158963 | Hollis | Dec 2000 | A |
6167970 | Stout | Jan 2001 | B1 |
6182775 | Hipp | Feb 2001 | B1 |
6196336 | Fincher et al. | Mar 2001 | B1 |
6226855 | Maine | May 2001 | B1 |
6231086 | Tierling | May 2001 | B1 |
6250385 | Montaron | Jun 2001 | B1 |
6263966 | Haut et al. | Jul 2001 | B1 |
6263968 | Freeman et al. | Jul 2001 | B1 |
6263972 | Richard et al. | Jul 2001 | B1 |
6267181 | Rhein-Knudsen et al. | Jul 2001 | B1 |
6273634 | Lohbeck | Aug 2001 | B1 |
6275556 | Kinney et al. | Aug 2001 | B1 |
6283211 | Vloedman | Sep 2001 | B1 |
6302211 | Nelson et al. | Oct 2001 | B1 |
6315043 | Farrant et al. | Nov 2001 | B1 |
6318457 | Den Boer et al. | Nov 2001 | B1 |
6318465 | Coon et al. | Nov 2001 | B1 |
6322109 | Campbell et al. | Nov 2001 | B1 |
6325148 | Trahan et al. | Dec 2001 | B1 |
6328113 | Cook | Dec 2001 | B1 |
6334351 | Tsuchiya | Jan 2002 | B1 |
6343495 | Cheppe et al. | Feb 2002 | B1 |
6343657 | Baugh et al. | Feb 2002 | B1 |
6345373 | Chakradhar et al. | Feb 2002 | B1 |
6345431 | Greig | Feb 2002 | B1 |
6352112 | Mills | Mar 2002 | B1 |
6354373 | Vercaemer et al. | Mar 2002 | B1 |
6390720 | LeBegue et al. | May 2002 | B1 |
6405761 | Shimizu et al. | Jun 2002 | B1 |
6406063 | Pfeiffer | Jun 2002 | B1 |
6409175 | Evans et al. | Jun 2002 | B1 |
6419025 | Lohbeck et al. | Jul 2002 | B1 |
6419026 | MacKenzie et al. | Jul 2002 | B1 |
6419033 | Hahn et al. | Jul 2002 | B1 |
6419147 | Daniel | Jul 2002 | B1 |
6425444 | Metcalfe et al. | Jul 2002 | B1 |
6431277 | Cox et al. | Aug 2002 | B1 |
6446724 | Baugh et al. | Sep 2002 | B2 |
6450261 | Baugh | Sep 2002 | B1 |
6454013 | Metcalfe | Sep 2002 | B1 |
6457532 | Simpson | Oct 2002 | B1 |
6457533 | Metcalfe | Oct 2002 | B1 |
6457749 | Heijnen | Oct 2002 | B1 |
6460615 | Heijnen | Oct 2002 | B1 |
6464008 | Roddy et al. | Oct 2002 | B1 |
6464014 | Bernat | Oct 2002 | B1 |
6470966 | Cook et al. | Oct 2002 | B2 |
6470996 | Kyle et al. | Oct 2002 | B1 |
6478092 | Voll et al. | Nov 2002 | B2 |
6491108 | Slup et al. | Dec 2002 | B1 |
6497289 | Cook et al. | Dec 2002 | B1 |
6516887 | Nguyen et al. | Feb 2003 | B2 |
6517126 | Peterson et al. | Feb 2003 | B1 |
6527049 | Metcalfe et al. | Mar 2003 | B2 |
6543545 | Chatterji et al. | Apr 2003 | B1 |
6543552 | Metcalfe et al. | Apr 2003 | B1 |
6550539 | Maguire et al. | Apr 2003 | B2 |
6550821 | DeLange et al. | Apr 2003 | B2 |
6557640 | Cook et al. | May 2003 | B1 |
6561227 | Cook et al. | May 2003 | B2 |
6561279 | MacKenzie et al. | May 2003 | B2 |
6564875 | Bullock | May 2003 | B1 |
6568471 | Cook et al. | May 2003 | B1 |
6568488 | Wentworth et al. | May 2003 | B2 |
6575240 | Cook et al. | Jun 2003 | B1 |
6578630 | Simpson et al. | Jun 2003 | B2 |
6585053 | Coon | Jul 2003 | B2 |
6591905 | Coon | Jul 2003 | B2 |
6598677 | Baugh et al. | Jul 2003 | B1 |
6598678 | Simpson | Jul 2003 | B1 |
6604763 | Cook et al. | Aug 2003 | B1 |
6607220 | Sivley, IV | Aug 2003 | B2 |
6619696 | Baugh et al. | Sep 2003 | B2 |
6622797 | Sivley, IV | Sep 2003 | B2 |
6629567 | Lauritzen et al. | Oct 2003 | B2 |
6631759 | Cook et al. | Oct 2003 | B2 |
6631760 | Cook et al. | Oct 2003 | B2 |
6631765 | Baugh et al. | Oct 2003 | B2 |
6631769 | Cook et al. | Oct 2003 | B2 |
6634431 | Cook et al. | Oct 2003 | B2 |
6640903 | Cook et al. | Nov 2003 | B1 |
6648075 | Badrak et al. | Nov 2003 | B2 |
6662876 | Lauritzen | Dec 2003 | B2 |
6668937 | Murray | Dec 2003 | B1 |
6672759 | Feger | Jan 2004 | B2 |
6679328 | Davis et al. | Jan 2004 | B2 |
6681862 | Freeman | Jan 2004 | B2 |
6684947 | Cook et al. | Feb 2004 | B2 |
6688397 | McClurkin et al. | Feb 2004 | B2 |
6695012 | Ring et al. | Feb 2004 | B1 |
6695065 | Simpson et al. | Feb 2004 | B2 |
6698517 | Simpson | Mar 2004 | B2 |
6701598 | Chen et al. | Mar 2004 | B2 |
6702030 | Simpson | Mar 2004 | B2 |
6705395 | Cook et al. | Mar 2004 | B2 |
6708767 | Harrall et al. | Mar 2004 | B2 |
6712154 | Cook et al. | Mar 2004 | B2 |
6712401 | Coulon et al. | Mar 2004 | B2 |
6719064 | Price-Smith et al. | Apr 2004 | B2 |
6722427 | Gano et al. | Apr 2004 | B2 |
6722437 | Vercaemer et al. | Apr 2004 | B2 |
6722443 | Metcalfe | Apr 2004 | B1 |
6725917 | Metcalfe | Apr 2004 | B2 |
6725919 | Cook et al. | Apr 2004 | B2 |
6725934 | Coronado et al. | Apr 2004 | B2 |
6725939 | Richard | Apr 2004 | B2 |
6732806 | Mauldin et al. | May 2004 | B2 |
6739392 | Cook et al. | May 2004 | B2 |
6745845 | Cook et al. | Jun 2004 | B2 |
6758278 | Cook et al. | Jul 2004 | B2 |
6772841 | Gano | Aug 2004 | B2 |
6796380 | Xu | Sep 2004 | B2 |
6814147 | Baugh | Nov 2004 | B2 |
6820690 | Vercaemer et al. | Nov 2004 | B2 |
6823937 | Cook et al. | Nov 2004 | B1 |
6832649 | Bode et al. | Dec 2004 | B2 |
6834725 | Whanger et al. | Dec 2004 | B2 |
6843322 | Burtner et al. | Jan 2005 | B2 |
6857473 | Cook et al. | Feb 2005 | B2 |
6880632 | Tom et al. | Apr 2005 | B2 |
6892819 | Cook et al. | May 2005 | B2 |
6902000 | Simpson et al. | Jun 2005 | B2 |
6907652 | Heijnen | Jun 2005 | B1 |
6923261 | Metcalfe et al. | Aug 2005 | B2 |
6935429 | Badrack | Aug 2005 | B2 |
6935430 | Harrell et al. | Aug 2005 | B2 |
6966370 | Cook et al. | Nov 2005 | B2 |
6976539 | Metcalfe et al. | Dec 2005 | B2 |
7000953 | Berghaus | Feb 2006 | B2 |
7007760 | Lohbeck | Mar 2006 | B2 |
7021390 | Cook et al. | Apr 2006 | B2 |
20010002626 | Frank et al. | Jun 2001 | A1 |
20010020532 | Baugh et al. | Sep 2001 | A1 |
20010045284 | Simpson et al. | Nov 2001 | A1 |
20010045289 | Cook et al. | Nov 2001 | A1 |
20010047870 | Cook et al. | Dec 2001 | A1 |
20020011339 | Murray | Jan 2002 | A1 |
20020014339 | Ross | Feb 2002 | A1 |
20020020524 | Gano | Feb 2002 | A1 |
20020020531 | Ohmer | Feb 2002 | A1 |
20020033261 | Metcalfe | Mar 2002 | A1 |
20020060068 | Cook et al. | May 2002 | A1 |
20020062956 | Murray et al. | May 2002 | A1 |
20020066576 | Cook et al. | Jun 2002 | A1 |
20020066578 | Broome | Jun 2002 | A1 |
20020070023 | Turner et al. | Jun 2002 | A1 |
20020070031 | Voll et al. | Jun 2002 | A1 |
20020079101 | Baugh et al. | Jun 2002 | A1 |
20020084070 | Voll et al. | Jul 2002 | A1 |
20020092654 | Coronado et al. | Jul 2002 | A1 |
20020108756 | Harrall et al. | Aug 2002 | A1 |
20020139540 | Lauritzen | Oct 2002 | A1 |
20020144822 | Hackworth et al. | Oct 2002 | A1 |
20020148612 | Cook et al. | Oct 2002 | A1 |
20020185274 | Simpson et al. | Dec 2002 | A1 |
20020189816 | Cook et al. | Dec 2002 | A1 |
20020195252 | Maguire et al. | Dec 2002 | A1 |
20020195256 | Metcalfe et al. | Dec 2002 | A1 |
20030024708 | Ring et al. | Feb 2003 | A1 |
20030024711 | Simpson et al. | Feb 2003 | A1 |
20030034177 | Chitwood et al. | Feb 2003 | A1 |
20030042022 | Lauritzen et al. | Mar 2003 | A1 |
20030047322 | Maguire et al. | Mar 2003 | A1 |
20030047323 | Jackson et al. | Mar 2003 | A1 |
20030056991 | Hahn et al. | Mar 2003 | A1 |
20030066655 | Cook et al. | Apr 2003 | A1 |
20030067166 | Maguire | Apr 2003 | A1 |
20030075337 | Sivley, IV | Apr 2003 | A1 |
20030075338 | Sivley, IV | Apr 2003 | A1 |
20030075339 | Gano et al. | Apr 2003 | A1 |
20030094277 | Cook et al. | May 2003 | A1 |
20030094278 | Cook et al. | May 2003 | A1 |
20030094279 | Ring et al. | May 2003 | A1 |
20030098154 | Cook et al. | May 2003 | A1 |
20030098162 | Cook | May 2003 | A1 |
20030107217 | Daigle et al. | Jun 2003 | A1 |
20030111234 | McClurkin et al. | Jun 2003 | A1 |
20030116318 | Metcalfe | Jun 2003 | A1 |
20030116325 | Cook et al. | Jun 2003 | A1 |
20030121558 | Cook et al. | Jul 2003 | A1 |
20030121655 | Lauritzen et al. | Jul 2003 | A1 |
20030121669 | Cook et al. | Jul 2003 | A1 |
20030140673 | Marr et al. | Jul 2003 | A1 |
20030150608 | Smith, Jr. et al. | Aug 2003 | A1 |
20030168222 | Maguire et al. | Sep 2003 | A1 |
20030173090 | Cook et al. | Sep 2003 | A1 |
20030192705 | Cook et al. | Oct 2003 | A1 |
20030221841 | Burtner et al. | Dec 2003 | A1 |
20030222455 | Cook et al. | Dec 2003 | A1 |
20040011534 | Simonds et al. | Jan 2004 | A1 |
20040045616 | Cook et al. | Mar 2004 | A1 |
20040045718 | Brisco et al. | Mar 2004 | A1 |
20040060706 | Stephenson | Apr 2004 | A1 |
20040065446 | Tran et al. | Apr 2004 | A1 |
20040069499 | Cook et al. | Apr 2004 | A1 |
20040112589 | Cook et al. | Jun 2004 | A1 |
20040112606 | Lewis et al. | Jun 2004 | A1 |
20040118574 | Cook et al. | Jun 2004 | A1 |
20040123983 | Cook et al. | Jul 2004 | A1 |
20040123988 | Cook et al. | Jul 2004 | A1 |
20040129431 | Jackson | Jul 2004 | A1 |
20040149431 | Wylie et al. | Aug 2004 | A1 |
20040159446 | Haugen et al. | Aug 2004 | A1 |
20040188099 | Cook et al. | Sep 2004 | A1 |
20040194966 | Zimmerman | Oct 2004 | A1 |
20040216873 | Frost, Jr. et al. | Nov 2004 | A1 |
20040221996 | Burge | Nov 2004 | A1 |
20040231839 | Ellington et al. | Nov 2004 | A1 |
20040231855 | Cook et al. | Nov 2004 | A1 |
20040238181 | Cook et al. | Dec 2004 | A1 |
20040244968 | Cook et al. | Dec 2004 | A1 |
20040262014 | Cook et al. | Dec 2004 | A1 |
20050011641 | Cook et al. | Jan 2005 | A1 |
20050015963 | Costa et al. | Jan 2005 | A1 |
20050028988 | Cook et al. | Feb 2005 | A1 |
20050039910 | Lohbeck | Feb 2005 | A1 |
20050039928 | Cook et al. | Feb 2005 | A1 |
20050045324 | Cook et al. | Mar 2005 | A1 |
20050045341 | Cook et al. | Mar 2005 | A1 |
20050045342 | Luke et al. | Mar 2005 | A1 |
20050056433 | Watson et al. | Mar 2005 | A1 |
20050056434 | Ring et al. | Mar 2005 | A1 |
20050077051 | Cook et al. | Apr 2005 | A1 |
20050081358 | Cook et al. | Apr 2005 | A1 |
20050087337 | Brisco et al. | Apr 2005 | A1 |
20050098323 | Cook et al. | May 2005 | A1 |
20050103502 | Watson et al. | May 2005 | A1 |
20050123639 | Ring et al. | Jun 2005 | A1 |
20050133225 | Oosterling | Jun 2005 | A1 |
20050138790 | Cook et al. | Jun 2005 | A1 |
20050144771 | Cook et al. | Jul 2005 | A1 |
20050144772 | Cook et al. | Jul 2005 | A1 |
20050144777 | Cook et al. | Jul 2005 | A1 |
20050150098 | Cook et al. | Jul 2005 | A1 |
20050150660 | Cook et al. | Jul 2005 | A1 |
20050161228 | Cook et al. | Jul 2005 | A1 |
20050166387 | Cook et al. | Aug 2005 | A1 |
20050166388 | Cook et al. | Aug 2005 | A1 |
20050173108 | Cook et al. | Aug 2005 | A1 |
20050175473 | Cook et al. | Aug 2005 | A1 |
20050183863 | Cook et al. | Aug 2005 | A1 |
20050205253 | Cook et al. | Sep 2005 | A1 |
20050217768 | Asahi et al. | Oct 2005 | A1 |
20050217865 | Ring et al. | Oct 2005 | A1 |
20050217866 | Watson et al. | Oct 2005 | A1 |
20050223535 | Cook et al. | Oct 2005 | A1 |
20050224225 | Cook et al. | Oct 2005 | A1 |
20050230102 | Cook et al. | Oct 2005 | A1 |
20050230103 | Cook et al. | Oct 2005 | A1 |
20050230104 | Cook et al. | Oct 2005 | A1 |
20050230123 | Cook et al. | Oct 2005 | A1 |
20050236159 | Cook et al. | Oct 2005 | A1 |
20050236163 | Cook et al. | Oct 2005 | A1 |
20050244578 | Van Egmond et al. | Nov 2005 | A1 |
20050246883 | Alliot et al. | Nov 2005 | A1 |
20050247453 | Shuster et al. | Nov 2005 | A1 |
20050265788 | Renkema | Dec 2005 | A1 |
20050269107 | Cook et al. | Dec 2005 | A1 |
20060032640 | Costa et al. | Feb 2006 | A1 |
20060048948 | Noel | Mar 2006 | A1 |
20060054330 | Metcalfe et al. | Mar 2006 | A1 |
20060065403 | Watson et al. | Mar 2006 | A1 |
20060065406 | Shuster et al. | Mar 2006 | A1 |
Number | Date | Country |
---|---|---|
767364 | Feb 2004 | AU |
770008 | Jul 2004 | AU |
770359 | Jul 2004 | AU |
771884 | Aug 2004 | AU |
776580 | Jan 2005 | AU |
780123 | Mar 2005 | AU |
2001269810 | Aug 2005 | AU |
782901 | Sep 2005 | AU |
783245 | Oct 2005 | AU |
2001294802 | Oct 2005 | AU |
736288 | Jun 1966 | CA |
771462 | Nov 1967 | CA |
1171310 | Jul 1984 | CA |
2292171 | Jun 2000 | CA |
2298139 | Aug 2000 | CA |
2234386 | Mar 2003 | CA |
174521 | Apr 1953 | DE |
2458188 | Jun 1975 | DE |
203767 | Nov 1983 | DE |
233607 | Mar 1986 | DE |
278517 | May 1990 | DE |
0084940 | Aug 1983 | EP |
0272511 | Dec 1987 | EP |
0553566 | Dec 1992 | EP |
0633391 | Jan 1995 | EP |
0713953 | Nov 1995 | EP |
0823534 | Feb 1998 | EP |
0294264 | May 1998 | EP |
0881354 | Dec 1998 | EP |
0881359 | Dec 1998 | EP |
0899420 | Mar 1999 | EP |
0937861 | Aug 1999 | EP |
0952305 | Oct 1999 | EP |
0952306 | Oct 1999 | EP |
1141515 | Oct 2001 | EP |
1152120 | Nov 2001 | EP |
1152120 | Nov 2001 | EP |
1235972 | Sep 2002 | EP |
1555386 | Jul 2005 | EP |
1325596 | Jun 1962 | FR |
2583398 | Dec 1986 | FR |
2717855 | Sep 1995 | FR |
2741907 | Jun 1997 | FR |
2771133 | May 1999 | FR |
2780751 | Jan 2000 | FR |
2841626 | Jan 2004 | FR |
557823 | Dec 1943 | GB |
851096 | Oct 1960 | GB |
961750 | Jun 1964 | GB |
1000383 | Oct 1965 | GB |
1062610 | Mar 1967 | GB |
1111536 | May 1968 | GB |
1448304 | Sep 1976 | GB |
1460864 | Jan 1977 | GB |
1542847 | Mar 1979 | GB |
1563740 | Mar 1980 | GB |
2058877 | Apr 1981 | GB |
2108228 | May 1983 | GB |
2115860 | Sep 1983 | GB |
2125876 | Mar 1984 | GB |
2211573 | Jul 1989 | GB |
2216926 | Oct 1989 | GB |
2243191 | Oct 1991 | GB |
2256910 | Dec 1992 | GB |
2257184 | Jun 1993 | GB |
2322655 | Sep 1996 | GB |
2305682 | Apr 1997 | GB |
2325949 | May 1998 | GB |
2326896 | Jan 1999 | GB |
2329916 | Apr 1999 | GB |
2329918 | Apr 1999 | GB |
2336383 | Oct 1999 | GB |
2355738 | Apr 2000 | GB |
2343691 | May 2000 | GB |
2344606 | Jun 2000 | GB |
2368865 | Jul 2000 | GB |
2346165 | Aug 2000 | GB |
2346632 | Aug 2000 | GB |
2347445 | Sep 2000 | GB |
2347446 | Sep 2000 | GB |
2347950 | Sep 2000 | GB |
2347952 | Sep 2000 | GB |
2348223 | Sep 2000 | GB |
2348657 | Oct 2000 | GB |
2357099 | Dec 2000 | GB |
2356651 | May 2001 | GB |
2350137 | Aug 2001 | GB |
2361724 | Oct 2001 | GB |
2365898 | Feb 2002 | GB |
2359837 | Apr 2002 | GB |
2370301 | Jun 2002 | GB |
2371064 | Jul 2002 | GB |
2371574 | Jul 2002 | GB |
2373524 | Sep 2002 | GB |
2367842 | Oct 2002 | GB |
2374098 | Oct 2002 | GB |
2374622 | Oct 2002 | GB |
2375560 | Nov 2002 | GB |
2380213 | Apr 2003 | GB |
2380503 | Apr 2003 | GB |
2381019 | Apr 2003 | GB |
2343691 | May 2003 | GB |
2382364 | May 2003 | GB |
2382828 | Jun 2003 | GB |
2344606 | Aug 2003 | GB |
2347950 | Aug 2003 | GB |
2380213 | Aug 2003 | GB |
2380214 | Aug 2003 | GB |
2380215 | Aug 2003 | GB |
2348223 | Sep 2003 | GB |
2347952 | Oct 2003 | GB |
2348657 | Oct 2003 | GB |
2384800 | Oct 2003 | GB |
2384801 | Oct 2003 | GB |
2384802 | Oct 2003 | GB |
2384803 | Oct 2003 | GB |
2384804 | Oct 2003 | GB |
2384805 | Oct 2003 | GB |
2384806 | Oct 2003 | GB |
2384807 | Oct 2003 | GB |
2384808 | Oct 2003 | GB |
2385353 | Oct 2003 | GB |
2385354 | Oct 2003 | GB |
2385355 | Oct 2003 | GB |
2385357 | Oct 2003 | GB |
2385358 | Oct 2003 | GB |
2385359 | Oct 2003 | GB |
2385360 | Oct 2003 | GB |
2385361 | Oct 2003 | GB |
2385362 | Oct 2003 | GB |
2385363 | Oct 2003 | GB |
2385619 | Oct 2003 | GB |
2385620 | Oct 2003 | GB |
2385621 | Oct 2003 | GB |
2385622 | Oct 2003 | GB |
2385623 | Oct 2003 | GB |
2387405 | Oct 2003 | GB |
2388134 | Nov 2003 | GB |
2388860 | Nov 2003 | GB |
2355738 | Dec 2003 | GB |
2388391 | Dec 2003 | GB |
2388392 | Dec 2003 | GB |
2388393 | Dec 2003 | GB |
2388394 | Dec 2003 | GB |
2388395 | Dec 2003 | GB |
2356651 | Feb 2004 | GB |
2368865 | Feb 2004 | GB |
2388860 | Feb 2004 | GB |
2388861 | Feb 2004 | GB |
2388862 | Feb 2004 | GB |
2391886 | Feb 2004 | GB |
2390628 | Mar 2004 | GB |
2391033 | Mar 2004 | GB |
2392686 | Mar 2004 | GB |
2393199 | Mar 2004 | GB |
2373524 | Apr 2004 | GB |
2390387 | Apr 2004 | GB |
2392686 | Apr 2004 | GB |
2392691 | Apr 2004 | GB |
2391575 | May 2004 | GB |
2394979 | May 2004 | GB |
2395506 | May 2004 | GB |
2392932 | Jun 2004 | GB |
2395734 | Jun 2004 | GB |
2396635 | Jun 2004 | GB |
2396640 | Jun 2004 | GB |
2396641 | Jun 2004 | GB |
2396642 | Jun 2004 | GB |
2396643 | Jun 2004 | GB |
2396644 | Jun 2004 | GB |
2396646 | Jun 2004 | GB |
2373468 | Jul 2004 | GB |
2396869 | Jul 2004 | GB |
2397261 | Jul 2004 | GB |
2397262 | Jul 2004 | GB |
2397263 | Jul 2004 | GB |
2397264 | Jul 2004 | GB |
2397265 | Jul 2004 | GB |
2390622 | Aug 2004 | GB |
2398317 | Aug 2004 | GB |
2398318 | Aug 2004 | GB |
2398319 | Aug 2004 | GB |
2398320 | Aug 2004 | GB |
2398321 | Aug 2004 | GB |
2398322 | Aug 2004 | GB |
2398323 | Aug 2004 | GB |
2398326 | Aug 2004 | GB |
2382367 | Sep 2004 | GB |
2396641 | Sep 2004 | GB |
2396643 | Sep 2004 | GB |
2397261 | Sep 2004 | GB |
2397262 | Sep 2004 | GB |
2397263 | Sep 2004 | GB |
2397264 | Sep 2004 | GB |
2397265 | Sep 2004 | GB |
2399120 | Sep 2004 | GB |
2399579 | Sep 2004 | GB |
2399580 | Sep 2004 | GB |
2399848 | Sep 2004 | GB |
2399849 | Sep 2004 | GB |
2399850 | Sep 2004 | GB |
2384502 | Oct 2004 | GB |
2396644 | Oct 2004 | GB |
2400126 | Oct 2004 | GB |
2400393 | Oct 2004 | GB |
2400624 | Oct 2004 | GB |
2396640 | Nov 2004 | GB |
2396642 | Nov 2004 | GB |
2401136 | Nov 2004 | GB |
2401137 | Nov 2004 | GB |
2401138 | Nov 2004 | GB |
2401630 | Nov 2004 | GB |
2401631 | Nov 2004 | GB |
2401632 | Nov 2004 | GB |
2401633 | Nov 2004 | GB |
2401634 | Nov 2004 | GB |
2401635 | Nov 2004 | GB |
2401636 | Nov 2004 | GB |
2401637 | Nov 2004 | GB |
2401638 | Nov 2004 | GB |
2401639 | Nov 2004 | GB |
2381019 | Dec 2004 | GB |
2382368 | Dec 2004 | GB |
2394979 | Dec 2004 | GB |
2401136 | Dec 2004 | GB |
2401137 | Dec 2004 | GB |
2401138 | Dec 2004 | GB |
2403970 | Jan 2005 | GB |
2403971 | Jan 2005 | GB |
2403972 | Jan 2005 | GB |
2400624 | Feb 2005 | GB |
2404676 | Feb 2005 | GB |
2404680 | Feb 2005 | GB |
2384807 | Mar 2005 | GB |
2398320 | Mar 2005 | GB |
2398323 | Mar 2005 | GB |
2399120 | Mar 2005 | GB |
2399848 | Mar 2005 | GB |
2399849 | Mar 2005 | GB |
2405893 | Mar 2005 | GB |
2406117 | Mar 2005 | GB |
2406118 | Mar 2005 | GB |
2406119 | Mar 2005 | GB |
2406120 | Mar 2005 | GB |
2406125 | Mar 2005 | GB |
2406126 | Mar 2005 | GB |
2410518 | Mar 2005 | GB |
2389597 | May 2005 | GB |
2399119 | May 2005 | GB |
2399580 | May 2005 | GB |
2401630 | May 2005 | GB |
2401631 | May 2005 | GB |
2401632 | May 2005 | GB |
2401633 | May 2005 | GB |
2401634 | May 2005 | GB |
2401635 | May 2005 | GB |
2401636 | May 2005 | GB |
2401637 | May 2005 | GB |
2401638 | May 2005 | GB |
2401639 | May 2005 | GB |
2408277 | May 2005 | GB |
2408278 | May 2005 | GB |
2399579 | Jun 2005 | GB |
2409216 | Jun 2005 | GB |
2409218 | Jun 2005 | GB |
2401893 | Jul 2005 | GB |
2414749 | Jul 2005 | GB |
2414750 | Jul 2005 | GB |
2414751 | Jul 2005 | GB |
2398326 | Aug 2005 | GB |
2403970 | Aug 2005 | GB |
2403971 | Aug 2005 | GB |
2403972 | Aug 2005 | GB |
2380503 | Oct 2005 | GB |
2382828 | Oct 2005 | GB |
2398317 | Oct 2005 | GB |
2398318 | Oct 2005 | GB |
2398319 | Oct 2005 | GB |
2398321 | Oct 2005 | GB |
2398322 | Oct 2005 | GB |
2412681 | Oct 2005 | GB |
2412682 | Oct 2005 | GB |
2413136 | Oct 2005 | GB |
2414493 | Nov 2005 | GB |
2409217 | Dec 2005 | GB |
2410518 | Dec 2005 | GB |
2415003 | Dec 2005 | GB |
2415219 | Dec 2005 | GB |
2412681 | Jan 2006 | GB |
2412682 | Jan 2006 | GB |
2415979 | Jan 2006 | GB |
2415983 | Jan 2006 | GB |
2415987 | Jan 2006 | GB |
2415988 | Jan 2006 | GB |
2416177 | Jan 2006 | GB |
2416361 | Jan 2006 | GB |
2416556 | Feb 2006 | GB |
2416794 | Feb 2006 | GB |
2416795 | Feb 2006 | GB |
2417273 | Feb 2006 | GB |
2418216 | Mar 2006 | GB |
2418217 | Mar 2006 | GB |
044.3922005 | Sep 2005 | ID |
208458 | Oct 1985 | JP |
6475715 | Mar 1989 | JP |
102875 | Apr 1995 | JP |
11-169975 | Jun 1999 | JP |
94068 | Apr 2000 | JP |
107870 | Apr 2000 | JP |
162192 | Jun 2000 | JP |
2001-47161 | Feb 2001 | JP |
9001081 | Dec 1991 | NL |
113267 | May 1998 | RO |
2016345 | Jul 1994 | RU |
2039214 | Jul 1995 | RU |
2056201 | Mar 1996 | RU |
2064357 | Jul 1996 | RU |
2068940 | Nov 1996 | RU |
2068943 | Nov 1996 | RU |
2079633 | May 1997 | RU |
2083798 | Jul 1997 | RU |
2091655 | Sep 1997 | RU |
2095179 | Nov 1997 | RU |
2105128 | Feb 1998 | RU |
2108445 | Apr 1998 | RU |
2144128 | Jan 2000 | RU |
350833 | Sep 1972 | SU |
511468 | Sep 1976 | SU |
607950 | May 1978 | SU |
612004 | May 1978 | SU |
620582 | Jul 1978 | SU |
641070 | Jan 1979 | SU |
909114 | May 1979 | SU |
832049 | May 1981 | SU |
853089 | Aug 1981 | SU |
874952 | Oct 1981 | SU |
894169 | Jan 1982 | SU |
899850 | Jan 1982 | SU |
907220 | Feb 1982 | SU |
953172 | Aug 1982 | SU |
959878 | Sep 1982 | SU |
976019 | Nov 1982 | SU |
976020 | Nov 1982 | SU |
989038 | Jan 1983 | SU |
1002514 | Mar 1983 | SU |
1041671 | Sep 1983 | SU |
1051222 | Oct 1983 | SU |
1086118 | Apr 1984 | SU |
1077803 | Jul 1984 | SU |
1158400 | May 1985 | SU |
1212575 | Feb 1986 | SU |
1250637 | Aug 1986 | SU |
1324722 | Jul 1987 | SU |
1411434 | Jul 1988 | SU |
1430498 | Oct 1988 | SU |
1432190 | Oct 1988 | SU |
1601330 | Oct 1990 | SU |
1627663 | Feb 1991 | SU |
1659621 | Jun 1991 | SU |
1663179 | Jul 1991 | SU |
1663180 | Jul 1991 | SU |
1677225 | Sep 1991 | SU |
1677248 | Sep 1991 | SU |
1686123 | Oct 1991 | SU |
1686124 | Oct 1991 | SU |
1686125 | Oct 1991 | SU |
1698413 | Dec 1991 | SU |
1710694 | Feb 1992 | SU |
1730429 | Apr 1992 | SU |
1745873 | Jul 1992 | SU |
1747673 | Jul 1992 | SU |
1749267 | Jul 1992 | SU |
1786241 | Jan 1993 | SU |
1804543 | Mar 1993 | SU |
1810482 | Apr 1993 | SU |
1818459 | May 1993 | SU |
1295799 | Feb 1995 | SU |
WO8100132 | Jan 1981 | WO |
WO9005598 | Mar 1990 | WO |
WO9201859 | Feb 1992 | WO |
WO9208875 | May 1992 | WO |
WO9325799 | Dec 1993 | WO |
WO9325800 | Dec 1993 | WO |
WO9421887 | Sep 1994 | WO |
WO9425655 | Nov 1994 | WO |
WO9503476 | Feb 1995 | WO |
WO9601937 | Jan 1996 | WO |
WO9621083 | Jul 1996 | WO |
WO9626350 | Aug 1996 | WO |
WO9637681 | Nov 1996 | WO |
WO9706346 | Feb 1997 | WO |
WO9711306 | Mar 1997 | WO |
WO9717524 | May 1997 | WO |
WO9717526 | May 1997 | WO |
WO9717527 | May 1997 | WO |
WO9720130 | Jun 1997 | WO |
WO9721901 | Jun 1997 | WO |
WO9735084 | Sep 1997 | WO |
WO9800626 | Jan 1998 | WO |
WO9807957 | Feb 1998 | WO |
WO9809053 | Mar 1998 | WO |
WO9822690 | May 1998 | WO |
WO9826152 | Jun 1998 | WO |
WO9842947 | Oct 1998 | WO |
WO9849423 | Nov 1998 | WO |
WO9902818 | Jan 1999 | WO |
WO9904135 | Jan 1999 | WO |
WO9906670 | Feb 1999 | WO |
WO9908827 | Feb 1999 | WO |
WO9908828 | Feb 1999 | WO |
WO9918328 | Apr 1999 | WO |
WO9923354 | May 1999 | WO |
WO9925524 | May 1999 | WO |
WO9925951 | May 1999 | WO |
WO9935368 | Jul 1999 | WO |
WO9943923 | Sep 1999 | WO |
WO0001926 | Jan 2000 | WO |
WO0004271 | Jan 2000 | WO |
WO0008301 | Feb 2000 | WO |
WO0026500 | May 2000 | WO |
WO0026501 | May 2000 | WO |
WO0026502 | May 2000 | WO |
WO0031375 | Jun 2000 | WO |
WO0037766 | Jun 2000 | WO |
WO0037767 | Jun 2000 | WO |
WO0037768 | Jun 2000 | WO |
WO0037771 | Jun 2000 | WO |
WO0037772 | Jun 2000 | WO |
WO0039432 | Jul 2000 | WO |
WO0046484 | Aug 2000 | WO |
WO0050727 | Aug 2000 | WO |
WO0050732 | Aug 2000 | WO |
WO0050733 | Aug 2000 | WO |
WO0077431 | Dec 2000 | WO |
WO0104520 | Jan 2001 | WO |
WO0104535 | Jan 2001 | WO |
WO0118354 | Mar 2001 | WO |
WO0121929 | Mar 2001 | WO |
WO0126860 | Apr 2001 | WO |
WO0133037 | May 2001 | WO |
WO0138693 | May 2001 | WO |
WO0160545 | Aug 2001 | WO |
WO0183943 | Nov 2001 | WO |
WO0198623 | Dec 2001 | WO |
WO0201102 | Jan 2002 | WO |
WO0210550 | Feb 2002 | WO |
WO0210551 | Feb 2002 | WO |
WO 0220941 | Mar 2002 | WO |
WO0223007 | Mar 2002 | WO |
WO0225059 | Mar 2002 | WO |
WO0229199 | Apr 2002 | WO |
WO0240825 | May 2002 | WO |
WO02053867 | Jul 2002 | WO |
WO02053867 | Jul 2002 | WO |
WO02059456 | Aug 2002 | WO |
WO02066783 | Aug 2002 | WO |
WO02068792 | Sep 2002 | WO |
WO02073000 | Sep 2002 | WO |
WO02075107 | Sep 2002 | WO |
WO02077411 | Oct 2002 | WO |
WO02081863 | Oct 2002 | WO |
WO02081864 | Oct 2002 | WO |
WO02086285 | Oct 2002 | WO |
WO02086286 | Oct 2002 | WO |
WO02090713 | Nov 2002 | WO |
WO02095181 | Nov 2002 | WO |
WO02103150 | Dec 2002 | WO |
WO03004819 | Jan 2003 | WO |
WO03004819 | Jan 2003 | WO |
WO03004820 | Jan 2003 | WO |
WO03004820 | Jan 2003 | WO |
WO03008756 | Jan 2003 | WO |
WO03012255 | Feb 2003 | WO |
WO03016669 | Feb 2003 | WO |
WO03016669 | Feb 2003 | WO |
WO03023178 | Mar 2003 | WO |
WO03023178 | Mar 2003 | WO |
WO03023179 | Mar 2003 | WO |
WO03023179 | Mar 2003 | WO |
WO03029607 | Apr 2003 | WO |
WO03029608 | Apr 2003 | WO |
WO03036018 | May 2003 | WO |
WO03042486 | May 2003 | WO |
WO03042486 | May 2003 | WO |
WO03042487 | May 2003 | WO |
WO03042487 | May 2003 | WO |
WO03042489 | May 2003 | WO |
WO03048520 | Jun 2003 | WO |
WO03048521 | Jun 2003 | WO |
WO03055616 | Jul 2003 | WO |
WO03058022 | Jul 2003 | WO |
WO03058022 | Jul 2003 | WO |
WO03059549 | Jul 2003 | WO |
WO03064813 | Aug 2003 | WO |
WO03069115 | Aug 2003 | WO |
WO03071086 | Aug 2003 | WO |
WO03071086 | Aug 2003 | WO |
WO03078785 | Sep 2003 | WO |
WO03078785 | Sep 2003 | WO |
WO03086675 | Oct 2003 | WO |
WO03086675 | Oct 2003 | WO |
WO03089161 | Oct 2003 | WO |
WO03089161 | Oct 2003 | WO |
WO03093623 | Nov 2003 | WO |
WO03093623 | Nov 2003 | WO |
WO03102365 | Dec 2003 | WO |
WO03104601 | Dec 2003 | WO |
WO03104601 | Dec 2003 | WO |
WO03106130 | Dec 2003 | WO |
WO03106130 | Dec 2003 | WO |
WO04003337 | Jan 2004 | WO |
WO04009950 | Jan 2004 | WO |
WO04010039 | Jan 2004 | WO |
WO04010039 | Jan 2004 | WO |
WO04011776 | Feb 2004 | WO |
WO04011776 | Feb 2004 | WO |
WO04018823 | Mar 2004 | WO |
WO04018823 | Mar 2004 | WO |
WO04018824 | Mar 2004 | WO |
WO04018824 | Mar 2004 | WO |
WO04020895 | Mar 2004 | WO |
WO04020895 | Mar 2004 | WO |
WO04023014 | Mar 2004 | WO |
WO04023014 | Mar 2004 | WO |
WO04026017 | Apr 2004 | WO |
WO04026017 | Apr 2004 | WO |
WO04026073 | Apr 2004 | WO |
WO04026073 | Apr 2004 | WO |
WO04026500 | Apr 2004 | WO |
WO04026500 | Apr 2004 | WO |
WO04027200 | Apr 2004 | WO |
WO04027200 | Apr 2004 | WO |
WO04027204 | Apr 2004 | WO |
WO04027204 | Apr 2004 | WO |
WO04027205 | Apr 2004 | WO |
WO04027205 | Apr 2004 | WO |
WO04027392 | Apr 2004 | WO |
WO04027786 | Apr 2004 | WO |
WO04027786 | Apr 2004 | WO |
WO04053434 | Jun 2004 | WO |
WO04053434 | Jun 2004 | WO |
WO04057715 | Jul 2004 | WO |
WO04057715 | Jul 2004 | WO |
WO04067961 | Aug 2004 | WO |
WO04067961 | Aug 2004 | WO |
WO04072436 | Aug 2004 | WO |
WO04074622 | Sep 2004 | WO |
WO04074622 | Sep 2004 | WO |
WO04076798 | Sep 2004 | WO |
WO04076798 | Sep 2004 | WO |
WO04081346 | Sep 2004 | WO |
WO04083591 | Sep 2004 | WO |
WO04083591 | Sep 2004 | WO |
WO04083592 | Sep 2004 | WO |
WO04083592 | Sep 2004 | WO |
WO04083593 | Sep 2004 | WO |
WO04083594 | Sep 2004 | WO |
WO04083594 | Sep 2004 | WO |
WO04085790 | Oct 2004 | WO |
WO04089608 | Oct 2004 | WO |
WO04092527 | Oct 2004 | WO |
WO04092528 | Oct 2004 | WO |
WO04092528 | Oct 2004 | WO |
WO04092530 | Oct 2004 | WO |
WO04092530 | Oct 2004 | WO |
WO04094766 | Nov 2004 | WO |
WO04094766 | Nov 2004 | WO |
WO05017303 | Feb 2005 | WO |
WO05021921 | Mar 2005 | WO |
WO05021921 | Mar 2005 | WO |
WO05021922 | Mar 2005 | WO |
WO05021922 | Mar 2005 | WO |
WO05024170 | Mar 2005 | WO |
WO05024170 | Mar 2005 | WO |
WO05024171 | Mar 2005 | WO |
WO05028803 | Mar 2005 | WO |
WO05071212 | Apr 2005 | WO |
WO05079186 | Sep 2005 | WO |
WO05079186 | Sep 2005 | WO |
WO05081803 | Sep 2005 | WO |
WO05086614 | Sep 2005 | WO |
WO06014333 | Feb 2006 | WO |
WO06020723 | Feb 2006 | WO |
WO06020726 | Feb 2006 | WO |
WO06020734 | Feb 2006 | WO |
WO06020809 | Feb 2006 | WO |
WO06020810 | Feb 2006 | WO |
WO06020827 | Feb 2006 | WO |
WO06020913 | Feb 2006 | WO |
WO06020960 | Feb 2006 | WO |
WO06033720 | Mar 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20050087337 A1 | Apr 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10351160 | Jan 2003 | US |
Child | 10984010 | US |