The present disclosure is directed generally to link mechanisms for gapped, rigid Krueger flaps, and associated systems and methods.
Modern aircraft often use a variety of high lift leading and trailing edge devices to improve high angle of attack performance during various phases of flight, including takeoff and landing. Existing leading edge devices include leading edge slats and Krueger flaps. Current leading edge slats generally have a stowed position in which the slat forms a portion of the leading edge of the wing, and one or more deployed positions in which the slat extends forward and down to increase the camber and/or planform area of the wing. The stowed position is generally associated with low drag at low angles of attack and can be suitable for cruise and other low angle of attack operations. The extended position(s) is/are generally associated with improved airflow characteristics over the aircraft's wing at higher angles of attack. Typical leading edge slat designs include arrangements in which the leading edge device retracts in an aft direction to form the leading edge of the wing when stowed. Krueger flaps have generally the same function as leading edge slats, but rather than retracting aft to form the leading edge of the wing, Krueger flaps typically fold into the lower surface of the wing when stowed.
In some cases, a slot or gap is created between the leading edge device and the wing as the device extends. During certain operating conditions, air can flow through this slot to energize the airflow over the upper surface of the wing, and improve overall airflow characteristics over the wing. A drawback with current systems is that it can be difficult to properly form and/or properly place the gap to achieve the desired flow characteristics proximate to the leading edge device. Another drawback associated with Krueger flap arrangements is that it may be difficult to form a gap that is large enough to achieve the desired airflow characteristics, without requiring complex and/or structurally inefficient linkage mechanisms.
The following summary is provided for the benefit of the reader only, and is not intended to limit in any way the invention as set forth by the claims. The present invention is directed generally toward link mechanisms for gapped, rigid Krueger flaps, and associated systems and methods. An aircraft system in accordance with one aspect of the invention includes a deployable leading edge assembly that in turn includes a deployable leading edge panel having a generally fixed-shape flow surface, a bullnose pivotably coupled to the leading edge panel, and a link mechanism coupled to the leading edge panel and the bullnose to move the leading edge panel between a stowed position and a deployed position. The link mechanism can have first and second spaced apart support links that are pivotably coupleable to an airfoil. First, second, and third positioning links are pivotably connected among the leading edge panel, the bullnose, and the first and second support links. The leading edge panel forms a gap with the airfoil when in the deployed position, and the positioning links are the only positioning links coupled between the support links, the leading edge panel, and the bullnose at a particular wing span location. Accordingly, in at least some embodiments, the leading edge assembly can include a five-link arrangement that provides a suitable aerodynamic gap between the airfoil and the rigid deployable leading edge panel, while also providing a bullnose to guide the flow of air over the airfoil.
In further particular aspects, the first positioning link has a first end, a second end, and an intermediate portion between its first and second ends. The first positioning link is pivotably connected to the second support link toward its first end, to the leading edge panel toward its second end, and to the first support link at its intermediate portion to form a scissors arrangement with the first support link. The second positioning link has a first end, a second end, and an intermediate portion between its first and second ends, and is pivotably connected to the first support link toward its first end, to the third positioning link toward its second end, and to the leading edge panel at its intermediate portion. The gap formed by deploying the leading edge assembly with the link mechanism can be at least 2% of the chord length of the airfoil to which the leading edge assembly is attached. In further particular embodiments, each of the links can be generally straight. In other embodiments, the opposite ends of the links can be offset by 40° or less, and in still further particular embodiments, by 20° or less.
Further aspects are directed toward methods for operating an aircraft system. One method includes deploying a rigid leading edge panel and a rigid bullnose relative to an airfoil by rotating a first support link pivotably coupled to the airfoil at a wingspan location, rotating a second support link pivotably coupled to the airfoil and spaced apart from the first support link, and rotating first, second, and third positioning links. The first, second, and third positioning links are pivotably connected among the leading edge panel, the bullnose, the first support link, and the second support link, and are the only positioning links coupled between the support links, the leading edge panel, and the bullnose at the wingspan location. The method can still further include forming a gap between the leading edge panel and the airfoil, and rotating the bullnose relative to the leading edge panel.
The present disclosure describes link mechanisms for gapped rigid Krueger flaps, and associated systems and methods. Certain specific details are set forth in the following description and in
The airfoil 110 can be configured for operation over any of a variety of flight conditions. The particular airfoil 110 shown in
A forward bulkhead 114 separates an aft fuel bay 116 from a leading edge dry bay 117. The leading edge dry bay 117 houses the link mechanism 130. The link mechanism 130 can be powered by any number of actuator arrangements, including a torque tube 115 that extends generally transverse to the plane of
The leading edge assembly 120 can include a leading edge panel 121 and a bullnose 123 that is pivotably connected to the rigid leading edge panel 121. The leading edge panel 121 can include a streamwise flow surface 124 that has a generally rigid, fixed shape. A panel support structure 122 can be positioned to support the streamwise flow surface 124 and maintain its shape. Accordingly, the streamwise flow surface 124 may undergo small deflections due to aerodynamic loading, but has generally the same shape shown in
The leading edge assembly 120 is shown in its fully deployed position in
The gap 101 formed between the leading edge panel 121 and the leading edge 112 can further improve the aerodynamic performance of the overall system 100. In many cases, it may be desirable to have a relatively large gap when the leading edge assembly 120 is in its fully deployed position. For example, it may be desirable to have a gap 101 that is up to and in come cases greater than 2% of the overall chord length of the airfoil 110 (e.g., the distance between the airfoil leading edge 112 and the airfoil trailing edge, which not visible in
The link mechanism 130 can include support links that are connected to the airfoil 110, and positioning links that are connected between the support links and the leading edge assembly 120. For example, in an embodiment shown in
Referring now to
Other links of the link mechanism 130 can have a generally similar arrangement. For example, the second positioning link 134 can include a first end 134a, a second end 134b, and an intermediate portion 134c. Each of these portions can be aligned along a generally straight line, as can a corresponding pivot point P6 between the second positioning link 134 and the first support link 131, a pivot point P7 between the second positioning link 134 and the third positioning link 135, and a pivot point P8 between the second positioning link 134 and the leading edge panel 121. The third positioning link 135 can be aligned along a generally straight axis between its two pivot points P7 and P9, and both the first support link 131 and the second support link 132 can also be aligned along generally straight axes (e.g., pivot points P1, P5 and P6 can be aligned along a generally straight axis for the first support link 131, and pivot points P2 and P3 can be aligned along a generally straight axis for the second support link 132). In particular embodiments, the ends of any of the links can be offset from each other by relatively small angular amounts (e.g., less than 20°, or less than 10°) without significantly detracting from the structural efficiency of the links. For example, as shown in
One feature of embodiments of the system described above with reference to
Another feature of at least some embodiments of the system described above with reference to
Still another feature of embodiments of the system described above is that the flow surfaces of the leading edge assembly can have a generally fixed shape. For example, the streamwise flow surface 124 of the leading edge panel 121, and the streamwise bullnose flow surface 125 can both have generally fixed shapes. An advantage of this arrangement is that it can be simpler than existing variable camber Krueger flaps to install and maintain. In particular, existing variable geometric flow surfaces typically require a significantly more complex arrangement of links (to adequately control the shapes of the flexible flow surfaces) than are included in at least some of the embodiments described above.
From the foregoing, it will be appreciated that the specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the invention. For example, in some embodiments, the linkages may have different shapes or arrangements than are shown in the Figures. In still further embodiments, the actuator may be coupled to different links than are shown in the illustrated embodiments, and/or may have a different arrangement than a torque tube arrangement. Aspects of the invention described in the context of particular embodiments may be combined or eliminated in other embodiments. For example, features of the link mechanism shown in
Number | Name | Date | Kind |
---|---|---|---|
1770575 | Ksoll | Jul 1930 | A |
2086085 | Lachmann et al. | Jul 1937 | A |
2138952 | Blume | Dec 1938 | A |
2282516 | Hans et al. | May 1942 | A |
2289704 | Grant | Jul 1942 | A |
2319383 | Zap | May 1943 | A |
2358985 | McAndrew | Sep 1944 | A |
2378528 | Arsandaux | Jun 1945 | A |
2383102 | Zap | Aug 1945 | A |
2385351 | Davidsen | Sep 1945 | A |
2387492 | Blaylock et al. | Oct 1945 | A |
2389274 | Pearsall et al. | Nov 1945 | A |
2422296 | Flader et al. | Jun 1947 | A |
2458900 | Emy | Jan 1949 | A |
2518854 | Badenoch | Aug 1950 | A |
2555862 | Romani | Jun 1951 | A |
2563453 | Briend | Aug 1951 | A |
2652812 | Fenzl | Sep 1953 | A |
2665084 | Feeney et al. | Jan 1954 | A |
2665085 | Feeney et al. | Jan 1954 | A |
2702676 | Delaney, Jr. | Feb 1955 | A |
2743887 | Fiedler | May 1956 | A |
2864239 | Taylor | Dec 1958 | A |
2877968 | Granan et al. | Mar 1959 | A |
2891740 | Campbell | Jun 1959 | A |
2892312 | Allen et al. | Jun 1959 | A |
2899152 | Weiland | Aug 1959 | A |
2920844 | Marshall et al. | Jan 1960 | A |
2938680 | Greene et al. | May 1960 | A |
2990144 | Hougland | Jun 1961 | A |
2990145 | Hougland | Jun 1961 | A |
3013748 | Westburg | Dec 1961 | A |
3089666 | Quenzler | May 1963 | A |
3102607 | Roberts | Sep 1963 | A |
3112089 | Dornier | Nov 1963 | A |
3136504 | Carr | Jun 1964 | A |
3203275 | Hoover | Aug 1965 | A |
3203647 | Alvarez-Calderon | Aug 1965 | A |
3263946 | Roberts et al. | Aug 1966 | A |
3375998 | Alvarez-Calderon | Apr 1968 | A |
3423858 | Speno | Jan 1969 | A |
3447763 | Allcock | Jun 1969 | A |
3486720 | Seglem et al. | Dec 1969 | A |
3499622 | Lugan et al. | Mar 1970 | A |
3504870 | Cole et al. | Apr 1970 | A |
3528632 | Miles et al. | Sep 1970 | A |
3556439 | Autry et al. | Jan 1971 | A |
3589648 | Gorham et al. | Jun 1971 | A |
3642234 | Kamber et al. | Feb 1972 | A |
3653611 | Trupp et al. | Apr 1972 | A |
3655149 | Williams | Apr 1972 | A |
3677504 | Schwarzler | Jul 1972 | A |
3704828 | Studer et al. | Dec 1972 | A |
3704843 | Jenny | Dec 1972 | A |
3730459 | Zuck | May 1973 | A |
3743219 | Gorges | Jul 1973 | A |
3767140 | Johnson | Oct 1973 | A |
3776491 | Oulton | Dec 1973 | A |
3794276 | Maltby et al. | Feb 1974 | A |
3804267 | Cook et al. | Apr 1974 | A |
3807447 | Masuda et al. | Apr 1974 | A |
3827658 | Hallworth | Aug 1974 | A |
3831886 | Burdges et al. | Aug 1974 | A |
3836099 | O'Neill et al. | Sep 1974 | A |
3837601 | Cole | Sep 1974 | A |
3847369 | Phillips et al. | Nov 1974 | A |
3862730 | Heiney | Jan 1975 | A |
3897029 | Calderon et al. | Jul 1975 | A |
3904152 | Hill | Sep 1975 | A |
3910530 | James et al. | Oct 1975 | A |
3913450 | MacGregor | Oct 1975 | A |
3917192 | Alvarez-Calderon | Nov 1975 | A |
3941334 | Cole | Mar 1976 | A |
3941341 | Brogdon, Jr. | Mar 1976 | A |
3954231 | Fraser | May 1976 | A |
3968946 | Cole | Jul 1976 | A |
3987983 | Cole | Oct 1976 | A |
3991574 | Frazier | Nov 1976 | A |
3992979 | Smith | Nov 1976 | A |
3994451 | Cole | Nov 1976 | A |
4011888 | Whelchel et al. | Mar 1977 | A |
4015787 | Maieli et al. | Apr 1977 | A |
4049219 | Dean et al. | Sep 1977 | A |
4117996 | Sherman | Oct 1978 | A |
4120470 | Whitener | Oct 1978 | A |
4131253 | Zapel | Dec 1978 | A |
4146200 | Borzachillo | Mar 1979 | A |
4159089 | Cole | Jun 1979 | A |
4171787 | Zapel | Oct 1979 | A |
4172575 | Cole | Oct 1979 | A |
4181275 | Moelter et al. | Jan 1980 | A |
4189120 | Wang | Feb 1980 | A |
4189121 | Harper et al. | Feb 1980 | A |
4189122 | Miller | Feb 1980 | A |
4200253 | Rowarth | Apr 1980 | A |
4202519 | Fletcher | May 1980 | A |
4240255 | Benilan | Dec 1980 | A |
4248395 | Cole | Feb 1981 | A |
4262868 | Dean | Apr 1981 | A |
4275942 | Steidl | Jun 1981 | A |
4283029 | Rudolph | Aug 1981 | A |
4285482 | Lewis | Aug 1981 | A |
4293110 | Middleton et al. | Oct 1981 | A |
4312486 | McKinney | Jan 1982 | A |
4351502 | Statkus | Sep 1982 | A |
4353517 | Rudolph | Oct 1982 | A |
4360176 | Brown | Nov 1982 | A |
4363098 | Buus et al. | Dec 1982 | A |
4365774 | Coronel | Dec 1982 | A |
4368937 | Palombo et al. | Jan 1983 | A |
4384693 | Pauly | May 1983 | A |
4427168 | McKinney | Jan 1984 | A |
4441675 | Boehringer | Apr 1984 | A |
4448375 | Herndon | May 1984 | A |
4459084 | Clark | Jul 1984 | A |
4461449 | Turner | Jul 1984 | A |
4470569 | Shaffer et al. | Sep 1984 | A |
4471927 | Rudolph | Sep 1984 | A |
4475702 | Cole | Oct 1984 | A |
4485992 | Rao | Dec 1984 | A |
4496121 | Berlin | Jan 1985 | A |
4498646 | Proksch | Feb 1985 | A |
4533096 | Baker | Aug 1985 | A |
4542869 | Brine | Sep 1985 | A |
4544117 | Schuster | Oct 1985 | A |
4553722 | Cole | Nov 1985 | A |
4575030 | Gratzer | Mar 1986 | A |
4576347 | Opsahl | Mar 1986 | A |
4605187 | Stephenson | Aug 1986 | A |
4618109 | Victor | Oct 1986 | A |
4637573 | Perin et al. | Jan 1987 | A |
4650140 | Cole | Mar 1987 | A |
4669687 | Rudolph | Jun 1987 | A |
4700911 | Zimmer | Oct 1987 | A |
4702441 | Wang | Oct 1987 | A |
4702442 | Weiland et al. | Oct 1987 | A |
4706913 | Cole | Nov 1987 | A |
4717097 | Sepstrup | Jan 1988 | A |
4729528 | Borzachillo | Mar 1988 | A |
4779822 | Burandt et al. | Oct 1988 | A |
4784355 | Brine | Nov 1988 | A |
4786013 | Pohl | Nov 1988 | A |
4796192 | Lewis | Jan 1989 | A |
4823836 | Bachmann et al. | Apr 1989 | A |
4834319 | Ewy et al. | May 1989 | A |
4838503 | Williams et al. | Jun 1989 | A |
4854528 | Hofrichter et al. | Aug 1989 | A |
4856735 | Lotz et al. | Aug 1989 | A |
4892274 | Pohl et al. | Jan 1990 | A |
4899284 | Lewis | Feb 1990 | A |
4962902 | Fortes | Oct 1990 | A |
5039032 | Rudolph | Aug 1991 | A |
5046688 | Woods | Sep 1991 | A |
5056741 | Bliesner et al. | Oct 1991 | A |
5074495 | Raymond | Dec 1991 | A |
5082207 | Tulinius | Jan 1992 | A |
5082208 | Matich | Jan 1992 | A |
5088665 | Vijgen et al. | Feb 1992 | A |
5094411 | Rao | Mar 1992 | A |
5094412 | Narramore | Mar 1992 | A |
5098043 | Arena | Mar 1992 | A |
5100082 | Archung | Mar 1992 | A |
5114100 | Rudolph | May 1992 | A |
5129597 | Manthey | Jul 1992 | A |
5158252 | Sakurai | Oct 1992 | A |
5167383 | Nozaki | Dec 1992 | A |
5203619 | Welsch | Apr 1993 | A |
5207400 | Jennings | May 1993 | A |
5222692 | Glowacki et al. | Jun 1993 | A |
5244269 | Harriehausen | Sep 1993 | A |
5259293 | Brunner | Nov 1993 | A |
5282591 | Walters et al. | Feb 1994 | A |
5310387 | Savagian | May 1994 | A |
5351914 | Nagao | Oct 1994 | A |
5388788 | Rudolph | Feb 1995 | A |
5441218 | Mueller et al. | Aug 1995 | A |
5474265 | Capbern et al. | Dec 1995 | A |
5493497 | Buus | Feb 1996 | A |
5535852 | Bishop | Jul 1996 | A |
5544847 | Bliesner | Aug 1996 | A |
5564655 | Garland et al. | Oct 1996 | A |
5600220 | Thoraval | Feb 1997 | A |
5609020 | Jackson | Mar 1997 | A |
5628477 | Caferro et al. | May 1997 | A |
5680124 | Bedell | Oct 1997 | A |
5681014 | Palmer | Oct 1997 | A |
5686907 | Bedell et al. | Nov 1997 | A |
5711496 | Nusbaum | Jan 1998 | A |
5735485 | Ciprian et al. | Apr 1998 | A |
5743490 | Gillingham | Apr 1998 | A |
5788190 | Siers | Aug 1998 | A |
5836550 | Pacz | Nov 1998 | A |
5839698 | Moppert | Nov 1998 | A |
5875998 | Gleine et al. | Mar 1999 | A |
5915653 | Koppelman | Jun 1999 | A |
5921506 | Appa | Jul 1999 | A |
5927656 | Hinkleman | Jul 1999 | A |
5934615 | Treichler | Aug 1999 | A |
5984230 | Drazi | Nov 1999 | A |
6015117 | Broadbent | Jan 2000 | A |
6045204 | Frazier | Apr 2000 | A |
6073624 | Laurent | Jun 2000 | A |
6076767 | Farley et al. | Jun 2000 | A |
6076776 | Breitbach | Jun 2000 | A |
6082679 | Crouch et al. | Jul 2000 | A |
6109567 | Munoz | Aug 2000 | A |
6152405 | Muller et al. | Nov 2000 | A |
6161801 | Kelm | Dec 2000 | A |
6164598 | Young et al. | Dec 2000 | A |
6164599 | Piening et al. | Dec 2000 | A |
6189837 | Matthews | Feb 2001 | B1 |
6213433 | Gruensfelder | Apr 2001 | B1 |
6227498 | Arata | May 2001 | B1 |
6244542 | Young et al. | Jun 2001 | B1 |
6293497 | Kelley-Wickemeyer | Sep 2001 | B1 |
6328265 | Dizdarevic | Dec 2001 | B1 |
6349798 | McKay | Feb 2002 | B1 |
6364254 | May | Apr 2002 | B1 |
6375126 | Sakurai | Apr 2002 | B1 |
6431498 | Watts et al. | Aug 2002 | B1 |
6439512 | Hart | Aug 2002 | B1 |
6443394 | Weisend | Sep 2002 | B1 |
6464175 | Yada et al. | Oct 2002 | B2 |
6466141 | McKay et al. | Oct 2002 | B1 |
6478541 | Charles et al. | Nov 2002 | B1 |
6481667 | Ho | Nov 2002 | B1 |
6484969 | Sprenger | Nov 2002 | B2 |
6499577 | Kitamoto et al. | Dec 2002 | B2 |
6513761 | Huenecke et al. | Feb 2003 | B2 |
6536714 | Gleine et al. | Mar 2003 | B2 |
6547183 | Farnsworth | Apr 2003 | B2 |
6554229 | Lam | Apr 2003 | B1 |
6568189 | Blot-Carretero et al. | May 2003 | B2 |
6591169 | Jones | Jul 2003 | B2 |
6598829 | Kamstra | Jul 2003 | B2 |
6598834 | Nettle | Jul 2003 | B2 |
6601801 | Prow | Aug 2003 | B1 |
6622972 | Urnes, Sr. et al. | Sep 2003 | B2 |
6622974 | Dockter et al. | Sep 2003 | B1 |
6625982 | Van Den Bossche | Sep 2003 | B2 |
6644599 | Perez | Nov 2003 | B2 |
6651930 | Gautier et al. | Nov 2003 | B1 |
6698523 | Barber | Mar 2004 | B2 |
6729583 | Milliere et al. | May 2004 | B2 |
6796526 | Boehringer | Sep 2004 | B2 |
6796534 | Beyer et al. | Sep 2004 | B2 |
6799739 | Jones | Oct 2004 | B1 |
6802475 | Davies et al. | Oct 2004 | B2 |
6843452 | Vassberg et al. | Jan 2005 | B1 |
6860452 | Bacon et al. | Mar 2005 | B2 |
6870490 | Sherry | Mar 2005 | B2 |
6910659 | Friddell et al. | Jun 2005 | B2 |
7007897 | Wingett et al. | Mar 2006 | B2 |
7051975 | Pohl et al. | May 2006 | B2 |
7147241 | Beaujot et al. | Dec 2006 | B2 |
20010006207 | Caton et al. | Jul 2001 | A1 |
20020046087 | Hey | Apr 2002 | A1 |
20020074459 | Gleine et al. | Jun 2002 | A1 |
20020100842 | Perez | Aug 2002 | A1 |
20030132860 | Feyereisen et al. | Jul 2003 | A1 |
20030197097 | Wakayama | Oct 2003 | A1 |
20030230677 | Milliere | Dec 2003 | A1 |
20040004162 | Beyer | Jan 2004 | A1 |
20040059474 | Boorman | Mar 2004 | A1 |
20040195464 | Vassberg et al. | Oct 2004 | A1 |
20040245386 | Huynh | Dec 2004 | A1 |
20050011994 | Sakurai et al. | Jan 2005 | A1 |
20050017126 | McLean et al. | Jan 2005 | A1 |
20050045765 | Pitt | Mar 2005 | A1 |
20050109876 | Jones | May 2005 | A1 |
20050242234 | Mahmulyin | Nov 2005 | A1 |
20060038086 | Reckzeh | Feb 2006 | A1 |
20060145028 | Richter et al. | Jul 2006 | A1 |
20060169847 | Konings | Aug 2006 | A1 |
20060226297 | Perez-Sanchez | Oct 2006 | A1 |
20060245882 | Khan et al. | Nov 2006 | A1 |
20070252040 | Kordel et al. | Nov 2007 | A1 |
Number | Date | Country |
---|---|---|
387833 | Jan 1924 | DE |
1129379 | May 1962 | DE |
0100775 | Feb 1984 | EP |
0 103 038 | Mar 1984 | EP |
0215211 | Mar 1987 | EP |
0 483 504 | May 1992 | EP |
0781704 | Jul 1997 | EP |
0 947 421 | Oct 1999 | EP |
1010616 | Jun 2000 | EP |
1338506 | Aug 2003 | EP |
1462361 | Sep 2004 | EP |
1 547 917 | Jun 2005 | EP |
1607324 | Dec 2005 | EP |
705155 | Jun 1931 | FR |
984443 | Jul 1951 | FR |
56121 | Sep 1952 | FR |
57988 | Sep 1953 | FR |
58273 | Nov 1953 | FR |
1181991 | Feb 1970 | GB |
2 144 688 | Mar 1985 | GB |
Number | Date | Country | |
---|---|---|---|
20090072093 A1 | Mar 2009 | US |