The present invention relates to latches that are operated by push button assemblies of the type having depressible push buttons supported by housings. More particularly, the present invention relates to a linkage assembly having a frame that is connectable to the housing of a push button assembly and that pivotally supports a pair of arms that are connectable to one or more links for operating one or more latches in response to movement of a push button actuator along a path of movement that is defined by the housing of the push button assembly.
The present invention provides an improved linkage assembly that can be substituted for the linkage assembly that is disclosed in FIGS. 12-23 of the Eberhard Patent to perform the same functions as are performed by the linkage assembly disclosed in FIGS. 12-23 of the Eberhard Patent. The Eberhard Patent's discussion of the uses to which the linkage assembly of FIGS. 12-23 can be put is equally applicable to the linkage assembly of the present invention.
The present invention provides an improved linkage assembly that also can be substituted for the linkage assembly that is disclosed in U.S. Pat. No. 6,231,091 issued May 15, 2001 to Gleason et al entitled CONTROL MECHANISM FOR OPERATING A LATCH (referred to herein as the “Tri/Mark Patent”) to perform the same functions as are performed by the linkage assembly disclosed in the Tri/Mark Patent, the disclosure of which is incorporated herein by reference. The Tri/Mark Patent's discussion of the uses to which the linkage assembly disclosed therein can be put is equally applicable to the linkage assembly of the present invention.
The linkage assemblies of the Eberhard Patent and the Tri/Mark Patent each include a frame that is designed to be installed on, or otherwise connected to, a housing of a push button assembly of the type having a housing that supports a push button actuator for sliding movement along a path of movement defined by the housing. The frame of the linkage assembly supports first and second arms for pivotal movement about first and second axes, respectively, that are located on opposite sides of the path of movement of the actuator. The arms have outer end regions that are connectable to links that operate remotely located latches, and inner end regions that define edge surfaces that are engaged by the actuator when the actuator moves along the path of movement.
Another characteristic that is shared by the linkage assemblies of the Eberhard and Tri/Mark Patents is that the first and second arms of each of these linkage assemblies move independently with respect to each other: there is no separate element—indeed, nothing at all—that coordinates the movement of the first and second arms of either of these linkages. Inasmuch as neither of these linkage assemblies is provided with any means for coordinating the movement of the first and second arms thereof, there likewise is nothing to ensure that, at the completion of operation of the push button actuator, both (or even one) of the first and second arms returns to its normal, non-operated position. Thus, at the completion of an unlatching movement of both arms, it is quite possible that only one of the arms may return fully to its nonoperated position, or that neither of the arms may return fully to its non-operated position. The result of this uncoordinated return movement of the arms may be that, when the push button actuator is depressed to engage and pivot the arms, one of the arms may be engaged by the actuator well in advance of when the other arm is engaged by the actuator.
Inasmuch as the linkage assemblies of the Eberhard and Tri/Mark Patents are intended to operate in a manner that provides coordinated pivoting of the arms of these assemblies in unison to effect concurrent operation of the latches that are link-connected to these arms, the fact of the matter is that these neither of these linkage assemblies includes a mechanical device for ensuring that the arms move in unison. If the independently movable arms fail to move in unison in a coordinated manner, this can result in inconsistent operation that may bring with it impositions of larger than intended forces on the elements of the linkage assemblies that may eventually cause binding, jamming, wear and/or premature operational failure.
The absence of any arm-interconnecting element in the linkage assemblies of the Eberhard and Tri/Mark Patents to coordinate the movements of the arms of these assemblies has presented a dilemma to designers that has not been easy to resolve without significantly increasing the overall dimensions of the linkage assemblies. Because customers who purchase these very compactly designed linkage assemblies often use these assemblies in tight quarters in close juxtaposition to other mechanical components and, in some instances, enclose these assemblies with closely fitted covers, it is important that any design changes that are made in an effort to enhance the performance of these assemblies not cause the improved linkage assemblies to occupy significantly more space or to assume significantly different configurations that prevent the improved linkage assemblies from being substituted for linkage assemblies of the type disclosed in the Eberhard and Tri/Mark Patents.
Because the linkage assemblies of the Eberhard and Tri/Mark Patents are already quite compact and already are designed to occupy a minimum of space, adding components to these assemblies to coordinate the movement of the first and second arms of these assemblies has provided a daunting design challenge. While a number of design approaches have been tried in an effort to coordinate the movement of the arms of these linkage assemblies, one approach after another has had to be rejected because it caused an unacceptable increase in the space occupied by the linkage assembly, or because it caused an unacceptable change in the dimensions or configuration of the linkage assembly, or, quite importantly, because it failed to provide adequate arm movement (in response to about a half inch or less of travel of a push button actuator) to move latch operating links (that are connected to the arms and to latches that are to be operated in response to depression of a push button actuator) sufficiently to operate the latches that are intended to be operated by the linkage assembly.
Still another drawback of the linkage assemblies disclosed in the Eberhard and Tri/Mark Patents has been the absence of a single element within these assemblies to which an emergency release cable can be connected to enable these linkages to be operated from inside a tonneau covers or from inside large tool boxes or other enclosures on which these linkage assemblies may be installed. If these linkage assemblies could be provided with an element that coordinates the pivotal movement of the arms to ensure that their “operating” and “return” movements take place concurrently and in unison, perhaps an emergency release cable could be attached to the arm-movement-coordinating element to provide a way in which a person trapped within the confines of a tonneau cover, or tool box, or other latched enclosure could release the latches thereof to escape.
The present invention provides an linkage assembly that includes an arm-movement coordinating element to overcome the foregoing and other drawbacks of the prior art. A linkage assembly is provided that offers coordinated movement of its arms in unison while retaining much of the same general configuration and the compactness of size that is offered by the linkage assemblies disclosed in the referenced Eberhard and Tri/Mark Patents—a linkage assembly that can, therefore, be substituted for the linkage assemblies of the Eberhard and Tri/Mark Patents without requiring much, if any, rearrangement of other components due to significant differences in size or shape.
Whereas the linkage assemblies of the Eberhard and Tri/Mark patents have arms that are separately directly engaged by push button actuators, linkage assemblies embodying the preferred practice of the present invention have arms that are not directly engaged by a push button actuator and that are not independently moved by the actuator. The linkage assembly of the present invention provides a frame-supported slide that is directly engaged by a push button actuator and that translates along a path of travel defined by the frame in response to movement of the actuator along a path of movement that aligns with the path of travel of the slide.
Instead of utilizing direct engagement of the arms by a push button actuator to effect arm movement in response to actuator movement, the present invention employs a slide that is connected by a pin-like formation to the arms to coordinate the movement of the arms; and, it is the slide that is directly engaged and moved by the push button actuator, not the arms themselves. Instead of utilizing direct engagement of the arms with stops that are defined by the frame to limit ranges of permitted pivotal movement of the arms, the present invention utilizes interactions of the slide with the frame to limit the range of travel of the slide which, in turn, limits the range of pivotal movement of the arms due to the provision of a pinned type of connection between the slide and the arms that serves to coordinate the movements of the arms with movements of the slide, and that prevents arm movement when movement of the slide is prevented.
The “pinned” connection of the arms to the slide may be effected by utilizing a separate pin connected to the slide that extends through openings formed in overlapping inner end regions of the arms. However, in preferred practice, the “pinned” connection of the arms to the slide is effected by utilizing a die-cast slide that has a pin-shaped formation that extends through openings formed in overlapping inner end regions of the arms.
In the linkage assembly of the present invention, it is the slide's engagement with the frame that serves to limit the range of movement of the arms, not the arms' independent engagement with the frame. Thus, the arms are not separately and independently “stopped” at opposite ends of their range of pivotal movement by the frame; rather, the pivotal movement of the arms is “stopped” in a coordinated manner by the slide's engagements at opposite ends of its travel path with the frame.
Instead of providing no element to which an optional emergency release cable can be connected to concurrently pivot the arms to release the latches (as may be needed by a person who has been inadvertently locked beneath a tonneau cover or within the confines of a large tool box or other enclosure), the present invention provides access (at a location between overlapping inner end regions of the arms that are connected by a slide-carried pin) for an emergency release cable to be connected to the slide-carried pin formation that interconnects the slide and the arms for coordinated movement.
What the present invention offers, in a nutshell, is a linkage assembly that can be substituted for the linkage assemblies disclosed in the Eberhard and Tri/Mark Patents to perform the intended functions thereof in what is believed to be a more reliable and better coordinated manner while also offering the option of having an emergency release cable attached to its slide-carried pin —an emergency cable that can be grasped and pulled from the interior of an enclosure to release latches that are connected to the arms of the linkage assembly to open the enclosure.
The arm movement coordinating slide not only ensures that the arms pivot in unison to operate two latches that are connected by separate operating links to separate ones of the arms, but also ensures that the arms pivot in unison in returning to their non-operated positions. When utilized to operate a pair of link-connected latch assemblies that each carries a spring that biases its operating link toward a non-operated position, the arm movement coordinating slide can permit only one of these latch carried springs (in the event that the other of the latch carried springs is broken) to cause both of the operating links and both of the arms to return to their non-operated positions after the latches have been concurrently operated by pivoting the arms and moving the links to their operated positions.
In one form of the invention, a linkage assembly is provided for moving a plurality of latch-connected links to operate latches that are connected to the links in response to movement of a push button actuator along a path of movement defined by a housing to which the actuator is connected. The linkage assembly includes a frame adapted for connection to the housing; a first arm having a first outer end adapted for connection to one of the latch connected links, having a first inner end, and having a first central region located between the first inner end and the first outer end; and, a second arm having a second outer end adapted for connection to another of the latch connected links, having a second inner end, and having a second central region located between the second inner end and the second outer end. The linkage assembly additionally includes a slide connected to the frame and adapted for being engaged by the actuator to be moved along a path of travel defined by the frame in response to movement of the actuator along the path of movement defined by the housing; means for being connected to the frame, for defining a first pivot axis that extends through the first central region and about which the first arm pivots relative to the frame, and for defining a second pivot axis that extends through the second central region and about which the second arm pivots relative to the frame, wherein the first and second pivot axes are located on opposite sides of the path of travel of the slide at substantially equal distances from the path of travel of the slide, and wherein the first and second pivot axes extend substantially parallel to each other within a plane that extends substantially perpendicular to the path of travel of the slide; and, means for being connected to the slide, for defining a third pivot axis that substantially parallels the first and second pivot axes and that extends through the first inner end region of the first arm and through the second inner end region of the second arm and through the slide, and for concurrently pivoting the first and second arms about the first and second pivot axes, respectively, in response to movement of the slide along the path of travel of the slide to move the first and second outer end regions of the first and second arms to move the one and another links to operate latches connected to the one and another links in response to movement of the actuator along the path of movement of the actuator.
These and other features, and a fuller understanding of the invention may be had by referring to the following description and claims, taken in conjunction with the accompanying drawings, wherein:
Reference is made the aforementioned Push Button Operator Utility Case (application Ser. No. 09/698,416, the disclosure of which is incorporated herein by reference) which, at
Reference also is made to the aforementioned Tri/Mark U.S. Pat. No. 6,231,091 (the disclosure of which is incorporated herein by reference) which discloses a linkage assembly (referred to as a “control mechanism 10”) that can be used with a push button assembly (referred to as an “actuator assembly 22”). The linkage assembly of the present invention can be used with push button assemblies of the type disclosed in the Tri/Mark Patent, and can be substituted for the linkage assembly disclosed in the Tri/Mark Patent.
Referring to
The push button assembly 100 has a push button actuator 120 that is shown in its normal, forwardly projecting, non-operated position in
The actuator cam 130 can be pivoted between a locked position depicted in
Referring to
How the push button assemblies 100 and 1100 differ resides in the presence of additional features that are illustrated in
Stated in another way, the push button assemblies 100, 1100 depicted in the drawings hereof are typical of a number of commercially available push button assemblies that carry actuator cams that are pivotal between locked and unlocked positions, and that are movable forwardly and rearwardly with push button actuators. If other information regarding this general type of push button assembly is needed, it can be found in the referenced Eberhard and Tri/Mark Patents.
The drawings hereof show two very similar forms of linkage assemblies. Features of a first form, indicated generally by the numeral 200, are illustrated in
The first and second forms 200, 1200 may be used with or without an emergency release member that can be grasped and moved to effect operation of one or more latches connected to the linkage assemblies 200, 1200. In
Because the first and second linkage assembly forms 200, 1200 have corresponding components that are very similarly configured and that function in substantially the same manner, corresponding numerals that differ by a magnitude of one thousand have been used to designate the components that correspond. By utilizing corresponding numerals that differ by a magnitude of one thousand to designate components of the linkage assemblies 200, 1200 that correspond in configuration, function and operation, at least some of the need to describe the features and components of the second linkage assembly 1200 by duplicating the description of the features and components of the first linkage assembly 200 is eliminated—it being understood that the description of each of the components of the first linkage assembly 200 applies equally to the correspondingly numbered components of the second linkage assembly 1200 unless stated otherwise.
Referring to
The rivets 510, 610 constitute a “means” for pivotally mounting the arms 500, 600 on opposite side portions of the component mounting leg of the frame 200 for pivotal movement about axes 520, 620 that extend parallel to each other within a common plane at locations on opposite sides of the path of travel 410 of the slide 400. Likewise, that the rivets 1510, 1610 constitute a “means” for pivotally mounting the arms 1500, 1600 on the frame 1200 for pivotal movement about axes 1520, 1620 that extend parallel to each other within a common plane at locations on opposite sides of the path of travel 1410 of the slide 1400.
The arms 500, 600 can pivot between the extended, non-operated position shown in
Outer end regions 550, 650 of the arms 500, 600, and outer end regions 1550, 1650 of the arms 1500, 1600, are provided with connection holes 560, 660 and 1560, 1660, respectively, that can be used to connect latch operating links thereto in a manner that is illustrated in the referenced Eberhard and Tri/Mark Patents. Latches that are operated by links connected to the outer end regions 550, 650 of the arms 500, 600 and to the outer end regions 1550, 1650 of the arms 1500, 1600 can be of a wide variety of types, such as are disclosed in the referenced Eberhard and Tri/Mark Patents. Inasmuch as the linkage assemblies 200, 1200 can be used with a number of commercially available push button assemblies of the general type illustrated by the numeral 100 herein (and by the numeral 22 in the referenced Tri/Mark Patent), with a wide variety of links that connect with the outer end regions 550, 650, 1550, 1650 of the arms 500, 600, 1500, 1600 and with a wide variety of latches that are operated by links connected to the end regions 550, 650, 1550, 1650 of the arms 500, 600, 1500, 1600, and inasmuch as such push button assemblies, links and latches form no part of the present invention, the reader is referred to the Eberhard and Tri/Mark Patents (and to the other patents and applications referenced above) if more information is desired regarding these commercially available components of latch and lock systems.
Referring to
The openings 330, 1330 may be provided with flat surface portions 340, 1340 to engage correspondingly configured flat surface portions of the housing of a push button assembly to prevent the L-shaped frames 300, 1300 from rotating on the housings of such push button assemblies. The mounting legs 310, 1310 may be held in place on the housing of a push button assembly with a simple spring clip of the type depicted in the Tri/Mark Patent and indicated in
Referring to
Referring to
Extending away from the other side of the flat central portion 430 of the slide 400 is a block-like formation 450 that slip-fits between opposite sides 377 of the opening 375 formed through the depressed central portion 370 to guide the slide 400 for movement along the path of travel 410. Referring to
Referring to
The primary device for moving the slide 400 along its path of travel 410 is the actuator cam 130 of the push button assembly 100; and, the primary device for moving the slide 1400 along its path of travel 1410 is a similar actuator cam of a similar push button assembly (not shown). Referring to
When the cables 700, 1700 are pulled, the slides 400, 1400 are moved to their extended positions (shown in
While significant features of the invention reside in the capability of the improved linkage mechanism to coordinate the movement of a pair of frame-pivoted arms that operate separate links connected to separate latches, advantages also reside in utilizing the improved linkage assembly of the present invention to operate a single latch connected by a single link to only one of the frame-pivoted arms. The engagement of the arm movement coordinating slide 400, 1400 with sizable surfaces areas of the frame 300, 1300 at opposite ends of its range of movement to “stop” or limit the range of movement of the arms is believed to be a more reliable and less wear-prone method of stopping or limiting the travel of the arms than is provided where the pivoted arms themselves make contact with relatively small formations defined by the frame; and, the direct engagement by the actuator cam with the slide 400, 1400 provides less wear to the assembled mechanism than is incurred if end regions of the arms slide across the cam as the cam moves rearwardly to cause pivoting of the arms—as occurs in the earlier designs disclosed in the referenced Eberhard and Tri/Mark Patents.
Although the invention has been described in its preferred form with a certain degree of particularity, it is understood that the present disclosure of the preferred form has been made only by way of example, and that numerous changes in the details of construction and the combination and arrangement of parts may be resorted to without departing from the spirit and scope of the invention as hereinafter claimed. It is intended to protect whatever features of patentable novelty exist in the invention disclosed.
This application claims the benefit of U.S. provisional application Ser. No. 60/377,117 entitled LINKAGE ASSEMBLY FOR OPERATING ONE OR MORE LATCHES filed May 2, 2002 by Lee S. Weinerman et al the disclosure of which is incorporated herein by reference. The present application is a continuation-in-part of one utility application, and also is a continuation-in-part of each of five design applications, namely: 1) Utility application Ser. No. 09/698,416 filed Oct. 27, 2000 now U.S. Pat. No. 6,454,320 by Lee S. Weinerman et al entitled PUSH BUTTON OPERATORS FOR LATCHES AND LOCKS, AND LOCKING SYSTEMS EMPLOYING LOCKABLE PUSH BUTTON OPERATORS, referred to herein as the “Push Button Operator Utility Case” or as the “Eberhard Patent”);2) Design application Ser. No. 29/160,445 filed May 10, 2002 now U.S. Design Pat. No. D471,427 by Lee S. Weinerman et al entitled LINKAGE ASSEMBLY FOR USE WITH PUSH BUTTON LATCH AND LOCK OPERATING ASSEMBLIES;3) Design application Ser. No. 29/159,991 filed May 2, 2002 now U.S. Design Pat. No. D467,786 by Lee S. Weinerman et al entitled LINKAGE ASSEMBLY FOR USE WITH PUSH BUTTON LATCH AND LOCK OPERATING ASSEMBLIES;4) Design application Ser. No. 29/152,852 filed Dec. 27, 2001 now U.S. Design Pat. No. D463,247 by Lee S. Weinerman et al entitled PORTIONS OF A CLAMP BRACKET ASSEMBLY FOR USE WITH PUSH BUTTON LATCH AND LOCK OPERATING ASSEMBLIES;5) Design application Ser. No. 29/152,851 filed Dec. 27, 2001 now U.S. Design Pat. No. D471,426 by Lee S. Weinerman et al entitled PORTIONS OF A CLAMP BRACKET ASSEMBLY FOR USE WITH PUSH BUTTON LATCH AND LOCK OPERATING ASSEMBLIES; and,6) Design application Ser. No. 29/142,044 filed May 17, 2001 now U.S. Design Pat. No. D464,555 by Lee S. Weinerman et al entitled PORTIONS OF A CLAMP BRACKET ASSEMBLY FOR USE WITH PUSH BUTTON LATCH AND LOCK OPERATING ASSEMBLIES. The design applications identified above were filed as continuations-in-part of one or more earlier-filed design applications; therefore, the “continuing data” of the present application includes more than the information that is set out above. In particular: A) The aforementioned design application Ser. No. 29/160,445 filed May 2, 2002 by Lee S. Weinerman et al entitled LINKAGE ASSEMBLY FOR USE WITH PUSH BUTTON LATCH AND LOCK OPERATING ASSEMBLIES was filed as a continuation-in-part of the utility application identified above and as a continuation-in-part of each of the four other design cases identified above;B) The aforementioned design application Ser. No. 29/159,991 filed May 2, 2002 by Lee S. Weinerman et al entitled LINKAGE ASSEMBLY FOR USE WITH PUSH BUTTON LATCH AND LOCK OPERATING ASSEMBLIES was filed as a continuation-in-part of the utility application identified above and as a continuation-in-part of each of the three earlier-filed design cases identified above;C) The aforementioned design application Ser. No. 29/152,852 was filed as a continuation-in-part of the aforementioned design application Ser. No. 29/142,044 filed May 17, 2001 by Lee S. Weinerman et al entitled PORTIONS OF A CLAMP BRACKET ASSEMBLY FOR USE WITH PUSH BUTTON LATCH AND LOCK OPERATING ASSEMBLIES;D) The aforementioned design application Ser. No. 29/152,851 was filed as a continuation-in-part of the aforementioned design application Ser. No. 29/142,044 filed May 17, 2001 by Lee S. Weinerman et al entitled PORTIONS OF A CLAMP BRACKET ASSEMBLY FOR USE WITH PUSH BUTTON LATCH AND LOCK OPERATING ASSEMBLIES; and,E) The aforementioned design application Ser. No. 29/142,044 was filed as a continuation-in-part of design application Ser. No. 29/131,819 filed October 27, 2000 by Lee S. Weinerman et al entitled CLAMP BRACKET ASSEMBLY WITH J-SHAPED ARMS FOR USE WITH PUSH BUTTON LATCH AND LOCK OPERATING ASSEMBLIES issued Aug. 28, 2001 as Patent D-447,042 (referred to herein as the “Push Button Operator Design Case”), which was filed as a continuation-in-part of application Ser. No. 29/113,063 filed Oct. 28, 1999 by Lee S. Weinerman et al entitled FRONT EXTERIOR PORTION OF A LATCH OR LOCK HOUSING WITH PUSH BUTTON OPERATOR issued Jul. 17, 2001 as Patent D-445,015. The disclosures of all of the aforementioned utility and design applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
113070 | Loeffelholz et al. | Mar 1871 | A |
417589 | Rose | Dec 1889 | A |
480148 | Theby | Aug 1892 | A |
491824 | Walker | Feb 1893 | A |
767567 | Keil | Aug 1904 | A |
876300 | Couret | Jan 1908 | A |
925455 | Campbell | Jun 1909 | A |
1018077 | Petterson | Feb 1912 | A |
1058346 | Berstler | Apr 1913 | A |
1174652 | Banks | Mar 1916 | A |
1368141 | Hagstrom | Feb 1921 | A |
1531605 | Gaynor | Mar 1925 | A |
1556864 | Mendenhall | Oct 1925 | A |
1571453 | Maxon | Feb 1926 | A |
1672901 | North | Jun 1928 | A |
1908980 | Heyel | May 1933 | A |
1965939 | Jacobi | Jul 1934 | A |
2059479 | North | Nov 1936 | A |
2322040 | Maruri | Jun 1943 | A |
2683978 | Jacobi | Jul 1954 | A |
2705884 | Craig | Apr 1955 | A |
2728214 | Craig | Dec 1955 | A |
2755519 | Xan Der | Jul 1956 | A |
2772908 | Craig | Dec 1956 | A |
2911247 | Corbin | Nov 1959 | A |
2987907 | Cockburn et al. | Jun 1961 | A |
3054634 | Westerdale | Sep 1962 | A |
3545799 | Gertsfeld | Dec 1970 | A |
3602017 | Bauer | Aug 1971 | A |
3834780 | McClellan et al. | Sep 1974 | A |
3883164 | Galbreath et al. | May 1975 | A |
3964280 | Kelton | Jun 1976 | A |
4059296 | Panourgias | Nov 1977 | A |
4488669 | Waters | Dec 1984 | A |
4601499 | Kim | Jul 1986 | A |
4884831 | Emon | Dec 1989 | A |
4892338 | Weinerman et al. | Jan 1990 | A |
4951486 | Braun et al. | Aug 1990 | A |
4978152 | Bisbing | Dec 1990 | A |
D313337 | Haskell | Jan 1991 | S |
5042853 | Gleason et al. | Aug 1991 | A |
D324635 | Weinerman et al. | Mar 1992 | S |
5265450 | Doyle | Nov 1993 | A |
5308126 | Weger, Jr. et al. | May 1994 | A |
5346266 | Bisbing | Sep 1994 | A |
5439260 | Weinerman et al. | Aug 1995 | A |
5445326 | Ferro et al. | Aug 1995 | A |
5526660 | Bennett et al. | Jun 1996 | A |
D371300 | Mordick | Jul 1996 | S |
5564295 | Weinerman et al. | Oct 1996 | A |
5586458 | Weinerman et al. | Dec 1996 | A |
5595076 | Weinerman et al. | Jan 1997 | A |
5611224 | Weinerman et al. | Mar 1997 | A |
5816630 | Bennett et al. | Oct 1998 | A |
5884948 | Weinerman et al. | Mar 1999 | A |
5984383 | Parikh et al. | Nov 1999 | A |
6012747 | Takamura et al. | Jan 2000 | A |
D429141 | Antonucci et al. | Aug 2000 | S |
6113160 | Johansson et al. | Sep 2000 | A |
D432389 | Johansson et al. | Oct 2000 | S |
6231091 | Gleason et al. | May 2001 | B1 |
D447042 | Weinerman et al. | Aug 2001 | S |
6349577 | Hansen et al. | Feb 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
60377117 | May 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 29160445 | May 2002 | US |
Child | 10227929 | US | |
Parent | 29159991 | May 2002 | US |
Child | 29160445 | US | |
Parent | 29152851 | Dec 2001 | US |
Child | 29159991 | US | |
Parent | 29152852 | Dec 2001 | US |
Child | 29152851 | US | |
Parent | 29142044 | May 2001 | US |
Child | 29152852 | US | |
Parent | 29131819 | Oct 2000 | US |
Child | 29142044 | US | |
Parent | 09698416 | Oct 2000 | US |
Child | 29131819 | US | |
Parent | 29113063 | Oct 1999 | US |
Child | 09698416 | US | |
Parent | 10227929 | US | |
Child | 09698416 | US | |
Parent | 29160445 | US | |
Child | 10227929 | US | |
Parent | 29159991 | US | |
Child | 29160445 | US | |
Parent | 29152852 | US | |
Child | 29159991 | US | |
Parent | 29152851 | US | |
Child | 29152852 | US | |
Parent | 29142044 | US | |
Child | 29152851 | US | |
Parent | 09698416 | US | |
Child | 29142044 | US | |
Parent | 10227929 | US | |
Child | 29142044 | US | |
Parent | 29159991 | US | |
Child | 10227929 | US | |
Parent | 29152852 | US | |
Child | 29159991 | US | |
Parent | 29152851 | US | |
Child | 29152852 | US | |
Parent | 29142044 | US | |
Child | 29152851 | US | |
Parent | 09698416 | US | |
Child | 29142044 | US | |
Parent | 10227929 | US | |
Child | 29142044 | US | |
Parent | 29152851 | US | |
Child | 10227929 | US | |
Parent | 09698416 | US | |
Child | 29152851 | US | |
Parent | 29131819 | US | |
Child | 09698416 | US | |
Parent | 29113063 | US | |
Child | 29131819 | US | |
Parent | 10227929 | US | |
Child | 29131819 | US | |
Parent | 29152852 | US | |
Child | 10227929 | US | |
Parent | 09698416 | US | |
Child | 29152852 | US | |
Parent | 29131819 | US | |
Child | 09698416 | US | |
Parent | 29113063 | US | |
Child | 29131819 | US |