This application relates generally to systems for sealing and/or protecting walls in mines, tunnels and other environments and, more particularly, to a sprayable system that is applied to provide such protection in salt mine shafts.
In one aspect, a method of rehabilitating a wall surface of a salt mine shaft involved: (a) identifying an ingress location along a height of the wall surface at which water passes through the wall surface into the shaft; (b) forming a recess or undercut in the wall surface below the identified elevation; and (c) utilizing a plural component spray process to apply a fire-resistant material, in the form of a first polyurethane or polyurea compound, into the recess or undercut and along the wall surface below the recess or undercut forming a coating barrier that extends from the recess or undercut downward along the mine shaft such that water entering the wall surface at the ingress location tends to flow downward into contact with and along an inward facing surface of the coating barrier so as to inhibit such water from flowing in contact with and degrading the wall surface of the mine shaft below the ingress location.
In another aspect, a mine shaft protective barrier includes an undercut in a wall surface of the mine shaft proximate to and below a water ingress ingress elevation. A fire-resistant material is applied within the undercut and downward along the wall surface below the to form a coating barrier that extends from the undercut downward along the mine shaft such that water entering the wall surface at the ingress location tends to flow downward into contact with and along an inward facing surface of the coating barrier so as to inhibit such water from flowing in contact with and degrading the wall surface of the mine shaft below the ingress location.
As seen in
To increase the stability of the mine shaft 10, voids 22 or recessed pockets formed by the coating barrier (e.g., resulting from a configuration of the wall surface prior to spraying the barrier 18) may be identified. A structural foam material 24 (e.g., in the form of another polyurethane or polyurea compound) is then applied (e.g., using a plural component spray process) into the void recesses. The fire-resistant material is then applied over the structural foam material in each void recess, as per 26. The fire-resistant material 26 is applied so as to bond with coating barrier 18 such that the structural foam material 24 is completely encased in the fire-resistant material.
In one embodiment, the structural foam material includes an isocyanate in combination with (i) one or more of an alcohol, a hydroxyl, a polyol or an amine and (ii) a fire retardant and (iii) a foaming agent, and the fire resistant material includes an isocyanate in combination with (i) one or more of an alcohol, a hydroxyl, a polyol or an amine and (ii) a fire retardant.
In one implementation of the foregoing embodiment, the isocyanate of the structural foam material is 4,4-diphenylmethane diisocyanate, and the isocyanate of the fire resistant material is selected from the group consisting of isophorone diisocyanate, methylene diphenyl diisocyanate, toluene diisocyanate or hexamethylene diisocyanate.
As used herein, the term plural component processing technique means blending two or more chemicals together in a specific or varying ratio with either direct impingement equipment, equipment utilizing a static mixer assembly to mix/bled the chemicals or by mixing in an open container by hand or by other mechanical mixing method to produce material that cures to some degree. In the primary embodiment, an impingement mix spray process is used.
It is to be clearly understood that the above description is intended by way of illustration and example only and is not intended to be taken by way of limitation, and that changes and modifications are possible. For example, in mine shafts including equipment structure below the seams (e.g., such as one or more elevator rails running vertically along the mine shaft), a spray of the fire-resistant material could be applied to such equipment structure.
This application claims the benefit of U.S. Provisional Application Ser. No. 62/020,047, filed Jul. 2, 2014, the entirety of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62020047 | Jul 2014 | US |