The present invention relates to a linking device for sewing or linking edges of fabric, for example for sewing or linking the toes of stockings or other tubular knitted articles.
In the textile field, and especially in the hosiery and knitting industry, the production is well known of tubular knitted articles, for example stockings, socks and tights, using circular knitting machines. In some cases, the toe of the tubular knitted article shall be closed by linking or sewing. There are circular knitting machines producing tubular knitted articles with closed toe. These machines are however complex and expensive.
In many cases, the tubular knitted article exits from the circular knitting machine with the open toe, and shall be transferred to a sewing or a linking machine. To this end, there are devices taking the tubular knitted article from the needle cylinder of the circular knitting machine and transferring it to the sewing machine or the linking machine. Examples of this type of devices are disclosed in WO2004/035894, WO2010/086708, US20160024695.
Usually, the linking devices comprise two bowed needles provided with reciprocating rotary motion for linking by means of two yarns. A critical aspect of these devices is the adjustment of the needle position with respect to the members on which the tubular knitted article is engaged, constituted for example by spikes of a linking machine, or by pick-up hooks that are also used to take the tubular knitted article from the needle cylinder of the circular knitting machine (see US20160024695).
There is therefore a need for a simpler linking device wherein the adjustment of the needle position is easier.
According to a first aspect, the invention relates to a linking device comprising a first bowed needle mounted on a first shaft and a second bowed needle mounted on a second shaft. The first shaft and the second shaft are mutually inclined to each other, i.e. they are so arranged that their axes are not parallel to each other. They are controlled in order to pivot reciprocatingly around a pivoting axis of the first shaft and a pivoting axis of the second shaft, respectively. The linking device also comprises a first pin rigidly coupled to the first shaft and pivoting therewith, and a second pin rigidly coupled to the second shaft and pivoting therewith. A slider connects the first pin and the second pin, being slidingly mounted on both the pins. By driving one of the two shafts into reciprocating pivoting motion, for example by means of an electric motor, said one shaft can transfer the motion to the other shaft through the coupling provided by means of the two pins and the slider mounted slidingly on them.
In this way a particularly simple device is provided, easy to be maintained and adjusted, of limited costs and very efficient and accurate.
Further advantageous features and embodiments of the linking device will be described below with reference to the drawing, and in the attached claims.
The first pin may be, for instance, parallel to the first shaft and spaced therefrom. Analogously, the second pin may be parallel to the second shaft and spaced therefrom.
In advantageous embodiments, the two shafts are oriented at 90° to each other, i.e. their axes are spaced from each other and lie on different planes, but are orthogonal to each other in a plan view. The slider may have two sliding seats, wherein the two pins are slidingly engaged. The two seats may be rigidly connected to each other, i.e. the slider may comprise a single rigid component where the two sliding seats for the pins are provided. The distance between the two seats, i.e. the distance between two parallel axes, containing the axes of the sliding seats, may be equal to the distance between parallel planes containing the pivoting axes of the two shafts.
For at least one of the two bowed needles, the distance between the respective pin and the pivot shaft can be adjusted. It can also be envisaged to provide this adjustment capability for both the bowed needles.
In some embodiments, at least one of the bowed needles, and preferably both needles, are adjustable, with respect to a supporting structure, in a direction parallel to the pivoting axis of the respective shaft.
In practical embodiments, one or both the bowed needles lie in a plane orthogonal to the pivoting axis of the respective shaft.
According to a further aspect, the invention relates to a linking machine for linking edges of a knitted article comprising engagement members for engaging loops of the knitted article, and a linking device according to the invention.
A more complete understanding of the illustrated embodiments of the invention and the many advantages achieved will be obtained with reference to the detailed description below in combination with the appended drawings, wherein:
The following detailed description of the exemplary embodiments refers to the accompanying drawings. The same reference numbers in different drawings identify the same or similar elements. Additionally, the drawings are not necessarily drawn to scale. Also, the following detailed description does not limit the invention. Instead, the scope of the invention is defined by the appended claims.
Reference throughout the specification to “one embodiment” or “an embodiment” or “some embodiments” means that the particular feature, structure or characteristic described in connection with an embodiment is included in at least one embodiment of the subject matter disclosed. Thus, the appearance of the phrase “in one embodiment” or “in an embodiment” or “in some embodiments” in various places throughout the specification is not necessarily referring to the same embodiment(s). Further, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
In
Reference number 9 indicates the linking device as a whole. It comprises a supporting structure 10, on which a first shaft 13 and a second shaft 15 are mounted. The first shaft 13 is provided with a pivoting, i.e. reciprocating, angular motion around a pivoting axis A-A, while the second shaft 15 is provided with a pivoting, i.e. reciprocating, angular motion around a pivoting axis B-B. In the illustrated embodiments, the two shafts 13 and 15, and therefore the two axes A-A and B-B, are directed at 90° with respect to each other, but they lie on two distinct parallel planes arranged at a distance D3, as shown in
A first bowed needle 17 is integral with the first shaft 13, and a second bowed needle 19, below also called “crochet needle”, is integral with the second shaft 15. The first bowed needle 17 moves on a plane orthogonal to the axis A-A when the first shaft 13 reciprocatingly pivots around the axis A-A, while the second bowed needle, or crochet needle, 19 moves on a plane orthogonal to the axis B-B when the second shaft 15 reciprocatingly pivots around the axis B-B.
In the illustrated embodiment, the first bowed needle 17 is integral with the first shaft 13 by means of a first arm 21, while the second bowed needle 19 is integral with the second shaft 15 by means of a second arm 23 (see also the sequence in
A first yarn Y1 is fed to the first bowed needle 17, while a second yarn Y2 is fed to the second bowed needle 19. The first bowed needle 17 and the second bowed needle 19 cooperate with each other and with a stationary finger 25, that may be supported by the supporting structure 10 in a way not shown for the sake of drawing simplicity.
The pivoting motion of the first bowed needle 17 and of the second bowed needle 19, cooperating with each other and with the finger 25, allows to form a series of chain stitches for linking edges of fabric held adjacent to each other by means of the members 3, 5. The way for making the sewing or linking stitches is known to those skilled in the art and does not require to be described herein. The pivoting motion of the first bowed needle 17 is synchronized with the motion of the second bowed needle, or crochet needle, 19, and these motions are represented in the sequence of
The movement may be imparted by means of an actuator, for example an electronically controlled electric motor, schematically indicated with M only in
In other embodiments, not shown, the motor M may be connected, by means of a suitable mechanical transmission, to the first shaft 13 instead of being connected to the second shaft 15.
In order to transmit the motion from one to the other of the two shafts 13, 15, a first pin 27 is integral with the first shaft 13, the pin being carried by a first auxiliary arm 29. The first auxiliary arm 29 is rotatingly coupled to the first shaft 13, i.e. it pivots integrally therewith. The two arms 29 and 21 are angularly spaced from each other. In the illustrated embodiment, the first pin 27 is parallel to the first shaft 13.
A second pin 31 is integral with the second shaft 15. The second pin may be carried by a second auxiliary arm 33, rotatingly constrained with the second shaft 15, i.e. the second pin 31 pivots integrally with the second shaft 15. The second auxiliary arm 33 is angularly spaced from the second arm 23 constraining the second bowed needle 19 to the second shaft 15. The second pin 31 is parallel to the second shaft 15.
The first pin 27 and the second pin 31 are mechanically coupled to each other by means of a slider 35. The slider 35 may comprise two sliding seats 36, 38 (
Advantageously, the distance D4 between the parallel planes containing the axis of the first pin 27 and the axis of the second pin 31, corresponding to the distance between the axis of the seats 36 and the axis of the seat 38, is equal to the distance D3 between the parallel planes containing the pivoting axis A-A of the first shaft 13 and the pivoting axis B-B of the second shaft 15. In this way, the two bowed needles 17 and 19 perform the same movements.
As it is clearly apparent from the sequence of
Thanks to this mechanical transmission between the two bowed needles 17 and 19, provided by means of the slider 35 and of the pins 27, 31, it is possible to have a simpler adjustment of the position of each bowed needle 17, 19 with respect to the supporting structure 10, and therefore with respect to the system 1, independently of the other bowed needle. For example, it is possible to adjust the position of the first bowed needle 17 parallel to the axis A-A without changing the position of the second bowed needle 19. Similarly, the axial position of the second bowed needle 19 parallel to the axis B-B may be adjusted independently of the first bowed needle 17.
The possibility of adjusting the position of the bowed needles 17, 19 with respect to the reciprocating pivoting axis A-A and to the reciprocating pivoting axis
B-B is shown in detail in
An adjustment arrangement may be provided for independently adjusting the position of each bowed needle 17, 19 in the direction of the axis A-A and of the axis B-B respectively.
The adjustment of the position of the first bowed needle 17 according to the direction of the axis A-A is performed as follows: the fastening screw 45 is loosed, while keeping it engaged in the helical groove 43. The first sleeve 41 rotates around the axis A-A until the first bowed needle 17 achieves the desired position, and lastly the fastening screw 45 is tightening again until the first sleeve 41 is blocked in the selected axial position.
The adjustment of the position of the second bowed needle, or crochet needle, 19 in the direction of the axis B-B is performed with substantially the same arrangement. To this end, a second sleeve 47 is provided, housed in a seat of the supporting structure 10 and provided with a helical groove 49. A fastening screw 51 engages the helical groove 49. The adjustment of the position of the second bowed needle 19 according to the arrow fB is performed similarly to what has been already described with reference to the first bowed needle 17.
In some embodiments, a further adjustment possibility may be provided for the linking device 9. This further adjustment possibility is clearly shown in
As it is shown in
In order to simplify the adjustment, an adjustment screw 57 and a pre-load spring 59 may be provided. The pre-load spring 59 pushes the first auxiliary arm 28 towards the position of minimum distance of the first pin 27 with respect to the axis A-A. Through the adjustment screw 57 the position of the pin 27 with respect to the axis A-A can be adjusted by pressing or releasing the pre-load spring 59, as it is visible by comparing
Also the distance between the second pin 31 and the axis B-B can be adjusted, in combination with or as an alternative to the adjustment of the distance between the first pin 27 and the axis A-A.
Number | Date | Country | Kind |
---|---|---|---|
102016000033775 | Apr 2016 | IT | national |