The present disclosure relates to exercise devices, specifically to linkage assemblies for exercise devices.
The following U.S. patents are hereby incorporated by reference in their entirety:
U.S. Pat. No. 7,479,093 discloses an exercise apparatus having a pair of handles pivotally mounted on a frame and guiding respective user arm motions along swing paths obliquely approaching the sagittal plane of the user.
U.S. Pat. No. 7,625,317 discloses an exercise apparatus with a coupled mechanism providing coupled natural biomechanical three dimensional human motion.
U.S. Pat. No. 7,918,766 discloses an exercise apparatus for providing elliptical foot motion that utilizes a pair of rocking links suspended from an upper portion of the apparatus frame permitting at least limited arcuate motion of the lower portions of the links. Foot pedal assemblies are connected to rotating shafts or members located on the lower portion of the links such that the foot pedals will describe a generally elliptical path in response to user foot motion on the pedals.
U.S. Pat. No. 7,931,566 discloses an exercise apparatus, which may be an elliptical cross trainer, having a rotating inertial flywheel driven by user-engaged linkage exercising a user. A user-actuated resistance device engages and stops rotation of the flywheel upon actuation by the user.
U.S. Pat. No. 9,050,498 discloses an exercise assembly comprising a frame and elongated foot pedal members that are each movable along user-defined paths of differing dimensions. Each foot pedal member has a front portion and a rear portion. Footpads are disposed on the rear portion of one of the pair of foot pedal members. Elongated coupler arms have a lower portion and an upper portion that is pivotally connected to the frame. Crank members have a first portion that is pivotally connected to the front portion of one of the pan of foot pedal members and have a second portion that is pivotally connected to the lower portion of one of the pair of coupler arms, such that each crank member is rotatable in a circular path. Elongated rocker arms have a lower portion that is pivotally connected to one of the pair of foot pedal members in between the foot pad and the crank member and have an upper portion that is pivotally connected to the frame
U.S. Pat. No. 9,114,275 discloses an exercise assembly including a frame, a pair of elongated foot pedal members, a pair of elongated coupler arms, a pair of crank members, a pair of elongated rocker arms, and a front cross-shaft. The pair of foot pedal members are each movable along user-defined paths of different dimensions. Each crank member is rotatable in a circular path and is freely rotatable along the circular path in a first direction and restrained from rotation along the circular path in a second, opposite direction.
U.S. Pat. No. 9,138,614 discloses an exercise assembly comprising elongated first and second rocker arms that pivot with respect to each other in a scissors-like motion about a first pivot axis. A slider has a slider body that slides along a linear axis extending through and perpendicular to the first pivot axis. A linkage pivotally couples the first and second rocker arms to the slider body. Pivoting the first and second rocker arms with respect to each other causes the slider body to slide in a first direction along the linear axis. Opposite pivoting of the first and second rocker arms with respect to each other causes the slider body to slide in an opposite, second direction along the linear axis.
This Summary is provided to introduce a selection of concepts that are further described below in the Detailed Description. This Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
In certain examples, an exercise device includes a driving member, a driven member, and a linkage assembly that links the driving member to the driven member such that rotation of the driving member causes rotation of the driven member. The linkage assembly includes a linking member, a base member that connects the driving member and the driven member, a first crank arm that connects the driving member to the linking member such that rotation of the driving member causes motion of the linking member, a second crank arm that connects the linking member to the driven member such that the motion of the linking member causes rotation of the driven member, and a third crank arm that connects the linking member to the base member such that the motion of the linking member causes the third crank arm to rotate with respect to the base member.
In certain examples, an exercise device includes a driving member, a driven member, and a linkage assembly that links the driving member to the driven member such that rotation of the driving member causes rotation of the driven member. The linkage assembly includes a linking member, a base member that connects the driving member and the driven member, a first crank arm that connects the driving member to the linking member such that rotation of the driving member causes motion of the linking member, a second crank arm that connects the linking member to the driven member such that the motion of the linking member causes rotation of the driven member, and a third crank arm that connects the linking member to the base member such that the motion of the linking member causes the third crank arm to rotate with respect to the base member. The first, second, and third crank arms extend in a common plane and remain parallel to each other as the driving member rotates, and the third crank arm rotational axis is laterally offset from a straight line extending through the first and second crank arm rotational axes. The driving crank arm drives rotation of the driving member.
In certain examples, an exercise device includes a frame, a pedal member having a first portion and a second portion, and a base member having a first portion and a second portion. The second portion of the base member is pivotally coupled to the frame via a driven member. A crank arm has a first portion that is pivotally coupled to the first portion of the pedal member and a second portion that is pivotally coupled to the first portion of the base member via a driving member. The crank arm is rotatable in a circular path entirely around the first portion of the base member as the base member pivots back and forth with respect to the frame such that the pedal member is movable along user defined paths of differing dimensions. A linkage assembly links the driving member to the driven member such that rotation of the driving member causes rotation of the driven member. The linkage assembly includes a linking member, a first crank arm that connects the driving member to the linking member at a first crank arm rotational axis such that rotation of the driving member causes motion of the linking member, a second crank arm that connects the linking member to the driven member at a second crank arm rotational axis such that rotation of the linking member causes rotation of the driven member and a third crank arm that connects the linking member to the base member at a third rotational axis such that the motion of the of the linking member causes the third crank arm to rotate with respect to the base member. The first, second, and third crank arms extend in a common plane and remain parallel to each other as the driving member rotates. The third crank arm rotational axis is laterally offset from a straight line extending through the first and second crank arm rotational axes.
Examples of exercise devices are described with reference to the following drawing figures. The same numbers are used throughout the drawing figures to reference like features and components.
In the present description, certain terms have been used for brevity, clearness, and understanding. No unnecessary limitations are to be inferred therefrom beyond the requirement of the prior art because such terms are used for descriptive purposes only and are intended to be broadly construed. The different assemblies and apparatuses described herein may be used alone or in combination with other assemblies and apparatuses. Various equivalents, alternatives, and modifications are possible within the scope of the appended claims.
Referring to
Referring to
Rotation of the driving member 20 causes: the first crank arm 44 to rotate about the driving member rotational axis 22; the linking member 42 to move relative to the driving member rotational axis 22 and the driven member rotational axis 32; and the second crank arm 48 to rotate about the driven member rotational axis 32. The linkage assembly 40 includes a base member 70 which connects the driving member 20 and the driven member 30. The base member 70 supports rotation of the driving member 20, driven member 30, first crank arm 44, second crank arm 48 and motion of the linking member 42 such that the motion of the linking member 42 is translation along a circular path with respect to the base member 70. (see
The connection of the first and second crank arms 44, 48 to the driving member 20, driven member 30, base member 70, and linking member 42, respectively, is facilitated by bearing and through shaft assemblies 131 which are positioned in bearing housings 130. The bearing housings 130 are connected to the base member 70 and linking member 42, respectively. Locking keys 132 create a fixed rotational connection between the linkage assembly 40 and the driving member 20 and driven member 30. In certain examples, the linking member 42 is a truss having a plurality of elongated members connected to the bearing housings 130. In other examples, the linking member 42 is a polygon shaped plate.
The base member 70 supports rotation of the driving member 20, the driven member 30, the first crank arm 44, the second crank arm 48, the third crank arm 52, and the fourth crank arm 56 with respect to the base member 70. The base member 70 can include a plurality of bearing housings 130 that house a plurality of bearing and through shaft assemblies 131 for facilitating the connection of the driving member 20, driven member 30, first crank arm 44, second crank arm 48, third crank arm 52, and/or fourth crank arm 56 to the base member 70. In certain examples, the base member 70 is a polygon shaped plate. In other examples, the base member is a truss. The base member 70 may be shaped similar to the linking member 42.
The third crank arm 52 connects the linking member 42 to the base member 70. The third crank arm 52 is connected to the linking member 42 at a third crank arm rotational axis 54. Motion of the linking member 42 causes the third crank arm 52 to rotate with respect to the base member 70. The third crank arm rotational axis 54 is laterally offset from a straight line extending through the first and second crank arm rotational axes 46, 50 and located between the first and second crank arm rotational axes 46, 50. The fourth crank arm 56 connects the linking member 42 to the base member 70 such that the fourth crank arm 56 is connected to the linking member 42 at a fourth crank arm rotational axis 58 and motion of the linking member 42 causes the fourth crank arm 56 to rotate with respect to the base member 70. The fourth crank arm rotational axis 58 is laterally offset from a straight line extending through the first and second crank arm rotational axes 46, 50, and located between the first and second crank arm rotational axes 46, 50. (see
In non-limiting examples, the exercise device 10 includes a frame 80, a pedal member 90 having a first portion 92 and a second portion 94, the base member 70 having a first portion 72 and a second portion 74, and a crank arm 96 that has a first portion 97 that is pivotally coupled to the first portion 92 of the pedal member 90 and the second portion 94 that is pivotally coupled to the first portion 72 of the base member 70 along driving member rotational axis 22 via the driving member 20. (see
Referring to
The linkage assembly 40 can reduce vibration and/or noise of a timing belt system (see the examples disclosed in U.S. Pat. No. 9,114,275 incorporated herein by reference) when the exercise device 10 is operated at high speeds. The linkage assembly 40 reduces the number of components of the exercise device 10 when compared to known exercise devices, and the absence of the timing belt system makes pre-tensioning of the timing belt system unnecessary, as there is inherently constant load on the linkage assembly 40, driving member 20, and/or the driven member 30. The linkage assembly 40 comprises solid components such that the linkage assembly 40 has high stiffness. The linkage assembly 40 is a combination of multiple parallel double crank linkages which are capable of transmitting rotational motion as described above. In operation, the rotation of the first crank arm 44 determines the rotation of the second, third, and fourth crank arms 48, 52, 56, such that the all the crank arms 44, 48, 52, 56 rotate in the same direction. Further, any combination of crank arms 44, 48, 52, 56 can rotate at the same angular velocity relative to each other. It is possible for the linkage assembly 40 to operate, as described above with reference to four crank arms 44, 48, 52, 56, with three crank arms.
The exercise device 10 described herein transfers generally equal rotational motion from the driving member 20 to the driven member 30 while overcoming the drawbacks of slippage associated with flat- or v-belts or noise, flexibility, and/or vibration of the timing belt and/or related systems.
Through research and experimentation, the inventor has discovered that a typical parallel 4-bar linkage assembly known in the art does not provide with the advantages described herein with reference to the exercise device 10. In a conventional parallel 4-bar linkage or double crank assembly, the first crank arm (driving crank) and the second crank arm (driven crank) have the same length, and the driving crank and the driven crank are each connected to both a link and a frame such that the pin-to-pin distance is the same. Theoretically, the rotation of driven crank (i.e. same angular velocity/acceleration) can be exactly the same as that of the driving crank, but due to the singularity at the position where the driving crank and the driven crank are in-line with the link, a real-world implementation of the system will not work as described. For example, if the driving crank and the driven crank are held as the cranks are rotated in the system, both of the cranks will rotate in the same direction. However, if only one of the cranks is held during rotation, the free crank will tend to rotate in opposite direction of the intended rotation after the tangle point of the system. Further, the free crank will stop at the other tangle point followed by rotation in the same direction as that of the driving crank. This issue prevented the conventional 4-bar linkage system, although simple, from being used in real-world applications (such as exercise machines). An example of an exception are locomotive wheels due to the special conditions all the locomotive wheels on a railroad track cannot rotate in different directions.
A third crank arm added to the system in-line and parallel with respect to the driving member and the driven member creates an inline three-crank system which prevents opposite rotations of driving crank and the driven crank. Adding the third crank arm will work when dragging the driving crank through circular rotation. However, due to tolerance deviations and deformation under loadings of real world components, the inline three-crank system will stop at the tangle point.
In another system, the use of a four crank system on both sides of a frame, which is known in the art, works to translate rotation between the driving crank and the driven crank. The downside of the four-crank system on both sides of a frame is that it requires two sets of cranks and a pair of links, whereby one set of cranks and one link is positioned on different sides of the frame. If both sub-assemblies were on the same side of the frame, full circular rotation of the driving crank and the driven crank would result in one of the links cutting through the driving member or driven member such that it would be impossible to transmit full rotation from the driving member to the driven member (commonly known as “four crank on one side-not working”).
In some applications, the selected linkage system must be positioned on one side of the frame. When adding a third crank arm of the same length between the frame and link in an arrangement such that the three pivoting shafts (driving member, driven member, and pivot shaft of the third crank arm) are situated on the frame, the orientation of the pivoting shafts does not form a straight line, but rather a triangle. In this orientation, the driving crank can be easily moved such that the driven crank and the third crank arm will rotate with the rotation of the driving crank with no difficulties (i.e. the driven crank and third crank arm will not stop or reverse rotation at the tangle point). Further the third crank arm is offset from a line formed between the driving member and the driven member because the system would not work if all three pivoting shafts are on the same line. Further, best results occur with the triangle formed by the three pivoting points has maximum area.
When the distance between the driving member and driven member are further apart, the addition of the third crank arm with a large offset would significantly increase the size of the system and limit/prohibit its application. A fourth crank arm can be added in such cases to keep the system from become too wide (in terms measured along the line connecting driving/driven shaft). An example implementation is shown in the drawings, wherein a rhombus area is formed by the 4 pivoting shafts (driving member, driven member, pivot shaft of the third crank arm, and pivot shaft of the fourth crank arm) being twice as large as the triangle formed by three pivoting shafts.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to make and use the invention. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
This application is a continuation of U.S. patent application Ser. No. 15/012,324, filed Feb. 1, 2016, which is incorporated herein by reference in entirety.
Number | Name | Date | Kind |
---|---|---|---|
6084325 | Hsu | Jul 2000 | A |
7479093 | Immordino et al. | Jan 2009 | B1 |
7625317 | Stevenson et al. | Dec 2009 | B2 |
7717833 | Nelson et al. | May 2010 | B1 |
7918766 | Lu et al. | Apr 2011 | B2 |
7931566 | Radke et al. | Apr 2011 | B1 |
8272997 | Anderson et al. | Sep 2012 | B2 |
9050498 | Lu et al. | Jun 2015 | B2 |
9114275 | Lu et al. | Aug 2015 | B2 |
9138614 | Lu et al. | Sep 2015 | B2 |
20080020902 | Arnold | Jan 2008 | A1 |
20080027400 | Harding | Jan 2008 | A1 |
20080242516 | Liu | Oct 2008 | A1 |
20080269023 | Chuang | Oct 2008 | A1 |
20090105049 | Miller | Apr 2009 | A1 |
20090176625 | Giannelli | Jul 2009 | A1 |
20090209394 | Kwon | Aug 2009 | A1 |
20120322624 | Wu | Dec 2012 | A1 |
20130143720 | Chuang | Jun 2013 | A1 |
20140141939 | Wu | May 2014 | A1 |
20140194256 | Huang | Jul 2014 | A1 |
20150246260 | Giannelli | Sep 2015 | A1 |
20150335943 | Miller | Nov 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
Parent | 15012324 | Feb 2016 | US |
Child | 15723740 | US |