The present application is a 35 U.S.C. §§ 371 national phase conversion of PCT/EP2016/065186, filed Jun. 29, 2016, which claims priority to Irish Short-Term Patent Application Nos. S2015/0191 and S2015/0203, filed Jun. 29, 2015 and Jul. 16, 2015, respectively, the contents of which are incorporated herein by reference. The PCT International Application was published in the English language.
The present invention relates to an improved linkage system for a forklift truck.
It is known to use forklift trucks to remove and place loads on surfaces of varying depths and heights. Such forklifts generally comprise a wheeled chassis on which is mounted an upright mast and means for carrying loads. Usually the means for carrying loads are in the form of L-shaped members such as forks or tines that are able to engage the load to be carried. For the purpose of this specification and unless otherwise noted explicitly, the terms load carrying means, forks or tines shall be used interchangeably to describe the means by which a forklift truck carries its load. It is also known that such forklift trucks can be adapted to be mounted on a carrying vehicle. These forklift trucks are conventionally known as ‘truck mounted’ forklifts or ‘piggy-back’ forklifts.
Conventional forklifts are rated for loads at a specific maximum weight when at a specified forward centre of gravity. The forklift and load are regarded as a unit that has a continually varying centre of gravity with every movement of the load. Accordingly, all forklift trucks have to be designed to provide enough counterbalance to counteract the tipping moment caused by lifting the specified rated load capacity for stacking. More importantly the forklift truck must also have enough counter-balancing weight for travelling mode where the dynamic forces experienced require greatly increased stability.
Conventional counterbalance forklifts carry extra counterbalance weight on the rear of the truck to ensure safe operation while stacking or travelling. However, truck mounted forklifts are generally of straddle frame construction which enables the load to be carried substantially between the front wheels during travelling mode. This greatly improves stability without the requirement for additional counterweight. However, straddle frame construction generally requires a reach system to enable the forks to engage the load especially on a trailer bed or raised platform.
Generally, reach systems comprise, for example, moving mast systems, telescopic forks or pantograph linkage arrangements. When the forks are in an extended position, the load capacity that can be borne by the forks is substantially reduced. This can be overcome with a combination of additional machine weight, extra counter weight and stabiliser or jack legs mounted in the front of the forklift. However, truck mounted forklifts must be of lightweight construction in order to ensure that they can be mounted on the carrying vehicle. It is therefore advantageous to employ means to increase forklift capacity without increasing the forklift weight.
A pantograph reach system and telescopic forks tilt from the mast or fork carriage. This results in a magnification of tilt moment as the reach of the forks is extended from the upright mast. The practical effect of this is increased tilt stresses and reduced control of the tilt function.
Further problems associated with both pantograph reach systems and telescopic forks are increased costs. Telescopic forks whilst being the most compact of the above three systems are an extremely expensive component for forklift trucks. The means by which the pantograph system operates requires a duplication of components, for example linkage pieces, channels, bearings and so forth to operate. Not only does this increase the cost of the forklift truck, it also creates additional weight that the forklift must counterbalance in order to operate effectively at extended reach. Furthermore the pantograph system forms a substantially increased overhang when the forklift is mounted on a carrying vehicle. This causes a problem due to strict road transport regulations for carrying vehicles such as trucks or lorries.
Each of the aforementioned problems is of increased importance when the forklift is required to reach across a trailer bed to offload a pallet without moving the forklift to the other side of the trailer. This is known as a double reach system. These systems normally comprise one or more of the aforementioned systems for examples, a combination of telescopic forks attached to a moving mast system, telescopic forks attached to a pantograph system or a pantograph system used in conjunction with a moving mast system.
Although this linkage system is mainly described in relation to truck mounted forklifts, conventional reach systems are also used for various warehouse forklifts and straddle trucks. In this application, regular pantograph reach systems are commonly used but do cause restriction when entering racking systems. This is especially evident on a double deep pantograph reach truck where loads must be accessed two deep in warehouse racking systems. These racking systems are generally built to maximise capacity and therefore use the minimum allowable spacing between racking shelves. This causes problems for conventional pantograph reach systems as another set of channels is mounted on the fork carriage and would therefore need much increased space between the shelves when accessing the inner pallet. For this reason manufacturers use a double pantograph system to keep the required height clearance down, however this comes with much increased cost, complexity, and load overhang. In addition, these systems are less rigid, have more moving parts and very much restrict visibility. However this application requires the fork carriage tilt angle to remain constant throughout the transition between fully retracted to fully extended which was a problem for previous low profile linkage system designs.
It is therefore an object of the present invention to provide a linkage system and stability roller system that are designed to overcome the aforementioned problems.
It is acknowledged that the term ‘comprise’ may, under varying jurisdictions be provided with either an exclusive or inclusive meaning. For the purpose of this specification, and unless otherwise noted explicitly, the term comprise shall have an inclusive meaning that it may be taken to mean an inclusion of not only the listed components it directly references, but also other non-specified components. Accordingly, the term ‘comprise’ is to be attributed with as broad an interpretation as possible within any given jurisdiction and this rationale should also be used when the terms ‘comprised’ and/or ‘comprising’ are used.
According to a first aspect of the invention there is provided a forklift linkage system for movement, comprising;
The advantage of the linkage system of the invention is that it is able to control the angle of the movement of the fork carriage assembly in the second plane as reach is extended or retracted.
Movement of the linkage system is occasioned by the application of force to the linkage system. Optionally the force can be applied by an actuator.
Ideally one end of the actuator is pivotally connected to the main long link and the other end of the actuator is connected to a fixed location on the channel assembly. Alternatively the actuator can be pivotally connected to the levelling carriage assembly, channel assembly, main long link or short link or any combination thereof.
The force applied by the actuator becomes a translational movement in which the actuator forces the levelling carriage assembly to move in a first plane within the channel, thereby moving the main long link and consequently forcing the fork carriage assembly to move along a second plane which is substantially perpendicular to the first plane. It is understood that any number of actuators can be used as required by the person skilled in the art.
Optionally in a further aspect of the invention, the levelling link means of the linkage system is a link arm or either a hydraulic or electrical ram which enables the linkage mechanism to provide an independent tilt mechanism. It is of course understood that the levelling link of the linkage system is not limited to this type of independent tilt mechanism any suitable means to achieve an independent tilt known to a person skilled in the art can also be used. In operation the fork carriage assembly will pivot about the pivot point connecting the main long link. In this way the reach of the load carrying means is extended without magnification of the tilt moment as the reach is extended from the upright fork mast. This enables the linkage system to compensate for a load's tendency to angle the load carrying means toward the ground, which in turn reduces the risk of slippage of a load from the load carrying means.
In a further aspect of the invention, the distance between the pivot points on the main long link, that is, the distance between the pivot point connecting the levelling carriage assembly to the main long link and the pivot point connecting the short link to the main long link is substantially equal to the distance between the pivot point connecting the short link to the main long link and the fork carriage assembly to the main long link are substantially equal.
In a further aspect of the invention, the distance between the pivot point connecting the short link to the main long link and the pivot point connecting the short link to the channel assembly is substantially equal to either of the distances between the pivot point connecting the levelling carriage assembly to the main long link and the pivot point connecting the short link to the main long link or the pivot point connecting the short link to the main long link and the fork carriage assembly to the main long link. Additionally, the pivot point connecting the levelling carriage assembly to the main long link and the pivot point connecting the main long link to the fork carriage assembly is substantially equal to the pivot point connecting the levelling link to the fork carriage and the pivot point connecting the levelling link to the levelling carriage assembly. Similarly, the distance between and orientation of the two pivot points connecting the links on the fork carriage assembly are substantially similar to those connecting the links on the levelling carriage assembly.
In a further aspect of the invention, the linkage system of the invention is adapted for use with a material handling device. Ideally in this aspect of the invention a load carrying means is attached to the fork carriage assembly of the linkage system. Optionally, the fork carriage assembly comprises at least one component to which the main long link and levelling link are pivotally connected. It is of course understood that fork carriage assembly can comprise any number of components suitable to achieve this purpose.
In a further aspect of the invention the actuator comprises a rod or a hydraulic or electrical ram. It is of course understood that any other type of suitable actuator known to the person skilled in the art could also be employed for this purpose.
In a further aspect of the invention, the levelling carriage assembly comprises components that are movable between a first and second position within the channel assembly. For example such components include a sliding mechanism or a rolling component. It is of course understood that any other type of suitable component known to the person skilled in the art could also be employed for this purpose.
In a further embodiment of the invention, the channel assembly is movably or slidably attached to an upright member such as an upright mast of a forklift truck.
In a further aspect of the invention, there is provided a forklift truck provided with the linkage system of the invention. Conveniently, the forklift truck is adapted to be mounted on a carrying vehicle. Ideally in this aspect of the invention, the load carrying means comprises a fork carriage and forks which are attached to the fork carriage assembly of the linkage system.
Advantageously in this aspect of the invention, the linkage system controls the angle of the load carrying means relative to the upright fork mast which houses the channel of the linkage system as the load carrying means moves between a retracted and extended position.
A further advantage is realised by the ability to fully retract the linkage system to within the confines of the channel thus reducing any overhang of the system.
In a further aspect of the invention, any one of the links of the linkage system are optionally provided with an adjustable length at either end to account for manufacturing deviations or alternatively to enable an operator to adjust the tilt setting of the load carrying means.
It is understood that the term reach system means a system that is suitable for altering the reach of a load carrying means such as for example, moving mast systems, telescopic forks or pantograph linkage arrangements. In a further aspect, the reach system is provided with load carrying means wherein the load carrying means are any one of stand alone detachable or adjustable forks, welded forks or alternatively a fork carriage having forks or tines attached thereto.
In a further aspect of the invention, the main forklift mast is provided with a vertically aligned roller stabilisation system to allow side shift of the entire mast while the forks are bearing a load. Single or multiple rollers can be used as required or any other components that will allow a sliding motion of the mast under load. Conventional non sliding supports can also be used if mast sideshifting is not required or if an integrated fork carriage sideshift is used.
It is understood that conventional wheel stabilisation mechanisms could also be used with the linkage system of the invention.
It is also understood that although the linkage system of the invention and roller stabilisation system are described above with reference to a single component system. It is also understood that in practicable application the components of these systems can be increased as desired and that the increased number of components can by connected by various cross members, pins and so forth as required by a person skilled in the art.
Further aspects of the present invention will become apparent from the ensuing description which is given by way of example only.
The invention will now be described more particularly with reference to the accompanying drawings, which show by way of example only various embodiments of the invention.
In the drawings,
Referring now to the drawings and specifically to
Forklift truck 300 is type of forklift truck known as a truck mounted forklift truck. It is understood that the linkage system of the invention is not limited to use with this type of forklift truck. The linkage system of the invention is suitable for use with any forklift truck known to a person skilled in the art. The forklift 100 is a straddle frame design and employing an upright lifting mast 250 in which the linkage system 100 or 200 is incorporated. The forklift version shown uses a double reach system. The lift mast 250 firstly extends forward on a vertically captive roller or slider system to engage a load 402 in close proximity to the front wheels of the forklift as shown in
Although not shown, it is understood that adjustable forks, a fork positioning means and side shift mechanisms are easily incorporated into overall design of the forklift truck or reach mechanism as desired.
Referring to
The linkage system 100 in its basic form comprises of several assembled parts. Referring mainly to
In an alternative arrangement, rams 170 can be mounted at any suitable position on the main long link 130 or indeed on the short link 140. It is also possible to mount ram 170 directly between main long link 130 and short link 140. It is understood that any number of rams can be used as required by the person skilled in the art. Fork arms 180 or other suitable load carrying means are mounted on fork carriage assembly 150 in a conventional manner.
In this embodiment of the linkage system 100, the distance from point 111 to point 131 is substantially equal to the distance from point 131 to point 151 and point 131 to point 121. Similarly, the distance from point 111 to point 151 is substantially equal to the distance from point 112 to point 152. In addition, the distance between and orientation of point 111 and point 112 is substantially similar to the distance between and orientation of point 151 and point 152. The linkage configuration forms an ever changing sliding parallelogram which in combination with the other links keeps the forks or load carrying means substantially level whilst moving from an extended to retracted position.
The movement of linkage system 100 is shown in line diagram form in
Truck mounted forklifts are carried on the rear of a trailer in-between deliveries and therefore need to be as light as possible. For this reason a straddle design is used so that the forklift has a high lift capacity compared to the unladen forklift weight. In normal operation, the forklift 300 extends the primary reach system to engage the load 402 and then lowers the stabilisers 350 as shown in
Referring to
The main components of the fork carriage assembly 501 are fork support carriage 502, connection assembly 503 and side shift cylinder 161. Fork support carriage 502 includes an upper fork support board 154 and the lower fork support board 168 connected together by a first support plate 157 and a second support plate 167. Between the plates 157 and 167 is the main pivot shaft 166 for the reach system which also acts as the sliding member for the side shift action.
Main pivot shaft 166 is also connected to connection assembly 503 through the main support bosses 155 and 162 which are mounted on the main support plates 158 and 165 which are connected by lower support plate 163. The movement of the side shift is controlled by a hydraulic cylinder 161 mounted between the fork support carriage 502 on support plate 157 and on connection assembly 503 on main support plate 165. A portion of the lower fork support board 168 is shown cut away in
Also provided in this embodiment are two trailer rest pads 602 and 603 mounted on the mast in place of the rollers 290. This is because the side shift is independent of the mast in the integrated sideshift system. The trailer rest pads will rest against the trailer during loading and unloading of the trailer from the far side. The unloading procedure works in the same way as shown in
For the purposes of clarity, the description of linkage systems and stability roller system above references components mainly as single parts. However, in practicable application of these systems most components are duplicated and connected by various cross members, pins etc, many of which can be identified in perspective views
Although not shown it is understood that an adjustable length link can be provided at either end of the arms or linkage components to account for manufacturing deviations or alternatively to enable an operator to adjust the tilt setting of the load carrying means.
It is understood that any suitable type of load carrying means can be attached onto any type of fork carriage that enable pivot points 151 and 152 to be fitted as required. Various types of fork positioner, side shift or wheel stabilisation mechanism can be incorporated for use with the linkage systems 100 or 200.
It will of course be understood that the invention is not limited to the specific details described herein, which are given by way of example only, and that various modifications and alterations are possible within the scope of the invention as defined in the attached claims.
Number | Date | Country | Kind |
---|---|---|---|
S2015/0191 | Jun 2015 | IE | national |
S2015/0203 | Jul 2015 | IE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/065186 | 6/29/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/001507 | 1/5/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6079935 | Brunner et al. | Jun 2000 | A |
9309097 | O'Keeffe | Apr 2016 | B2 |
20100068023 | Kuck | Mar 2010 | A1 |
20120171004 | Jones, Jr. | Jul 2012 | A1 |
20120263565 | O'Keeffe | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
S48-38682 | Nov 1973 | JP |
WO 2015177515 | Nov 2015 | WO |
Entry |
---|
International Search Report dated Oct. 20, 2016 in corresponding PCT International Application No. PCT/EP2016/065186. |
Written Opinion dated Oct. 20, 2016 in corresponding PCT International Application No. PCT/EP2016/065186. |
Number | Date | Country | |
---|---|---|---|
20180179039 A1 | Jun 2018 | US |