This application relates generally to a label printing system and more particularly to a printer feed mechanism for printing liner-less labels.
Label printers typically print indicia, such as mailing addresses, onto a label that has adhesive on one side. The adhesive is generally covered with a release paper, or liner, that is removed prior to the label being placed onto the desired object, such as a letter or a box for shipping. These labels requires a person, or mechanism, to remove the release paper which is then discarded, resulting in waste that must be disposed of appropriately. Alternatively, a clear plastic sleeve can be configured to accept a printed paper insert, however these sleeves also include a release paper that covers the adhesive portion that must be removed and discarded.
Various embodiments will become better understood with regard to the following description, appended claims and accompanying drawings wherein:
The systems and methods disclosed herein are described in detail by way of examples and with reference to the figures. It will be appreciated that modifications to disclosed and described examples, arrangements, configurations, components, elements, apparatuses, devices methods, systems, etc. can suitably be made and may be desired for a specific application. In this disclosure, any identification of specific techniques, arrangements, etc. are either related to a specific example presented or are merely a general description of such a technique, arrangement, etc. Identifications of specific details or examples are not intended to be, and should not be, construed as mandatory or limiting unless specifically designated as such.
Existing label feed systems for printers generally accommodate labels that include release paper or liners that cover adhesive on one side of the labels. After printing such a label, the release paper or liner is removed and discarded. By printing onto a liner-less label, waste associated with release paper or liners can be eliminated, making liner-less label printers more environmentally friendly. Liner-less label printers also reduce extraneous costs associated with disposing of discarded release paper and liners, including labor costs and disposal costs.
A liner-less label can include a single sheet with a designated area on the front side for a customer's shipping address. A liner-less label can also include an adhesive area around the periphery of the back side of the label with a designated print area in the center for printing shipping and customer invoice information. In embodiments, the labels are received as a continuous form on a reel containing a plurality of labels. In instances where printing is to made on label stock with an exposed adhesive side, supporting the stock as it moves through the printer is problematic. Label stock will adhere to smooth, flat surfaces as may be used to guide paper stock or lined label stock. Guide rollers can accumulate adhesive and can add unwanted tension to the label stock. Guide rollers further add to printer cost and complexity. Coarse or gritty surfaces will have a lessened tendency to stick, however some adhesive may be removed as stock passes over, resulting in an accumulation of adhesive over time.
In accordance with the subject application,
The drive roller 104 and idler roller 106 pass the liner-less labels 116 to the in-line printer 120. A non-contact reflective object sensor 108 monitors the amount of slack 110 in the liner-less labels 116 in the path between the pre-feed mechanism 102 and the in-line printer 120. The liner-less labels 116 are pulled into the in-line printer 120 at a consistent rate, indicia are printed on one or both sides of the liner-less labels 116, and the label is cut to size by an associated finisher in the in-line printer 120.
In operation, the drive roller 104 is rotated by a print controller 122 to pull liner-less labels 116 from the reel 112 into the nip 118 at approximately the same rate that the liner-less labels 116 are consumed by the in-line printer 120. The print controller 122 monitors the sensor 108 and maintains the proper amount of slack 110 in the liner-less labels 116 that are passed to the in-line printer 120. The pre-feed mechanism 102 advantageously pulls the liner-less labels 116 from the reel 112 and presents them to the input queue of the in-line printer 120 such that a low and consistent force is required by the in-line printer 120 to pull the liner-less labels 116 into the in-line printer 120 for printing and sizing. This low and consistent force advantageously not only reduces misfeeds and paper jams, but also improves the quality of printing on the liner-less labels 116 which are fed at a more consistent rate across the printer mechanism.
The liner-less labels 116 can include a printable top surface configured to accept address indicia associated with a shipping label and a bottom surface that includes adhesive. In embodiments, the adhesive is disposed over only a certain portion of the bottom surface, for example around the edges, leaving a second printable area for accepting additional printed indicia such as invoice information for the end customer. In these embodiments, the consumer can remove the label from a received shipment to view the printed indicia on the bottom surface of a liner-less label 116.
Turning now to
Turning now to
Processor 304 is also in data communication with a storage interface 306 for reading or writing to a data storage system 308, suitably comprised of a hard disk, optical disk, solid-state disk, or any other suitable data storage as will be appreciated by one of ordinary skill in the art.
Processor 304 is also in data communication with a network interface controller (NIC) 330, which provides a data path to any suitable network or device connection, such as a suitable wireless data connection via wireless network interface 338. A suitable data connection to a print server is via a data network, such as a local area network (LAN), a wide area network (WAN), which may comprise the Internet, or any suitable combination thereof. A digital data connection is also suitably directly with a print server, such as via Bluetooth, optical data transfer, Wi-Fi direct, or the like.
Processor 304 is also in data communication with a user input/output (I/O) interface 340 which provides data communication with user peripherals, such as touch screen display 344 via display generator 346, as well as keyboards, control buttons, mice, track balls, touch screens, or the like. Processor 304 is also in data communication with sensor 350, suitably comprised of non-contact reflective object sensor for sensing slack in a continuous ribbon of unprinted labels. It will be understood that functional units are suitably comprised of intelligent units, including any suitable hardware or software platform.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the spirit and scope of the inventions.