Lipids for delivery of active agents

Information

  • Patent Grant
  • 11357856
  • Patent Number
    11,357,856
  • Date Filed
    Friday, April 13, 2018
    6 years ago
  • Date Issued
    Tuesday, June 14, 2022
    a year ago
Abstract
Compounds are provided having the following structure: Formula (I) or a pharmaceutically acceptable salt, tautomer or stereoisomer thereof, wherein R, R1, R2, G1, G2 and n are as defined herein. Use of the compounds as a component of lipid nanoparticle formulations for delivery of a therapeutic agent, compositions comprising the compounds and methods for their use and preparation are also provided.
Description
BACKGROUND
Technical Field

The present invention generally relates to novel cationic lipids that can be used in combination with other lipid components, such as neutral lipids, cholesterol and polymer conjugated lipids, to form lipid nanoparticles with oligonucleotides, to facilitate the intracellular delivery of therapeutic nucleic acids (e.g., oligonucleotides, messenger RNA) both in vitro and in vivo.


Description of the Related Art

There are many challenges associated with the delivery of nucleic acids to affect a desired response in a biological system. Nucleic acid based therapeutics have enormous potential but there remains a need for more effective delivery of nucleic acids to appropriate sites within a cell or organism in order to realize this potential. Therapeutic nucleic acids include, e.g., messenger RNA (mRNA), antisense oligonucleotides, ribozymes, DNAzymes, plasmids, immune stimulating nucleic acids, antagomir, antimir, mimic, supermir, and aptamers. Some nucleic acids, such as mRNA or plasmids, can be used to effect expression of specific cellular products as would be useful in the treatment of, for example, diseases related to a deficiency of a protein or enzyme. The therapeutic applications of translatable nucleotide delivery are extremely broad as constructs can be synthesized to produce any chosen protein sequence, whether or not indigenous to the system. The expression products of the nucleic acid can augment existing levels of protein, replace missing or non-functional versions of a protein, or introduce new protein and associated functionality in a cell or organism.


Some nucleic acids, such as miRNA inhibitors, can be used to effect expression of specific cellular products that are regulated by miRNA as would be useful in the treatment of, for example, diseases related to deficiency of protein or enzyme. The therapeutic applications of miRNA inhibition are extremely broad as constructs can be synthesized to inhibit one or more miRNA that would in turn regulate the expression of mRNA products. The inhibition of endogenous miRNA can augment its downstream target endogenous protein expression and restore proper function in a cell or organism as a means to treat disease associated to a specific miRNA or a group of miRNA.


Other nucleic acids can down-regulate intracellular levels of specific mRNA and, as a result, down-regulate the synthesis of the corresponding proteins through processes such as RNA interference (RNAi) or complementary binding of antisense RNA. The therapeutic applications of antisense oligonucleotide and RNAi are also extremely broad, since oligonucleotide constructs can be synthesized with any nucleotide sequence directed against a target mRNA. Targets may include mRNAs from normal cells, mRNAs associated with disease-states, such as cancer, and mRNAs of infectious agents, such as viruses. To date, antisense oligonucleotide constructs have shown the ability to specifically down-regulate target proteins through degradation of the cognate mRNA in both in vitro and in vivo models. In addition, antisense oligonucleotide constructs are currently being evaluated in clinical studies.


However, two problems currently face the use of oligonucleotides in therapeutic contexts. First, free RNAs are susceptible to nuclease digestion in plasma. Second, free RNAs have limited ability to gain access to the intracellular compartment where the relevant translation machinery resides. Lipid nanoparticles formed from cationic lipids with other lipid components, such as neutral lipids, cholesterol, PEG, PEGylated lipids, and oligonucleotides have been used to block degradation of the RNAs in plasma and facilitate the cellular uptake of the oligonucleotides.


There remains a need for improved cationic lipids and lipid nanoparticles for the delivery of oligonucleotides. Preferably, these lipid nanoparticles would provide optimal drug:lipid ratios, protect the nucleic acid from degradation and clearance in serum, be suitable for systemic or local delivery, and provide intracellular delivery of the nucleic acid. In addition, these lipid-nucleic acid particles should be well-tolerated and provide an adequate therapeutic index, such that patient treatment at an effective dose of the nucleic acid is not associated with unacceptable toxicity and/or risk to the patient. The present invention provides these and related advantages.


BRIEF SUMMARY

In brief, the present invention provides lipid compounds, including stereoisomers, pharmaceutically acceptable salts or tautomers thereof, which can be used alone or in combination with other lipid components such as neutral lipids, charged lipids, steroids (including for example, all sterols) and/or their analogs, and/or polymer conjugated lipids to form lipid nanoparticles for the delivery of therapeutic agents. In some instances, the lipid nanoparticles are used to deliver nucleic acids such as antisense and/or messenger RNA. Methods for use of such lipid nanoparticles for treatment of various diseases or conditions, such as those caused by infectious entities and/or insufficiency of a protein, are also provided.


In one embodiment, compounds having the following structure (I) are provided:




embedded image



or a pharmaceutically acceptable salt, tautomer or stereoisomer thereof, wherein R, R1, R2, G1, G2, and n are as defined herein.


Pharmaceutical compositions comprising one or more of the foregoing compounds of structure (I) and a therapeutic agent are also provided. In some embodiments, the pharmaceutical compositions further comprise one or more components selected from neutral lipids, charged lipids, steroids and polymer conjugated lipids. Such compositions are useful for formation of lipid nanoparticles for the delivery of the therapeutic agent.


In other embodiments, the present invention provides a method for administering a therapeutic agent to a patient in need thereof, the method comprising preparing or providing a composition of lipid nanoparticles comprising the compound of structure (I) and a therapeutic agent and delivering or administering the composition to the patient.


These and other aspects of the invention will be apparent upon reference to the following detailed description.







DETAILED DESCRIPTION

In the following description, certain specific details are set forth in order to provide a thorough understanding of various embodiments of the invention. However, one skilled in the art will understand that the invention may be practiced without these details.


The present invention is based, in part, upon the discovery of novel cationic (amino) lipids that provide advantages when used in lipid nanoparticles for the in vivo delivery of an active or therapeutic agent such as a nucleic acid into a cell of a mammal. In particular, embodiments of the present invention provide nucleic acid-lipid nanoparticle compositions comprising one or more of the novel cationic lipids described herein that provide increased activity of the nucleic acid and improved tolerability of the compositions in vivo, resulting in a significant increase in the therapeutic index as compared to nucleic acid-lipid nanoparticle compositions previously described. In other embodiments, the disclosed lipids, and lipid nanoparticles comprising the same, have increased safety and/or tolerability when used for delivery of active agents, such as nucleic acids.


In particular embodiments, the present invention provides novel cationic lipids that enable the formulation of improved compositions for the in vitro and in vivo delivery of mRNA and/or other oligonucleotides. In some embodiments, these improved lipid nanoparticle compositions are useful for expression of protein encoded by mRNA. In other embodiments, these improved lipid nanoparticles compositions are useful for upregulation of endogenous protein expression by delivering miRNA inhibitors targeting one specific miRNA or a group of miRNA regulating one target mRNA or several mRNA. In other embodiments, these improved lipid nanoparticle compositions are useful for down-regulating (e.g., silencing) the protein levels and/or mRNA levels of target genes. In some other embodiments, the lipid nanoparticles are also useful for delivery of mRNA and plasmids for expression of transgenes. In yet other embodiments, the lipid nanoparticle compositions are useful for inducing a pharmacological effect resulting from expression of a protein, e.g., increased production of red blood cells through the delivery of a suitable erythropoietin mRNA, or protection against infection through delivery of mRNA encoding for a suitable antigen or antibody.


The lipid nanoparticles and compositions of embodiments of the present invention may be used for a variety of purposes, including the delivery of encapsulated or associated (e.g., complexed) therapeutic agents such as nucleic acids to cells, both in vitro and in vivo. Accordingly, embodiments of the present invention provide methods of treating or preventing diseases or disorders in a subject in need thereof by contacting the subject with a lipid nanoparticle that encapsulates or is associated with a suitable therapeutic agent, wherein the lipid nanoparticle comprises one or more of the novel cationic lipids described herein.


As described herein, embodiments of the lipid nanoparticles of the present invention are particularly useful for the delivery of nucleic acids, including, e.g., mRNA, antisense oligonucleotide, plasmid DNA, microRNA (miRNA), miRNA inhibitors (antagomirs/antimirs), messenger-RNA-interfering complementary RNA (micRNA), DNA, multivalent RNA, dicer substrate RNA, complementary DNA (cDNA), etc. Therefore, the lipid nanoparticles and compositions of certain embodiments of the present invention may be used to induce expression of a desired protein both in vitro and in vivo by contacting cells with a lipid nanoparticle comprising one or more novel cationic lipids described herein, wherein the lipid nanoparticle encapsulates or is associated with a nucleic acid that is expressed to produce the desired protein (e.g., a messenger RNA or plasmid encoding the desired protein) or inhibit processes that terminate expression of mRNA (e.g., miRNA inhibitors). Alternatively, the lipid nanoparticles and compositions of embodiments of the present invention may be used to decrease the expression of target genes and proteins both in vitro and in vivo by contacting cells with a lipid nanoparticle comprising one or more novel cationic lipids described herein, wherein the lipid nanoparticle encapsulates or is associated with a nucleic acid that reduces target gene expression (e.g., an antisense oligonucleotide or small interfering RNA (siRNA)). The lipid nanoparticles and compositions of embodiments of the present invention may also be used for co-delivery of different nucleic acids (e.g. mRNA and plasmid DNA) separately or in combination, such as may be useful to provide an effect requiring colocalization of different nucleic acids (e.g. mRNA encoding for a suitable gene modifying enzyme and DNA segment(s) for incorporation into the host genome).


Nucleic acids for use with embodiments of this invention may be prepared according to any available technique. For mRNA, the primary methodology of preparation is, but not limited to, enzymatic synthesis (also termed in vitro transcription) which currently represents the most efficient method to produce long sequence-specific mRNA. In vitro transcription describes a process of template-directed synthesis of RNA molecules from an engineered DNA template comprised of an upstream bacteriophage promoter sequence (e.g., including but not limited to that from the T7, T3 and SP6 coliphage) linked to a downstream sequence encoding the gene of interest. Template DNA can be prepared for in vitro transcription from a number of sources with appropriate techniques which are well known in the art including, but not limited to, plasmid DNA and polymerase chain reaction amplification (see Linpinsel, J. L and Conn, G. L., General protocols for preparation of plasmid DNA template and Bowman, J. C., Azizi, B., Lenz, T. K., Ray, P., and Williams, L. D. in RNA in vitro transcription and RNA purification by denaturing PAGE in Recombinant and in vitro RNA syntheses Methods v. 941 Conn G. L. (ed), New York, N.Y. Humana Press, 2012)


Transcription of the RNA occurs in vitro using the linearized DNA template in the presence of the corresponding RNA polymerase and adenosine, guanosine, uridine and cytidine ribonucleoside triphosphates (rNTPs) under conditions that support polymerase activity while minimizing potential degradation of the resultant mRNA transcripts. In vitro transcription can be performed using a variety of commercially available kits including, but not limited to RiboMax Large Scale RNA Production System (Promega), MegaScript Transcription kits (Life Technologies) as well as with commercially available reagents including RNA polymerases and rNTPs. The methodology for in vitro transcription of mRNA is well known in the art. (see, e.g. Losick, R., 1972, In vitro transcription, Ann Rev Biochem v. 41 409-46; Kamakaka, R. T. and Kraus, W. L. 2001. In Vitro Transcription. Current Protocols in Cell Biology. 2:11.6:11.6.1-11.6.17; Beckert, B. And Masquida, B., (2010) Synthesis of RNA by In Vitro Transcription in RNA in Methods in Molecular Biology v. 703 (Neilson, H. Ed), New York, N.Y. Humana Press, 2010; Brunelle, J. L. and Green, R., 2013, Chapter Five—In vitro transcription from plasmid or PCR-amplified DNA, Methods in Enzymology v. 530, 101-114; all of which are incorporated herein by reference).


The desired in vitro transcribed mRNA is then purified from the undesired components of the transcription or associated reactions (including unincorporated rNTPs, protein enzyme, salts, short RNA oligos, etc.). Techniques for the isolation of the mRNA transcripts are well known in the art. Well known procedures include phenol/chloroform extraction or precipitation with either alcohol (ethanol, isopropanol) in the presence of monovalent cations or lithium chloride. Additional, non-limiting examples of purification procedures which can be used include size exclusion chromatography (Lukavsky, P. J. and Puglisi, J. D., 2004, Large-scale preparation and purification of polyacrylamide-free RNA oligonucleotides, RNA v.10, 889-893), silica-based affinity chromatography and polyacrylamide gel electrophoresis (Bowman, J. C., Azizi, B., Lenz, T. K., Ray, P., and Williams, L. D. in RNA in vitro transcription and RNA purification by denaturing PAGE in Recombinant and in vitro RNA syntheses Methods v. 941 Conn G. L. (ed), New York, N.Y. Humana Press, 2012). Purification can be performed using a variety of commercially available kits including, but not limited to SV Total Isolation System (Promega) and In Vitro Transcription Cleanup and Concentration Kit (Norgen Biotek).


Furthermore, while reverse transcription can yield large quantities of mRNA, the products can contain a number of aberrant RNA impurities associated with undesired polymerase activity which may need to be removed from the full-length mRNA preparation. These include short RNAs that result from abortive transcription initiation as well as double-stranded RNA (dsRNA) generated by RNA-dependent RNA polymerase activity, RNA-primed transcription from RNA templates and self-complementary 3′ extension. It has been demonstrated that these contaminants with dsRNA structures can lead to undesired immunostimulatory activity through interaction with various innate immune sensors in eukaryotic cells that function to recognize specific nucleic acid structures and induce potent immune responses. This in turn, can dramatically reduce mRNA translation since protein synthesis is reduced during the innate cellular immune response. Therefore, additional techniques to remove these dsRNA contaminants have been developed and are known in the art including but not limited to scaleable HPLC purification (see, e.g., Kariko, K., Muramatsu, H., Ludwig, J. And Weissman, D., 2011, Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA, Nucl Acid Res, v. 39 e142; Weissman, D., Pardi, N., Muramatsu, H., and Kariko, K., HPLC Purification of in vitro transcribed long RNA in Synthetic Messenger RNA and Cell Metabolism Modulation in Methods in Molecular Biology v.969 (Rabinovich, P. H. Ed), 2013). HPLC purified mRNA has been reported to be translated at much greater levels, particularly in primary cells and in vivo.


A significant variety of modifications have been described in the art which are used to alter specific properties of in vitro transcribed mRNA, and improve its utility. These include, but are not limited to modifications to the 5′ and 3′ termini of the mRNA. Endogenous eukaryotic mRNA typically contain a cap structure on the 5′-end of a mature molecule which plays an important role in mediating binding of the mRNA Cap Binding Protein (CBP), which is in turn responsible for enhancing mRNA stability in the cell and efficiency of mRNA translation. Therefore, highest levels of protein expression are achieved with capped mRNA transcripts. The 5′-cap contains a 5′-5′-triphosphate linkage between the 5′-most nucleotide and guanine nucleotide. The conjugated guanine nucleotide is methylated at the N7 position. Additional modifications include methylation of the ultimate and penultimate most 5′-nucleotides on the 2′-hydroxyl group.


Multiple distinct cap structures can be used to generate the 5′-cap of in vitro transcribed synthetic mRNA. 5′-capping of synthetic mRNA can be performed co-transcriptionally with chemical cap analogs (i.e., capping during in vitro transcription). For example, the Anti-Reverse Cap Analog (ARCA) cap contains a 5′-5′-triphosphate guanine-guanine linkage where one guanine contains an N7 methyl group as well as a 3′-O-methyl group. However, up to 20% of transcripts remain uncapped during this co-transcriptional process and the synthetic cap analog is not identical to the 5′-cap structure of an authentic cellular mRNA, potentially reducing translatability and cellular stability. Alternatively, synthetic mRNA molecules may also be enzymatically capped post-transcriptionally. These may generate a more authentic 5′-cap structure that more closely mimics, either structurally or functionally, the endogenous 5′-cap which have enhanced binding of cap binding proteins, increased half-life and reduced susceptibility to 5′ endonucleases and/or reduced 5′ decapping. Numerous synthetic 5′-cap analogs have been developed and are known in the art to enhance mRNA stability and translatability (see, e.g., Grudzien-Nogalska, E., Kowalska, J., Su, W., Kuhn, A. N., Slepenkov, S. V., Darynkiewicz, E., Sahin, U., Jemielity, J., and Rhoads, R. E., Synthetic mRNAs with superior translation and stability properties in Synthetic Messenger RNA and Cell Metabolism Modulation in Methods in Molecular Biology v.969 (Rabinovich, P. H. Ed), 2013).


On the 3′-terminus, a long chain of adenine nucleotides (poly-A tail) is normally added to mRNA molecules during RNA processing. Immediately after transcription, the 3′ end of the transcript is cleaved to free a 3′ hydroxyl to which poly-A polymerase adds a chain of adenine nucleotides to the RNA in a process called polyadenylation. The poly-A tail has been extensively shown to enhance both translational efficiency and stability of mRNA (see Bernstein, P. and Ross, J., 1989, Poly (A), poly (A) binding protein and the regulation of mRNA stability, Trends Bio Sci v. 14 373-377; Guhaniyogi, J. And Brewer, G., 2001, Regulation of mRNA stability in mammalian cells, Gene, v. 265, 11-23; Dreyfus, M. And Regnier, P., 2002, The poly (A) tail of mRNAs: Bodyguard in eukaryotes, scavenger in bacteria, Cell, v.111, 611-613).


Poly (A) tailing of in vitro transcribed mRNA can be achieved using various approaches including, but not limited to, cloning of a poly (T) tract into the DNA template or by post-transcriptional addition using Poly (A) polymerase. The first case allows in vitro transcription of mRNA with poly (A) tails of defined length, depending on the size of the poly (T) tract, but requires additional manipulation of the template. The latter case involves the enzymatic addition of a poly (A) tail to in vitro transcribed mRNA using poly (A) polymerase which catalyzes the incorporation of adenine residues onto the 3′termini of RNA, requiring no additional manipulation of the DNA template, but results in mRNA with poly(A) tails of heterogeneous length. 5′-capping and 3′-poly (A) tailing can be performed using a variety of commercially available kits including, but not limited to Poly (A) Polymerase Tailing kit (EpiCenter), mMESSAGE mMACHINE T7 Ultra kit and Poly (A) Tailing kit (Life Technologies) as well as with commercially available reagents, various ARCA caps, Poly (A) polymerase, etc.


In addition to 5′ cap and 3′ poly adenylation, other modifications of the in vitro transcripts have been reported to provide benefits as related to efficiency of translation and stability. It is well known in the art that pathogenic DNA and RNA can be recognized by a variety of sensors within eukaryotes and trigger potent innate immune responses. The ability to discriminate between pathogenic and self DNA and RNA has been shown to be based, at least in part, on structure and nucleoside modifications since most nucleic acids from natural sources contain modified nucleosides. In contrast, in vitro synthesized RNA lacks these modifications, thus rendering it immunostimulatory which in turn can inhibit effective mRNA translation as outlined above. The introduction of modified nucleosides into in vitro transcribed mRNA can be used to prevent recognition and activation of RNA sensors, thus mitigating this undesired immunostimulatory activity and enhancing translation capacity (see, e.g., Kariko, K. And Weissman, D. 2007, Naturally occurring nucleoside modifications suppress the immunostimulatory activity of RNA: implication for therapeutic RNA development, Curr Opin Drug Discov Devel, v.10 523-532; Pardi, N., Muramatsu, H., Weissman, D., Kariko, K., In vitro transcription of long RNA containing modified nucleosides in Synthetic Messenger RNA and Cell Metabolism Modulation in Methods in Molecular Biology v.969 (Rabinovich, P. H. Ed), 2013; Kariko, K., Muramatsu, H., Welsh, F. A., Ludwig, J., Kato, H., Akira, S., Weissman, D., 2008, Incorporation of Pseudouridine Into mRNA Yields Superior Nonimmunogenic Vector With Increased Translational Capacity and Biological Stability, Mol Ther v.16, 1833-1840). The modified nucleosides and nucleotides used in the synthesis of modified RNAs can be prepared monitored and utilized using general methods and procedures known in the art. A large variety of nucleoside modifications are available that may be incorporated alone or in combination with other modified nucleosides to some extent into the in vitro transcribed mRNA (see, e.g., US2012/0251618). In vitro synthesis of nucleoside-modified mRNA has been reported to have reduced ability to activate immune sensors with a concomitant enhanced translational capacity.


Other components of mRNA which can be modified to provide benefit in terms of translatability and stability include the 5′ and 3′ untranslated regions (UTR). Optimization of the UTRs (favorable 5′ and 3′ UTRs can be obtained from cellular or viral RNAs), either both or independently, have been shown to increase mRNA stability and translational efficiency of in vitro transcribed mRNA (see, e.g., Pardi, N., Muramatsu, H., Weissman, D., Kariko, K., In vitro transcription of long RNA containing modified nucleosides in Synthetic Messenger RNA and Cell Metabolism Modulation in Methods in Molecular Biology v.969 (Rabinovich, P. H. Ed), 2013).


In addition to mRNA, other nucleic acid payloads may be used for this invention. For oligonucleotides, methods of preparation include but are not limited to chemical synthesis and enzymatic, chemical cleavage of a longer precursor, in vitro transcription as described above, etc. Methods of synthesizing DNA and RNA nucleotides are widely used and well known in the art (see, e.g., Gait, M. J. (ed.) Oligonucleotide synthesis: a practical approach, Oxford [Oxfordshire], Washington, D.C.: IRL Press, 1984; and Herdewijn, P. (ed.) Oligonucleotide synthesis: methods and applications, Methods in Molecular Biology, v. 288 (Clifton, N.J.) Totowa, N.J.: Humana Press, 2005; both of which are incorporated herein by reference).


For plasmid DNA, preparation for use with embodiments of this invention commonly utilizes, but is not limited to, expansion and isolation of the plasmid DNA in vitro in a liquid culture of bacteria containing the plasmid of interest. The presence of a gene in the plasmid of interest that encodes resistance to a particular antibiotic (penicillin, kanamycin, etc.) allows those bacteria containing the plasmid of interest to selectively grow in antibiotic-containing cultures. Methods of isolating plasmid DNA are widely used and well known in the art (see, e.g., Heilig, J., Elbing, K. L. and Brent, R., (2001), Large-Scale Preparation of Plasmid DNA, Current Protocols in Molecular Biology, 41:II:1.7:1.7.1-1.7.16; Rozkov, A., Larsson, B., Gillstrom, S., Björnestedt, R. and Schmidt, S. R., (2008), Large-scale production of endotoxin-free plasmids for transient expression in mammalian cell culture, Biotechnol. Bioeng., 99: 557-566; and U.S. Pat. No. 6,197,553 B1). Plasmid isolation can be performed using a variety of commercially available kits including, but not limited to Plasmid Plus (Qiagen), GenJET plasmid MaxiPrep (Thermo) and PureYield MaxiPrep (Promega) kits as well as with commercially available reagents.


Various exemplary embodiments of the cationic lipids of the present invention, lipid nanoparticles and compositions comprising the same, and their use to deliver active (e.g., therapeutic agents), such as nucleic acids, to modulate gene and protein expression, are described in further detail below.


As used herein, the following terms have the meanings ascribed to them unless specified otherwise.


Unless the context requires otherwise, throughout the present specification and claims, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open and inclusive sense, that is, as “including, but not limited to”.


Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which this invention belongs. As used in the specification and claims, the singular form “a”, “an” and “the” include plural references unless the context clearly dictates otherwise.


The phrase “induce expression of a desired protein” refers to the ability of a nucleic acid to increase expression of the desired protein. To examine the extent of protein expression, a test sample (e.g., a sample of cells in culture expressing the desired protein) or a test mammal (e.g., a mammal such as a human or an animal) model such as a rodent (e.g., mouse) or a non-human primate (e.g., monkey) model is contacted with a nucleic acid (e.g., nucleic acid in combination with a lipid of the present invention). Expression of the desired protein in the test sample or test animal is compared to expression of the desired protein in a control sample (e.g., a sample of cells in culture expressing the desired protein) or a control mammal (e.g., a mammal such as a human or an animal) model such as a rodent (e.g., mouse) or non-human primate (e.g., monkey) model that is not contacted with or administered the nucleic acid. When the desired protein is present in a control sample or a control mammal, the expression of a desired protein in a control sample or a control mammal may be assigned a value of 1.0. In particular embodiments, inducing expression of a desired protein is achieved when the ratio of desired protein expression in the test sample or the test mammal to the level of desired protein expression in the control sample or the control mammal is greater than 1, for example, about 1.1, 1.5, 2.0. 5.0 or 10.0. When a desired protein is not present in a control sample or a control mammal, inducing expression of a desired protein is achieved when any measurable level of the desired protein in the test sample or the test mammal is detected. One of ordinary skill in the art will understand appropriate assays to determine the level of protein expression in a sample, for example dot blots, northern blots, in situ hybridization, ELISA, immunoprecipitation, enzyme function, and phenotypic assays, or assays based on reporter proteins that can produce fluorescence or luminescence under appropriate conditions.


The phrase “inhibiting expression of a target gene” refers to the ability of a nucleic acid to silence, reduce, or inhibit the expression of a target gene. To examine the extent of gene silencing, a test sample (e.g., a sample of cells in culture expressing the target gene) or a test mammal (e.g., a mammal such as a human or an animal) model such as a rodent (e.g., mouse) or a non-human primate (e.g., monkey) model is contacted with a nucleic acid that silences, reduces, or inhibits expression of the target gene. Expression of the target gene in the test sample or test animal is compared to expression of the target gene in a control sample (e.g., a sample of cells in culture expressing the target gene) or a control mammal (e.g., a mammal such as a human or an animal) model such as a rodent (e.g., mouse) or non-human primate (e.g., monkey) model that is not contacted with or administered the nucleic acid. The expression of the target gene in a control sample or a control mammal may be assigned a value of 100%. In particular embodiments, silencing, inhibition, or reduction of expression of a target gene is achieved when the level of target gene expression in the test sample or the test mammal relative to the level of target gene expression in the control sample or the control mammal is about 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 5%, or 0%. In other words, the nucleic acids are capable of silencing, reducing, or inhibiting the expression of a target gene by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% in a test sample or a test mammal relative to the level of target gene expression in a control sample or a control mammal not contacted with or administered the nucleic acid. Suitable assays for determining the level of target gene expression include, without limitation, examination of protein or mRNA levels using techniques known to those of skill in the art, such as, e.g., dot blots, northern blots, in situ hybridization, ELISA, immunoprecipitation, enzyme function, as well as phenotypic assays known to those of skill in the art.


An “effective amount” or “therapeutically effective amount” of an active agent or therapeutic agent such as a therapeutic nucleic acid is an amount sufficient to produce the desired effect, e.g., an increase or inhibition of expression of a target sequence in comparison to the normal expression level detected in the absence of the nucleic acid. An increase in expression of a target sequence is achieved when any measurable level is detected in the case of an expression product that is not present in the absence of the nucleic acid. In the case where the expression product is present at some level prior to contact with the nucleic acid, an in increase in expression is achieved when the fold increase in value obtained with a nucleic acid such as mRNA relative to control is about 1.05, 1.1, 1.2, 1.3, 1.4, 1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 75, 100, 250, 500, 750, 1000, 5000, 10000 or greater. Inhibition of expression of a target gene or target sequence is achieved when the value obtained with a nucleic acid such as antisense oligonucleotide relative to the control is about 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 5%, or 0%. Suitable assays for measuring expression of a target gene or target sequence include, e.g., examination of protein or RNA levels using techniques known to those of skill in the art such as dot blots, northern blots, in situ hybridization, ELISA, immunoprecipitation, enzyme function, fluorescence or luminescence of suitable reporter proteins, as well as phenotypic assays known to those of skill in the art.


The term “nucleic acid” as used herein refers to a polymer containing at least two deoxyribonucleotides or ribonucleotides in either single- or double-stranded form and includes DNA, RNA, and hybrids thereof. DNA may be in the form of antisense molecules, plasmid DNA, cDNA, PCR products, or vectors. RNA may be in the form of small hairpin RNA (shRNA), messenger RNA (mRNA), antisense RNA, miRNA, micRNA, multivalent RNA, dicer substrate RNA or viral RNA (vRNA), and combinations thereof. Nucleic acids include nucleic acids containing known nucleotide analogs or modified backbone residues or linkages, which are synthetic, naturally occurring, and non-naturally occurring, and which have similar binding properties as the reference nucleic acid. Examples of such analogs include, without limitation, phosphorothioates, phosphoramidates, methyl phosphonates, chiral-methyl phosphonates, 2′-O-methyl ribonucleotides, and peptide-nucleic acids (PNAs). Unless specifically limited, the term encompasses nucleic acids containing known analogues of natural nucleotides that have similar binding properties as the reference nucleic acid. Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions), alleles, orthologs, single nucleotide polymorphisms, and complementary sequences as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (Batzer et al., Nucleic Acid Res., 19:5081 (1991); Ohtsuka et al., J. Biol. Chem., 260:2605-2608 (1985); Rossolini et al., Mol. Cell. Probes, 8:91-98 (1994)). “Nucleotides” contain a sugar deoxyribose (DNA) or ribose (RNA), a base, and a phosphate group. Nucleotides are linked together through the phosphate groups. “Bases” include purines and pyrimidines, which further include natural compounds adenine, thymine, guanine, cytosine, uracil, inosine, and natural analogs, and synthetic derivatives of purines and pyrimidines, which include, but are not limited to, modifications which place new reactive groups such as, but not limited to, amines, alcohols, thiols, carboxylates, and alkylhalides.


The term “gene” refers to a nucleic acid (e.g., DNA or RNA) sequence that comprises partial length or entire length coding sequences necessary for the production of a polypeptide or precursor polypeptide.


“Gene product,” as used herein, refers to a product of a gene such as an RNA transcript or a polypeptide.


The term “lipid” refers to a group of organic compounds that include, but are not limited to, esters of fatty acids and are generally characterized by being poorly soluble in water, but soluble in many organic solvents. They are usually divided into at least three classes: (1) “simple lipids,” which include fats and oils as well as waxes; (2) “compound lipids,” which include phospholipids and glycolipids; and (3) “derived lipids” such as steroids.


A “steroid” is a compound comprising the following carbon skeleton:




embedded image



Non-limiting examples of steroids include cholesterol, and the like.


A “cationic lipid” refers to a lipid capable of being positively charged. Exemplary cationic lipids include one or more amine group(s) which bear the positive charge. Preferred cationic lipids are ionizable such that they can exist in a positively charged or neutral form depending on pH. The ionization of the cationic lipid affects the surface charge of the lipid nanoparticle under different pH conditions. This charge state can influence plasma protein absorption, blood clearance and tissue distribution (Semple, S. C., et al., Adv. Drug Deliv Rev 32:3-17 (1998)) as well as the ability to form endosomolytic non-bilayer structures (Hafez, I. M., et al., Gene Ther 8:1188-1196 (2001)) critical to the intracellular delivery of nucleic acids.


The term “polymer conjugated lipid” refers to a molecule comprising both a lipid portion and a polymer portion. An example of a polymer conjugated lipid is a pegylated lipid. The term “pegylated lipid” refers to a molecule comprising both a lipid portion and a polyethylene glycol portion. Pegylated lipids are known in the art and include 1-(monomethoxy-polyethyleneglycol)-2,3-dimyristoylglycerol (PEG-DMG) and the like.


The term “neutral lipid” refers to any of a number of lipid species that exist either in an uncharged or neutral zwitterionic form at a selected pH. At physiological pH, such lipids include, but are not limited to, phosphotidylcholines such as 1,2-Distearoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), phophatidylethanolamines such as 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), sphingomyelins (SM), ceramides, steroids such as sterols and their derivatives. Neutral lipids may be synthetic or naturally derived.


The term “charged lipid” refers to any of a number of lipid species that exist in either a positively charged or negatively charged form independent of the pH within a useful physiological range, e.g., pH ˜3 to pH ˜9. Charged lipids may be synthetic or naturally derived. Examples of charged lipids include phosphatidylserines, phosphatidic acids, phosphatidylglycerols, phosphatidylinositols, sterol hemisuccinates, dialkyl trimethylammonium-propanes, (e.g., DOTAP, DOTMA), dialkyl dimethylaminopropanes, ethyl phosphocholines, dimethylaminoethane carbamoyl sterols (e.g., DC-Chol).


The term “lipid nanoparticle” refers to particles having at least one dimension on the order of nanometers (e.g., 1-1,000 nm) which include one or more of the compounds of structure (I) or other specified cationic lipids. In some embodiments, lipid nanoparticles comprising the disclosed cationic lipids (e.g., compounds of structure (I)) are included in a formulation that can be used to deliver an active agent or therapeutic agent, such as a nucleic acid (e.g., mRNA) to a target site of interest (e.g., cell, tissue, organ, tumor, and the like). In some embodiments, the lipid nanoparticles comprise a compound of structure (I) and a nucleic acid. Such lipid nanoparticles typically comprise a compound of structure (I) and one or more excipient selected from neutral lipids, charged lipids, steroids and polymer conjugated lipids. In some embodiments, the active agent or therapeutic agent, such as a nucleic acid, may be encapsulated in the lipid portion of the lipid nanoparticle or an aqueous space enveloped by some or all of the lipid portion of the lipid nanoparticle, thereby protecting it from enzymatic degradation or other undesirable effects induced by the mechanisms of the host organism or cells, e.g., an adverse immune response.


In various embodiments, the lipid nanoparticles have a mean diameter of from about 30 nm to about 150 nm, from about 40 nm to about 150 nm, from about 50 nm to about 150 nm, from about 60 nm to about 130 nm, from about 70 nm to about 110 nm, from about 70 nm to about 100 nm, from about 80 nm to about 100 nm, from about 90 nm to about 100 nm, from about 70 to about 90 nm, from about 80 nm to about 90 nm, from about 70 nm to about 80 nm, or about 30 nm, 35 nm, 40 nm, 45 nm, 50 nm, 55 nm, 60 nm, 65 nm, 70 nm, 75 nm, 80 nm, 85 nm, 90 nm, 95 nm, 100 nm, 105 nm, 110 nm, 115 nm, 120 nm, 125 nm, 130 nm, 135 nm, 140 nm, 145 nm, or 150 nm, and are substantially non-toxic. In certain embodiments, nucleic acids, when present in the lipid nanoparticles, are resistant in aqueous solution to degradation with a nuclease. Lipid nanoparticles comprising nucleic acids and their method of preparation are disclosed in, e.g., U.S. Patent Publication Nos. 2004/0142025, 2007/0042031 and PCT Pub. Nos. WO 2013/016058 and WO 2013/086373, the full disclosures of which are herein incorporated by reference in their entirety for all purposes.


As used herein, “lipid encapsulated” refers to a lipid nanoparticle that provides an active agent or therapeutic agent, such as a nucleic acid (e.g., mRNA), with full encapsulation, partial encapsulation, or both. In an embodiment, the nucleic acid (e.g., mRNA) is fully encapsulated in the lipid nanoparticle.


As used herein, the term “aqueous solution” refers to a composition comprising water.


“Serum-stable” in relation to nucleic acid-lipid nanoparticles means that the nucleotide is not significantly degraded after exposure to a serum or nuclease assay that would significantly degrade free DNA or RNA. Suitable assays include, for example, a standard serum assay, a DNAse assay, or an RNAse assay.


“Systemic delivery,” as used herein, refers to delivery of a therapeutic product that can result in a broad exposure of an active agent within an organism. Some techniques of administration can lead to the systemic delivery of certain agents, but not others. Systemic delivery means that a useful, preferably therapeutic, amount of an agent is exposed to most parts of the body. Systemic delivery of lipid nanoparticles can be by any means known in the art including, for example, intravenous, intraarterial, subcutaneous, and intraperitoneal delivery. In some embodiments, systemic delivery of lipid nanoparticles is by intravenous delivery.


“Local delivery,” as used herein, refers to delivery of an active agent directly to a target site within an organism. For example, an agent can be locally delivered by direct injection into a disease site such as a tumor, other target site such as a site of inflammation, or a target organ such as the liver, heart, pancreas, kidney, and the like. Local delivery can also include topical applications or localized injection techniques such as intramuscular, subcutaneous or intradermal injection. Local delivery does not preclude a systemic pharmacological effect.


“Alkyl” refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, which is saturated or unsaturated (i.e., contains one or more double (alkenyl) and/or triple bonds (alkynyl)), having, for example, from one to twenty-four carbon atoms (C1-C24 alkyl), four to twenty carbon atoms (C4-C20 alkyl), six to sixteen carbon atoms (C6-C16 alkyl), six to nine carbon atoms (C6-C9 alkyl), one to fifteen carbon atoms (C1-C15 alkyl), one to twelve carbon atoms (C1-C12 alkyl), one to eight carbon atoms (C1-C5 alkyl) or one to six carbon atoms (C1-C6 alkyl) and which is attached to the rest of the molecule by a single bond, e.g., methyl, ethyl, n-propyl, 1-methylethyl (iso propyl), n-butyl, n-pentyl, 1,1-dimethylethyl (t-butyl), 3-methylhexyl, 2-methylhexyl, ethenyl, prop-1-enyl, but-1-enyl, pent-1-enyl, penta-1,4-dienyl, ethynyl, propynyl, butynyl, pentynyl, hexynyl, and the like. Unless stated otherwise specifically in the specification, an alkyl group is optionally substituted.


“Alkylene” or “alkylene chain” refers to a straight or branched divalent hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of carbon and hydrogen, which is saturated or unsaturated (i.e., contains one or more double (alkenylene) and/or triple bonds (alkynylene)), and having, for example, from one to twenty-four carbon atoms (C1-C24 alkylene), one to fifteen carbon atoms (C1-C15 alkylene), one to twelve carbon atoms (C1-C12 alkylene), one to eight carbon atoms (C1-C8 alkylene), one to six carbon atoms (C1-C6 alkylene), two to four carbon atoms (C2-C4 alkylene), one to two carbon atoms (C1-C2 alkylene), e.g., methylene, ethylene, propylene, n-butylene, ethenylene, propenylene, n-butenylene, propynylene, n-butynylene, and the like. The alkylene chain is attached to the rest of the molecule through a single or double bond and to the radical group through a single or double bond. The points of attachment of the alkylene chain to the rest of the molecule and to the radical group can be through one carbon or any two carbons within the chain. Unless stated otherwise specifically in the specification, an alkylene chain may be optionally substituted.


“Cycloalkyl” or “carbocyclic ring” refers to a stable non-aromatic monocyclic or polycyclic hydrocarbon radical consisting solely of carbon and hydrogen atoms, which may include fused or bridged ring systems, having from three to fifteen carbon atoms, preferably having from three to ten carbon atoms, and which is saturated or unsaturated and attached to the rest of the molecule by a single bond. Monocyclic radicals include, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. Polycyclic radicals include, for example, adamantyl, norbornyl, decalinyl, 7,7-dimethyl-bicyclo[2.2.1]heptanyl, and the like. Unless otherwise stated specifically in the specification, a cycloalkyl group may be optionally substituted.


“Cycloalkylene” is a divalent cycloalkyl group. Unless otherwise stated specifically in the specification, a cycloalkylene group may be optionally substituted.


The term “substituted” used herein means any of the above groups (e.g., alkyl, alkylene, cycloalkyl or cycloalkylene) wherein at least one hydrogen atom is replaced by a bond to a non-hydrogen atom such as, but not limited to: a halogen atom such as F, Cl, Br, or I; oxo groups (═O); hydroxyl groups (—OH); C1-C12 alkyl groups; cycloalkyl groups; —(C═O)OR′; —O(C═O)R′; —C(═O)R′; —OR′; —S(O)xR′; —S—SR′; —C(═O)SR′; —SC(═O)R′; —NR′R′; —NR′C(═O)R′; —C(═O)NR′R′; —NR′C(═O)NR′R′; —OC(═O)NR′R′; —NR′C(═O)OR′; —NR′S(O)xNR′R′; —NR′S(O)xR′; and —S(O)xNR′R′, wherein: R′ is, at each occurrence, independently H, C1-C15 alkyl or cycloalkyl, and x is 0, 1 or 2. In some embodiments the substituent is a C1-C12 alkyl group. In other embodiments, the substituent is a cycloalkyl group. In other embodiments, the substituent is a halo group, such as fluoro. In other embodiments, the substituent is an oxo group. In other embodiments, the substituent is a hydroxyl group. In other embodiments, the substituent is an alkoxy group (—OR′). In other embodiments, the substituent is a carboxyl group. In other embodiments, the substituent is an amine group (—NR′R′).


“Optional” or “optionally” (e.g., optionally substituted) means that the subsequently described event of circumstances may or may not occur, and that the description includes instances where said event or circumstance occurs and instances in which it does not. For example, “optionally substituted alkyl” means that the alkyl radical may or may not be substituted and that the description includes both substituted alkyl radicals and alkyl radicals having no substitution.


“Prodrug” is meant to indicate a compound that may be converted under physiological conditions or by solvolysis to a biologically active compound of the invention. Thus, the term “prodrug” refers to a metabolic precursor of a compound of the invention that is pharmaceutically acceptable. A prodrug may be inactive when administered to a subject in need thereof, but is converted in vivo to an active compound of the invention. Prodrugs are typically rapidly transformed in vivo to yield the parent compound of the invention, for example, by hydrolysis in blood. The prodrug compound often offers advantages of solubility, tissue compatibility or delayed release in a mammalian organism (see Bundgard, H., Design of Prodrugs (1985), pp. 7-9, 21-24 (Elsevier, Amsterdam)). A discussion of prodrugs is provided in Higuchi, T., et al., A.C.S. Symposium Series, Vol. 14, and in Bioreversible Carriers in Drug Design, Ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987.


The term “prodrug” is also meant to include any covalently bonded carriers, which release the active compound of the invention in vivo when such prodrug is administered to a mammalian subject. Prodrugs of a compound of the invention may be prepared by modifying functional groups present in the compound of the invention in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compound of the invention. Prodrugs include compounds of the invention wherein a hydroxy, amino or mercapto group is bonded to any group that, when the prodrug of the compound of the invention is administered to a mammalian subject, cleaves to form a free hydroxy, free amino or free mercapto group, respectively. Examples of prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol or amide derivatives of amine functional groups in the compounds of the invention and the like.


The invention disclosed herein is also meant to encompass all pharmaceutically acceptable compounds of the compound of structure (I) being isotopically-labelled by having one or more atoms replaced by an atom having a different atomic mass or mass number. Examples of isotopes that can be incorporated into the disclosed compounds include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine, chlorine, and iodine, such as 2H, 3H, 11C, 13C, 14C, 13N, 15N, 15O, 17O, 18O, 31P, 32P, 35S, 18F, 36Cl, 123I, and 125I, respectively. These radiolabeled compounds could be useful to help determine or measure the effectiveness of the compounds, by characterizing, for example, the site or mode of action, or binding affinity to pharmacologically important site of action. Certain isotopically-labelled compounds of structure (I), (IA) or (IB), for example, those incorporating a radioactive isotope, are useful in drug and/or substrate tissue distribution studies. The radioactive isotopes tritium, i.e., 3H, and carbon-14, i.e., 14C, are particularly useful for this purpose in view of their ease of incorporation and ready means of detection.


Substitution with heavier isotopes such as deuterium, i.e., 2H, may afford certain therapeutic advantages resulting from greater metabolic stability, for example, increased in vivo half-life or reduced dosage requirements, and hence may be preferred in some circumstances.


Substitution with positron emitting isotopes, such as 11C, 18F, 15O and 13N, can be useful in Positron Emission Topography (PET) studies for examining substrate receptor occupancy. Isotopically-labeled compounds of structure (I) can generally be prepared by conventional techniques known to those skilled in the art or by processes analogous to those described in the Preparations and Examples as set out below using an appropriate isotopically-labeled reagent in place of the non-labeled reagent previously employed.


Embodiments of the invention disclosed herein is also meant to encompass the in vivo metabolic products of the disclosed compounds. Such products may result from, for example, the oxidation, reduction, hydrolysis, amidation, esterification, and the like of the administered compound, primarily due to enzymatic processes. Accordingly, embodiments of the invention include compounds produced by a process comprising administering a compound of this invention to a mammal for a period of time sufficient to yield a metabolic product thereof. Such products are typically identified by administering a radiolabeled compound of the invention in a detectable dose to an animal, such as rat, mouse, guinea pig, monkey, or to human, allowing sufficient time for metabolism to occur, and isolating its conversion products from the urine, blood or other biological samples.


“Stable compound” and “stable structure” are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.


“Mammal” includes humans and both domestic animals such as laboratory animals and household pets (e.g., cats, dogs, swine, cattle, sheep, goats, horses, rabbits), and non-domestic animals such as wildlife and the like.


“Pharmaceutically acceptable carrier, diluent or excipient” includes without limitation any adjuvant, carrier, excipient, glidant, sweetening agent, diluent, preservative, dye/colorant, flavor enhancer, surfactant, wetting agent, dispersing agent, suspending agent, stabilizer, isotonic agent, solvent, or emulsifier which has been approved by the United States Food and Drug Administration as being acceptable for use in humans or domestic animals.


“Pharmaceutically acceptable salt” includes both acid and base addition salts.


“Pharmaceutically acceptable acid addition salt” refers to those salts which retain the biological effectiveness and properties of the free bases, which are not biologically or otherwise undesirable, and which are formed with inorganic acids such as, but are not limited to, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as, but not limited to, acetic acid, 2,2-dichloroacetic acid, adipic acid, alginic acid, ascorbic acid, aspartic acid, benzenesulfonic acid, benzoic acid, 4-acetamidobenzoic acid, camphoric acid, camphor-10-sulfonic acid, capric acid, caproic acid, caprylic acid, carbonic acid, cinnamic acid, citric acid, cyclamic acid, dodecylsulfuric acid, ethane-1,2-disulfonic acid, ethanesulfonic acid, 2-hydroxyethanesulfonic acid, formic acid, fumaric acid, galactaric acid, gentisic acid, glucoheptonic acid, gluconic acid, glucuronic acid, glutamic acid, glutaric acid, 2-oxo-glutaric acid, glycerophosphoric acid, glycolic acid, hippuric acid, isobutyric acid, lactic acid, lactobionic acid, lauric acid, maleic acid, malic acid, malonic acid, mandelic acid, methanesulfonic acid, mucic acid, naphthalene-1,5-disulfonic acid, naphthalene-2-sulfonic acid, 1-hydroxy-2-naphthoic acid, nicotinic acid, oleic acid, orotic acid, oxalic acid, palmitic acid, pamoic acid, propionic acid, pyroglutamic acid, pyruvic acid, salicylic acid, 4-aminosalicylic acid, sebacic acid, stearic acid, succinic acid, tartaric acid, thiocyanic acid, p-toluenesulfonic acid, trifluoroacetic acid, undecylenic acid, and the like.


“Pharmaceutically acceptable base addition salt” refers to those salts which retain the biological effectiveness and properties of the free acids, which are not biologically or otherwise undesirable. These salts are prepared from addition of an inorganic base or an organic base to the free acid. Salts derived from inorganic bases include, but are not limited to, the sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Preferred inorganic salts are the ammonium, sodium, potassium, calcium, and magnesium salts. Salts derived from organic bases include, but are not limited to, salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as ammonia, isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, diethanolamine, ethanolamine, deanol, 2-dimethylaminoethanol, 2-diethylaminoethanol, dicyclohexylamine, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, benethamine, benzathine, ethylenediamine, glucosamine, methylglucamine, theobromine, triethanolamine, tromethamine, purines, piperazine, piperidine, N-ethylpiperidine, polyamine resins and the like. Particularly preferred organic bases are isopropylamine, diethylamine, ethanolamine, trimethylamine, dicyclohexylamine, choline and caffeine.


Often crystallizations produce a solvate of a compound of the invention (i.e., a compound of structure (I)). As used herein, the term “solvate” refers to an aggregate that comprises one or more molecules of a compound of the invention with one or more molecules of solvent. The solvent may be water, in which case the solvate may be a hydrate. Alternatively, the solvent may be an organic solvent. Thus, the compounds of the present invention may exist as a hydrate, including a monohydrate, dihydrate, hemihydrate, sesquihydrate, trihydrate, tetrahydrate and the like, as well as the corresponding solvated forms. Solvates of compound of the invention may be true solvates, while in other cases, the compound of the invention may merely retain adventitious water or be a mixture of water plus some adventitious solvent.


A “pharmaceutical composition” refers to a formulation of a compound of the invention and a medium generally accepted in the art for the delivery of the biologically active compound to mammals, e.g., humans. Such a medium includes all pharmaceutically acceptable carriers, diluents or excipients therefor.


“Effective amount” or “therapeutically effective amount” refers to that amount of a compound of the invention which, when administered to a mammal, preferably a human, is sufficient to effect treatment in the mammal, preferably a human. The amount of a lipid nanoparticle of the invention which constitutes a “therapeutically effective amount” will vary depending on the compound, the condition and its severity, the manner of administration, and the age of the mammal to be treated, but can be determined routinely by one of ordinary skill in the art having regard to his own knowledge and to this disclosure.


“Treating” or “treatment” as used herein covers the treatment of the disease or condition of interest in a mammal, preferably a human, having the disease or condition of interest, and includes:


(i) preventing the disease or condition from occurring in a mammal, in particular, when such mammal is predisposed to the condition but has not yet been diagnosed as having it;


(ii) inhibiting the disease or condition, i.e., arresting its development;


(iii) relieving the disease or condition, i.e., causing regression of the disease or condition; or


(iv) relieving the symptoms resulting from the disease or condition, i.e., relieving pain without addressing the underlying disease or condition. As used herein, the terms “disease” and “condition” may be used interchangeably or may be different in that the particular malady or condition may not have a known causative agent (so that etiology has not yet been worked out) and it is therefore not yet recognized as a disease but only as an undesirable condition or syndrome, wherein a more or less specific set of symptoms have been identified by clinicians.


The compounds of the invention, or their pharmaceutically acceptable salts may contain one or more stereocenters and may thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that may be defined, in terms of absolute stereochemistry, as (R)- or (S)- or, as (D)- or (L)- for amino acids. The present invention is meant to include all such possible isomers, as well as their racemic and optically pure forms. Optically active (+) and (−), (R)- and (S)-, or (D)- and (L)-isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques, for example, chromatography and fractional crystallization. Conventional techniques for the preparation/isolation of individual enantiomers include chiral synthesis from a suitable optically pure precursor or resolution of the racemate (or the racemate of a salt or derivative) using, for example, chiral high pressure liquid chromatography (HPLC). When the compounds described herein contain olefinic double bonds or other centers of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers. Likewise, all tautomeric forms are also intended to be included.


A “stereoisomer” refers to a compound made up of the same atoms bonded by the same bonds but having different three-dimensional structures, which are not interchangeable. The present invention contemplates various stereoisomers and mixtures thereof and includes “enantiomers”, which refers to two stereoisomers whose molecules are non-superimposable mirror images of one another.


A “tautomer” refers to a proton shift from one atom of a molecule to another atom of the same molecule. The present invention includes tautomers of any said compounds.


Compounds


In an aspect, the invention provides novel lipid compounds which are capable of combining with other lipid components such as neutral lipids, charged lipids, steroids and/or polymer conjugated-lipids to form lipid nanoparticles with oligonucleotides. Without wishing to be bound by theory, it is thought that these lipid nanoparticles shield oligonucleotides from degradation in the serum and provide for effective delivery of oligonucleotides to cells in vitro and in vivo.


In one embodiment, the compounds have the following structure (I):




embedded image



or a pharmaceutically acceptable salt, tautomer, prodrug or stereoisomer thereof,


wherein:


G1 is —OH, —NR3R4, —(C═O)NR5 or —NR3(C═O)R5;


G2 is —CH2— or —(C═O)—;


R is, at each occurrence, independently H or OH;


R1 and R2 are each independently branched, saturated or unsaturated C12-C36 alkyl;


R3 and R4 are each independently H or straight or branched, saturated or unsaturated C1-C6 alkyl;


R5 is straight or branched, saturated or unsaturated C1-C6 alkyl; and


n is an integer from 2 to 6.


In some embodiments, R1 and R2 are each independently branched, saturated or unsaturated C12-C30 alkyl, C12-C20 alkyl, or C15-C20 alkyl. In some specific embodiments, R1 and R2 are each saturated. In certain embodiments, at least one of R1 and R2 is unsaturated.


In some of the foregoing embodiments, R1 and R2 have the following structure:




embedded image


In some of the foregoing embodiments, the compound has the following structure (IA):




embedded image



wherein:


R6 and R7 are, at each occurrence, independently H or straight or branched, saturated or unsaturated C1-C14 alkyl;


a and b are each independently an integer ranging from 1 to 15,


provided that R6 and a, and R7 and b, are each independently selected such that R1 and R2, respectively, are each independently branched, saturated or unsaturated C12-C36 alkyl.


In some of the foregoing embodiments, the compound has the following structure (IB):




embedded image



wherein:


R8, R9, R10 and R11 are each independently straight or branched, saturated or unsaturated C4-C12 alkyl, provided that R8 and R9, and R10 and R11, are each independently selected such that R1 and R2, respectively, are each independently branched, saturated or unsaturated C12-C36 alkyl. In some embodiments of (IB), R8, R9, R10 and R11 are each independently straight or branched, saturated or unsaturated C6-C10 alkyl. In certain embodiments of (IB), at least one of R8, R9, R10 and R11 is unsaturated. In other certain specific embodiments of (IB), each of R8, R9, R10 and R11 is saturated.


In some of the foregoing embodiments, the compound has structure (IA), and in other embodiments, the compound has structure (IB).


In some of the foregoing embodiments, G1 is —OH, and in some embodiments G1 is —NR3R4. For example, in some embodiments, G1 is —NH2, —NHCH3 or —N(CH3)2. In certain embodiments, G1 is —(C═O)NR5. In certain other embodiments, G1 is —NR3(C═O)R5. For example, in some embodiments G1 is —NH(C═O)CH3 or —NH(C═O)CH2CH2CH3.


In some of the foregoing embodiments, G2 is —CH2—. In some different embodiments, G2 is —(C═O)—.


In some of the foregoing embodiments, n is an integer ranging from 2 to 6, for example, in some embodiments n is 2, 3, 4, 5 or 6. In some embodiments, n is 2. In some embodiments, n is 3. In some embodiments, n is 4.


In certain of the foregoing embodiments, at least one of R1, R2, R3, R4 and R5 is unsubstituted. For example, in some embodiments, R1, R2, R3, R4 and R5 are each unsubstituted. In some embodiments, R3 is substituted. In other embodiments R4 is substituted. In still more embodiments, R5 is substituted. In certain specific embodiments, each of R3 and R4 are substituted. In some embodiments, a substituent on R3, R4 or R5 is hydroxyl. In certain embodiments, R3 and R4 are each substituted with hydroxyl.


In some of the foregoing embodiments, at least one R is OH. In other embodiments, each R is H.


In various different embodiments, the compound has one of the structures set forth in Table 1 below.









TABLE 1







Representative Compounds








No.
Structure











1


embedded image







2


embedded image







3


embedded image







4


embedded image







5


embedded image







6


embedded image







7


embedded image







8


embedded image







9


embedded image







10


embedded image







11


embedded image







12


embedded image







13


embedded image







14


embedded image







15


embedded image







16


embedded image







17


embedded image











It is understood that any embodiment of the compounds of structure (I), as set forth above, and any specific substituent and/or variable in the compound structure (I), as set forth above, may be independently combined with other embodiments and/or substituents and/or variables of compounds of structure (I) to form embodiments of the inventions not specifically set forth above. In addition, in the event that a list of substituents and/or variables is listed for any particular R group, G group or variables a, b or n, in a particular embodiment and/or claim, it is understood that each individual substituent and/or variable may be deleted from the particular embodiment and/or claim and that the remaining list of substituents and/or variables will be considered to be within the scope of the invention.


It is understood that in the present description, combinations of substituents and/or variables of the depicted formulae are permissible only if such contributions result in stable compounds.


In some embodiments, lipid nanoparticles comprising a compound of structure (I) are provided. The lipid nanoparticles optionally include excipients selected from a neutral lipid, a steroid and a polymer conjugated lipid.


In some embodiments, compositions comprising any one or more of the compounds of structure (I) and a therapeutic agent are provided. For example, in some embodiments, the compositions comprise any of the compounds of structure (I) and a therapeutic agent and one or more excipient selected from neutral lipids, steroids and polymer conjugated lipids. Other pharmaceutically acceptable excipients and/or carriers are also included in various embodiments of the compositions.


In some embodiments, the neutral lipid is selected from DSPC, DPPC, DMPC, DOPC, POPC, DOPE and SM. In some embodiments, the neutral lipid is DSPC. In various embodiments, the molar ratio of the compound to the neutral lipid ranges from about 2:1 to about 8:1.


In various embodiments, the compositions further comprise a steroid or steroid analogue. In certain embodiments, the steroid or steroid analogue is cholesterol. In some of these embodiments, the molar ratio of the compound to cholesterol ranges from about 5:1 to 1:1.


In various embodiments, the polymer conjugated lipid is a pegylated lipid. For example, some embodiments include a pegylated diacylglycerol (PEG-DAG) such as 1-(monomethoxy-polyethyleneglycol)-2,3-dimyristoylglycerol (PEG-DMG), a pegylated phosphatidylethanoloamine (PEG-PE), a PEG succinate diacylglycerol (PEG-S-DAG) such as 4-O-(2′,3′-di(tetradecanoyloxy)propyl-1-O-(ω-methoxy(polyethoxy)ethyl)butanedioate (PEG-S-DMG), a pegylated ceramide (PEG-cer), or a PEG dialkoxypropylcarbamate such as ω-methoxy(polyethoxy)ethyl-N-(2,3-di(tetradecanoxy)propyl)carbamate or 2,3-di(tetradecanoxy)propyl-N-(ω-methoxy(polyethoxy)ethyl)carbamate. In various embodiments, the molar ratio of the compound to the pegylated lipid ranges from about 100:1 to about 20:1.


In some embodiments, the composition comprises a pegylated lipid having the following structure (II):




embedded image



or a pharmaceutically acceptable salt, tautomer or stereoisomer thereof, wherein:


R12 and R13 are each independently a straight or branched, saturated or unsaturated alkyl chain containing from 10 to 30 carbon atoms, wherein the alkyl chain is optionally interrupted by one or more ester bonds; and


w has a mean value ranging from 30 to 60.


In some embodiments, R12 and R13 are each independently straight, saturated alkyl chains containing from 12 to 16 carbon atoms. In other embodiments, the average w ranges from about 42 to 55, for example about 49.


In some embodiments of the foregoing composition, the therapeutic agent comprises a nucleic acid. For example, in some embodiments, the nucleic acid is selected from antisense and messenger RNA.


In other different embodiments, the invention is directed to a method for administering a therapeutic agent to a patient in need thereof, the method comprising preparing or providing any of the foregoing compositions and administering the composition to the patient


For the purposes of administration, embodiments of the compounds of the present invention (typically in the form of lipid nanoparticles in combination with a therapeutic agent) may be administered as a raw chemical or may be formulated as pharmaceutical compositions. Pharmaceutical compositions of embodiments of the present invention comprise a compound of structure (I) and one or more pharmaceutically acceptable carrier, diluent or excipient. In some embodiments, the compound of structure (I) is present in the composition in an amount which is effective to form a lipid nanoparticle and deliver the therapeutic agent, e.g., for treating a particular disease or condition of interest. Appropriate concentrations and dosages can be readily determined by one skilled in the art.


Administration of the compositions of embodiments of the invention can be carried out via any of the accepted modes of administration of agents for serving similar utilities. The pharmaceutical compositions of embodiments of the invention may be formulated into preparations in solid, semi-solid, liquid or gaseous forms, such as tablets, capsules, powders, granules, ointments, solutions, suspensions, suppositories, injections, inhalants, gels, microspheres, and aerosols. Typical routes of administering such pharmaceutical compositions include, without limitation, oral, topical, transdermal, inhalation, parenteral, sublingual, buccal, rectal, vaginal, and intranasal. The term parenteral as used herein includes subcutaneous injections, intravenous, intramuscular, intradermal, intrasternal injection or infusion techniques. Pharmaceutical compositions of embodiments of the invention are formulated so as to allow the active ingredients contained therein to be bioavailable upon administration of the composition to a patient. Compositions that will be administered to a subject or patient in some embodiments take the form of one or more dosage units, where for example, a tablet may be a single dosage unit, and a container of a compound of an embodiments of the invention in aerosol form may hold a plurality of dosage units. Actual methods of preparing such dosage forms are known, or will be apparent, to those skilled in this art; for example, see Remington: The Science and Practice of Pharmacy, 20th Edition (Philadelphia College of Pharmacy and Science, 2000). In some embodiments, the composition to be administered will, in any event, contain a therapeutically effective amount of a compound of the invention, or a pharmaceutically acceptable salt thereof, for treatment of a disease or condition of interest in accordance with the teachings of this invention.


A pharmaceutical composition of embodiments of the invention may be in the form of a solid or liquid. In one aspect, the carrier(s) are particulate, so that the compositions are, for example, in tablet or powder form. The carrier(s) may be liquid, with the compositions being, for example, an oral syrup, injectable liquid or an aerosol, which is useful in, for example, inhalatory administration.


When intended for oral administration, the pharmaceutical composition of certain embodiments is preferably in either solid or liquid form, where semi-solid, semi-liquid, suspension and gel forms are included within the forms considered herein as either solid or liquid.


As a solid composition for oral administration, the pharmaceutical composition of some embodiments may be formulated into a powder, granule, compressed tablet, pill, capsule, chewing gum, wafer or the like form. Such a solid composition will typically contain one or more inert diluents or edible carriers. In addition, one or more of the following may be present: binders such as carboxymethylcellulose, ethyl cellulose, microcrystalline cellulose, gum tragacanth or gelatin; excipients such as starch, lactose or dextrins, disintegrating agents such as alginic acid, sodium alginate, Primogel, corn starch and the like; lubricants such as magnesium stearate or Sterotex; glidants such as colloidal silicon dioxide; sweetening agents such as sucrose or saccharin; a flavoring agent such as peppermint, methyl salicylate or orange flavoring; and a coloring agent.


When the pharmaceutical composition of some embodiments is in the form of a capsule, for example, a gelatin capsule, it may contain, in addition to materials of the above type, a liquid carrier such as polyethylene glycol or oil.


The pharmaceutical composition of some embodiments may be in the form of a liquid, for example, an elixir, syrup, solution, emulsion or suspension. The liquid may be for oral administration or for delivery by injection, as two examples. When intended for oral administration, preferred composition contain, in addition to a compound of structure (I), one or more of a sweetening agent, preservatives, dye/colorant and flavor enhancer. In a composition intended to be administered by injection, one or more of a surfactant, preservative, wetting agent, dispersing agent, suspending agent, buffer, stabilizer and isotonic agent may be included.


The liquid pharmaceutical compositions of embodiments of the invention, whether they be solutions, suspensions or other like form, may include one or more of the following adjuvants: sterile diluents such as water for injection, saline solution, preferably physiological saline, Ringer's solution, isotonic sodium chloride, fixed oils such as synthetic mono or diglycerides which may serve as the solvent or suspending medium, polyethylene glycols, glycerin, propylene glycol or other solvents; antibacterial agents such as benzyl alcohol or methyl paraben; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose; agents to act as cryoprotectants such as sucrose or trehalose. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic. Physiological saline is a preferred adjuvant. An injectable pharmaceutical composition is preferably sterile.


A liquid pharmaceutical composition of embodiments of the invention intended for either parenteral or oral administration should contain an amount of a compound of the invention such that a suitable dosage will be obtained.


The pharmaceutical composition of embodiments of the invention may be intended for topical administration, in which case the carrier may suitably comprise a solution, emulsion, ointment or gel base. The base, for example, may comprise one or more of the following: petrolatum, lanolin, polyethylene glycols, bee wax, mineral oil, diluents such as water and alcohol, and emulsifiers and stabilizers. Thickening agents may be present in a pharmaceutical composition for topical administration. If intended for transdermal administration, the composition may include a transdermal patch or iontophoresis device.


The pharmaceutical composition of embodiments of the invention may be intended for rectal administration, in the form, for example, of a suppository, which will melt in the rectum and release the drug. A composition for rectal administration may contain an oleaginous base as a suitable nonirritating excipient. Such bases include, without limitation, lanolin, cocoa butter and polyethylene glycol.


The pharmaceutical composition of embodiments of the invention may include various materials, which modify the physical form of a solid or liquid dosage unit. For example, the composition may include materials that form a coating shell around the active ingredients. The materials that form the coating shell are typically inert, and may be selected from, for example, sugar, shellac, and other enteric coating agents. Alternatively, the active ingredients may be encased in a gelatin capsule.


The pharmaceutical composition of embodiments of the invention in solid or liquid form may include an agent that binds to the compound of the invention and thereby assists in the delivery of the compound. Suitable agents that may act in this capacity include a monoclonal or polyclonal antibody, or a protein.


The pharmaceutical composition of embodiments of the invention may consist of dosage units that can be administered as an aerosol. The term aerosol is used to denote a variety of systems ranging from those of colloidal nature to systems consisting of pressurized packages. Delivery may be by a liquefied or compressed gas or by a suitable pump system that dispenses the active ingredients. Aerosols of compounds of embodiments of the invention may be delivered in single phase, bi-phasic, or tri-phasic systems in order to deliver the active ingredient(s). Delivery of the aerosol includes the necessary container, activators, valves, subcontainers, and the like, which together may form a kit. One skilled in the art, without undue experimentation, may determine preferred aerosols.


The pharmaceutical compositions of embodiments of the invention may be prepared by methodology well known in the pharmaceutical art. For example, a pharmaceutical composition intended to be administered by injection can be prepared by combining the lipid nanoparticles of the invention with sterile, distilled water or other carrier so as to form a solution. A surfactant may be added to facilitate the formation of a homogeneous solution or suspension. Surfactants are compounds that non-covalently interact with the compound of the invention so as to facilitate dissolution or homogeneous suspension of the compound in the aqueous delivery system.


The compositions of embodiments of the invention, or their pharmaceutically acceptable salts, are administered in a therapeutically effective amount, which will vary depending upon a variety of factors including the activity of the specific therapeutic agent employed; the metabolic stability and length of action of the therapeutic agent; the age, body weight, general health, sex, and diet of the patient; the mode and time of administration; the rate of excretion; the drug combination; the severity of the particular disorder or condition; and the subject undergoing therapy.


Compositions of embodiments of the invention may also be administered simultaneously with, prior to, or after administration of one or more other therapeutic agents. Such combination therapy includes administration of a single pharmaceutical dosage formulation of a composition of embodiments of the invention and one or more additional active agents, as well as administration of the composition of embodiments of the invention and each active agent in its own separate pharmaceutical dosage formulation. For example, a composition of embodiments of the invention and the other active agent can be administered to the patient together in a single oral dosage composition such as a tablet or capsule, or each agent administered in separate oral dosage formulations. Where separate dosage formulations are used, the compounds of embodiments of the invention and one or more additional active agents can be administered at essentially the same time, i.e., concurrently, or at separately staggered times, i.e., sequentially; combination therapy is understood to include all these regimens.


Preparation methods for the above compounds and compositions are described herein below and/or known in the art.


It will be appreciated by those skilled in the art that in the process described herein the functional groups of intermediate compounds may need to be protected by suitable protecting groups. Such functional groups include hydroxy, amino, mercapto and carboxylic acid. Suitable protecting groups for hydroxy include trialkylsilyl or diarylalkylsilyl (for example, t-butyldimethylsilyl, t-butyldiphenylsilyl or trimethylsilyl), tetrahydropyranyl, benzyl, and the like. Suitable protecting groups for amino, amidino and guanidino include t-butoxycarbonyl, benzyloxycarbonyl, and the like. Suitable protecting groups for mercapto include —C(O)—R″ (where R″ is alkyl, aryl or arylalkyl), p-methoxybenzyl, trityl and the like. Suitable protecting groups for carboxylic acid include alkyl, aryl or arylalkyl esters. Protecting groups may be added or removed in accordance with standard techniques, which are known to one skilled in the art and as described herein. The use of protecting groups is described in detail in Green, T. W. and P. G. M. Wutz, Protective Groups in Organic Synthesis (1999), 3rd Ed., Wiley. As one of skill in the art would appreciate, the protecting group may also be a polymer resin such as a Wang resin, Rink resin or 2-chlorotrityl-chloride resin.


It will also be appreciated by those skilled in the art, although such protected derivatives of compounds of this invention may not possess pharmacological activity as such, they may be administered to a mammal and thereafter metabolized in the body to form compounds of the invention which are pharmacologically active. Such derivatives may therefore be described as “prodrugs”. All prodrugs of compounds of this invention are included within the scope of the invention.


Furthermore, compounds of embodiments of the invention which exist in free base or acid form can be converted to their pharmaceutically acceptable salts by treatment with the appropriate inorganic or organic base or acid by methods known to one skilled in the art. Salts of compounds of embodiments of the invention can be converted to their free base or acid form by standard techniques.


The following General Reaction Scheme 1 illustrates exemplary methods to make compounds of this invention, i.e., compounds of structure (I):




embedded image



or a pharmaceutically acceptable salt, tautomer or stereoisomer thereof, wherein R1, R2, G1, G2, and n are as defined herein. It is understood that one skilled in the art may be able to make these compounds by similar methods or by combining other methods known to one skilled in the art. It is also understood that one skilled in the art would be able to make, in a similar manner as described below, other compounds of structure (I) not specifically illustrated below by using the appropriate starting components and modifying the parameters of the synthesis as needed. In general, starting components may be obtained from sources such as Sigma Aldrich, Lancaster Synthesis, Inc., Maybridge, Matrix Scientific, TCI, and Fluorochem USA, etc. or synthesized according to sources known to those skilled in the art (see, for example, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 5th edition (Wiley, December 2000)) or prepared as described in this invention.




embedded image


General Reaction Scheme I provides an exemplary method for preparation of compounds of structure (I). G1 and n in General reaction Scheme 1 are as defined herein, and R1′ refers to a one-carbon shorter homologue of R1. Compounds of structure A-1 are purchased or prepared according to methods known in the art. Reaction of A-1 under appropriate oxidation conditions (e.g., TEMPO) yields aldehyde A-2, which can then undergo a reductive amination with A-3 using an appropriate reagent (e.g., sodium triacetoxyborohydride) to yield a compound of structure (I).


It should be noted that various alternative strategies for preparation of compounds of structure (I) are available to those of ordinary skill in the art. For example, other compounds of structure (I) wherein can be prepared according to analogous methods using the appropriate starting material. Further, General Reaction Scheme 1 depicts preparation of a compound of structure (I), wherein R1 and R2 are the same; however, this is not a required aspect of the invention and modifications to the above reaction scheme are possible to yield compounds wherein R1 and R2 are different. The use of protecting groups as needed and other modification to the above General Reaction Scheme will be readily apparent to one of ordinary skill in the art.


The following examples are provided for purpose of illustration and not limitation.


Example 1
Luciferase mRNA In Vivo Evaluation Using the Lipid Nanoparticle Compositions

Lipid nanoparticles are prepared and tested according to the general procedures described in PCT Pub. Nos. WO 2015/199952 and WO 2017/004143, the full disclosures of which are incorporated herein by reference. Briefly, cationic lipid, DSPC, cholesterol and PEG-lipid are solubilized in ethanol at a molar ratio of about 50:10:38.5:1.5 or about 47.5:10:40.8:1.7. Lipid nanoparticles (LNP) are prepared at a total lipid to mRNA weight ratio of approximately 10:1 to 30:1. The mRNA is diluted to 0.2 mg/mL in 10 to 50 mM citrate or acetate buffer, pH 4. Syringe pumps are used to mix the ethanolic lipid solution with the mRNA aqueous solution at a ratio of about 1:5 to 1:3 (vol/vol) with total flow rates above 15 mL/min. The ethanol is then removed and the external buffer replaced with PBS by dialysis. Finally, the lipid nanoparticles are filtered through a 0.2 μm pore sterile filter. Lipid nanoparticle particle size is approximately 55-95 nm diameter, and in some instances approximately 70-90 nm diameter as determined by quasi-elastic light scattering using a Malvern Zetasizer Nano ZS (Malvern, UK).


Studies are performed in 6-8 week old female C57BL/6 mice (Charles River) or 8-10 week old CD-1 (Harlan) mice (Charles River) according to guidelines established by an institutional animal care committee (ACC) and the Canadian Council on Animal Care (CCAC). Varying doses of mRNA-lipid nanoparticle are systemically administered by tail vein injection and animals euthanized at a specific time point (e.g., 4 hours) post-administration. Liver and spleen are collected in pre-weighed tubes, weights determined, immediately snap frozen in liquid nitrogen and stored at −80° C. until processing for analysis.


For liver, approximately 50 mg is dissected for analyses in a 2 mL FastPrep tubes (MP Biomedicals, Solon Ohio). ¼″ ceramic sphere (MP Biomedicals) is added to each tube and 500 μL of Glo Lysis Buffer—GLB (Promega, Madison Wis.) equilibrated to room temperature is added to liver tissue. Liver tissues are homogenized with the FastPrep24 instrument (MP Biomedicals) at 2×6.0 m/s for 15 seconds. Homogenate is incubated at room temperature for 5 minutes prior to a 1:4 dilution in GLB and assessed using SteadyGlo Luciferase assay system (Promega). Specifically, 50 μL of diluted tissue homogenate is reacted with 50 μL of SteadyGlo substrate, shaken for 10 seconds followed by 5 minute incubation and then quantitated using a CentroXS3 LB 960 luminometer (Berthold Technologies, Germany). The amount of protein assayed is determined by using the BCA protein assay kit (Pierce, Rockford Ill.). Relative luminescence units (RLU) are then normalized to total ug protein assayed. To convert RLU to ng luciferase a standard curve is generated with QuantiLum Recombinant Luciferase (Promega).


The FLuc mRNA (L-6107 or L-7202) from Trilink Biotechnologies will express a luciferase protein, originally isolated from the firefly, photinus pyralis. FLuc is commonly used in mammalian cell culture to measure both gene expression and cell viability. It emits bioluminescence in the presence of the substrate, luciferin. This capped and polyadenylated mRNA is fully substituted with respect to uridine and/or cytidine nucleosides.


Example 2
Determination of pKA of Formulated Lipids

As described elsewhere, the pKa of formulated cationic lipids is correlated with the effectiveness of LNPs for delivery of nucleic acids (see Jayaraman et al, Angewandte Chemie, International Edition (2012), 51(34), 8529-8533; Semple et al, Nature Biotechnology 28, 172-176 (2010)). The preferred range of pKa is ˜5 to ˜7. The pKa of each cationic lipid is determined in lipid nanoparticles using an assay based on fluorescence of 2-(p-toluidino)-6-napthalene sulfonic acid (TNS). Lipid nanoparticles comprising cationic lipid/DSPC/cholesterol/PEG-lipid (50/10/38.5/1.5 mol %) in PBS at a concentration of 0.4 mM total lipid are prepared using the in-line process as described in Example 1. TNS is prepared as a 100 μM stock solution in distilled water. Vesicles are diluted to 24 μM lipid in 2 mL of buffered solutions containing, 10 mM HEPES, 10 mM MES, 10 mM ammonium acetate, 130 mM NaCl, where the pH ranged from 2.5 to 11. An aliquot of the TNS solution is added to give a final concentration of 1 μM and following vortex mixing fluorescence intensity is measured at room temperature in a SLM Aminco Series 2 Luminescence Spectrophotometer using excitation and emission wavelengths of 321 nm and 445 nm. A sigmoidal best fit analysis is applied to the fluorescence data and the pKa was measured as the pH giving rise to half-maximal fluorescence intensity.


Example 3
Determination of Efficacy of Lipid Nanoparticle Formulations Containing Various Cationic Lipids Using an In Vivo Luciferase mRNA Expression Rodent Model

The cationic lipids shown in Table 2 have previously been tested with nucleic acids. For comparative purposes, these lipids were also used to formulate lipid nanoparticles containing the FLuc mRNA (L-6107) using an in line mixing method, as described in Example 1 and in PCT/US10/22614, which is hereby incorporated by reference in its entirety. Lipid nanoparticles were formulated using the following molar ratio: 50% Cationic lipid/10% distearoylphosphatidylcholine (DSPC)/38.5% Cholesterol/1.5% PEG lipid (“PEG-DMG”, i.e., 1-(monomethoxy-polyethyleneglycol)-2,3-dimyristoylglycerol, with an average PEG molecular weight of 2000). In alternate embodiments, cationic lipid, DSPC, cholesterol and PEG-lipid are formulated at a molar ratio of approximately 47.5:10:40.8:1.7. Relative activity was determined by measuring luciferase expression in the liver 4 hours following administration via tail vein injection as described in Example 1. The activity was compared at a dose of 0.3 and 1.0 mg mRNA/kg and expressed as ng luciferase/g liver measured 4 hours after administration, as described in Example 1.









TABLE 2







Comparator Lipids showing activity with mRNA











Liver Luc
Liver Luc




@ 0.3 mg/
@ 1.0 mg/



Compound
kg dose
kg dose
Structure













MC2
 4 ± 1 
N/D


embedded image







DLinDMA
 13 ± 3 
 67 ± 20 


embedded image







MC4
 41 ± 10 
N/D


embedded image







XTC2
 80 ± 28 
237 ± 99 


embedded image







MC3
198 ± 126
757 ± 528


embedded image







319 (2% PEG)
258 ± 67 
681 ± 203


embedded image







137
281 ± 203
588 ± 303


embedded image







A
 77 ± 40 
203 ± 122


embedded image












Representative compounds of the invention shown in Table 3 were formulated using the following molar ratio: 50% cationic lipid/10% distearoylphosphatidylcholine (DSPC)/38.5% Cholesterol/1.5% PEG lipid (“PEG-DMA” 2-[2-(ω-methoxy(polyethyleneglycol2000)ethoxy]-N,N-ditetradecylacetamide) or 47.5% cationic lipid/10% DSPC/40.8% Cholesterol/1.7% PEG lipid. Relative activity was determined by measuring luciferase expression in the liver 4 hours following administration via tail vein injection as described in Example 1. The activity was compared at a dose of 0.3, 0.5 and/or 1.0 mg mRNA/kg and expressed as ng luciferase/g liver measured 4 hours after administration, as described in Example 1. Compound numbers in Table 3 refer to the compound numbers of Table 1.









TABLE 3







Novel Cationic Lipids and Associated Activity













Liver Luc
Liver Luc
Liver Luc


Cmp.

@ 0.3 mg/kg (ng
@ 0.5 mg/kg
@ 1.0 mg/kg


No.
pKa
luc/g liver)
(ng luc/g liver)
(ng luc/g liver)














4
5.55
87 ± 11
n/a
 233 ± 121


5
5.77
2840 ± 757 
n/a
13739 ± 7631


15
5.91
n/a
2417 ± 833 
n/a


16
5.87
n/a
52 ± 26
n/a


17
6.49
n/a
12 ± 5 
n/a









Example 4
Synthesis of 2-Hexyldecanal

A solution of 2-hexyldecanol (12.8 g) in dichloromethane (30 mL) was treated with potassium bromide solution (0.96 g in 3.8 mL water) and (2,2,6,6-tetramethylpiperidin-1-yl)oyl oroxidanyl (TEMPO, 80 mg). The solution was cooled in an ice/salt mixture for 15 minutes. A solution of concentrated sodium hypochlorite (40 mL of 11-15% sodium hypochlorite with 15 mL of saturated aqueous sodium bicarbonate) was slowly added dropwise to the reaction mixture. The reaction was stirred for 15 minutes and then extracted between hexane and water. The crude product was passed down a silica gel column using hexane as the eluent.


Example 5
Synthesis of Compound 1

A solution of 2-hexyldecanal (4.3 g) in dichloromethane (20 mL) was treated with 4-hydroxybutylamine (0.41 g), acetic acid (0.58 g) and sodium triacetoxyborohydride (2.10 g). The reaction was stirred overnight and then washed with aqueous sodium bicarbonate solution. The organic phase was dried over anhydrous magnesium sulfate, filtered and the solvent removed in vacuo. The residue was passed down a silica gel column using initially 2% acetic acid/dichloromethane, followed by a 2-8% methanol/dichloromethane gradient. The purified product was dissolved in hexane and washed with sodium hydrogen carbonate solution. The solvent was removed and the residue dissolved in ˜5 mL hexane. The solution was passed through a silica gel plug, and dried under a nitrogen stream, yielding 0.74 g of the desired product.


Example 6
Synthesis of Compound 2

A solution of 2-hexyldecanal (4.3 g) in dichloromethane (20 mL) was treated with 2-N,N-dimethylaminoethylamine (0.40 g), acetic acid (0.59 g) and sodium triacetoxyborohydride (2.10 g). The reaction was stirred for two hours and then washed with aqueous sodium bicarbonate solution. The organic phase was dried over anhydrous magnesium sulfate, filtered and dried in vacuo. The residue was passed down a silica gel column using initially 2% acetic acid/dichloromethane, followed by a 2-8% methanol/dichloromethane gradient. The purified product was dissolved in hexane and washed with sodium hydrogen carbonate solution. The solvent was removed from the organic fraction and the residue dissolved in ˜5 mL hexane. The solution was passed through a silica gel plug, and dried under a nitrogen stream, yielding 1.20 g of the desired product.


Example 7
Synthesis of Compound 3

A solution of 2-hexyldecanal (4.0 g) in dichloromethane (20 mL) was treated with 3-N,N-dimethylaminopropylamine (0.43 g), acetic acid (0.58 g) and sodium triacetoxyborohydride (2.05 g). The reaction was stirred overnight and then washed with aqueous sodium bicarbonate solution. The organic phase was dried over anhydrous magnesium sulfate, filtered and dried in vacuo. The residue was passed down a silica gel column using initially 2% acetic acid/dichloromethane, followed by a 2-8% methanol/dichloromethane gradient. The purified product was dissolved in hexane and washed with sodium hydrogen carbonate solution. The solvent was removed from the organic fraction and the residue dissolved in ˜5 mL hexane. The solution was passed through a silica gel plug, and dried under a nitrogen stream, yielding 0.74 g of the desired product.


Example 8
Synthesis of Compound 4

A solution of 2-hexyldecanal (3.1 g) in dichloromethane (20 mL) was treated with 4-N,N-dimethylaminobutylamine (0.50 g), acetic acid (0.57 g) and sodium triacetoxyborohydride (2.7 g). The reaction was stirred overnight and then washed with aqueous sodium bicarbonate solution. The organic phase was dried over anhydrous magnesium sulfate, filtered and dried in vacuo. The residue was passed down a silica gel column using initially 2% acetic acid/dichloromethane, followed by a 1-2% methanol/dichloromethane gradient. The purified product was dissolved in hexane and washed with sodium hydrogen carbonate solution. The solvent was removed from the organic fraction and the residue dissolved in ˜2 mL hexane. The solution was passed through a silica gel plug, and dried under a nitrogen stream, yielding 1.75 g of compound 4.


Example 9
Synthesis of 2-hexyldecanoylamide

A solution of 2-hexyldecanoic acid (26 g) in benzene (30 mL) was treated with oxalyl chloride (15 mL). The reaction was stirred until gas evolution ceased, after which the solvent was removed on a rotovap and the residue dried under vacuum for 4 hours. The crude 2-hexyldecanoyl chloride was dissolved in dichloromethane (100 mL) and added slowly to a stirred solution of concentrated ammonium hydroxide (150 mL). The reaction mixture was allowed to stand for two hours and the aqueous supernatant decanted off. The organic phase was washed twice with water in the same manner, then filtered. The collected precipitate was dried, yielding crude 2-hexyldecanoylamide (22 g) as a white powder.


Example 10
Synthesis of 2-hexyldecanylamine

A suspension of 2-hexyldecanoylamide (8.2 g) in dry tetrahydrofuran (40 mL) was treated with lithium aluminium hydride (1.1 g, added slowly). The reaction was stirred for two hours and then excess methanol was slowly added. Dichloromethane (150 mL) was added, followed by water (2 mL). The reaction mixture was filtered and the solvent removed from the filtrate, yielding crude 2-hexyldecanylamine (4.7 g).


Example 11
Synthesis of N-(2′-hexyldecanyl)-2-hexyldecanoylamide

A solution of 2-hexyldecanylamine (4.7 g) in dichloromethane (100 mL) was treated with 2-hexyldecanoyl chloride (5.5 g, dissolved in 50 mL dichloromethane), followed by triethylamine (4 mL). The reaction was stirred for an hour and then washed with dilute hydrochloric acid. The organic phase was dried over anhydrous magnesium sulfate, filtered, and the solvent removed. The residue (˜10 g) was combined with the crude products from a second reaction (˜7 g) and passed down a silica gel (100 g) using a 0-10% methanol/dichloromethane gradient, yielding N-(2′-hexyldecanyl)-2-hexyldecanoylamide (14.4 g).


Example 12
Synthesis of Di-(2-Hexyldecanyl)amine

A solution of N-(2′-hexyldecanyl)-2-hexyldecanoylamide (14.4 g) in dry tetrahydrofuran (100 mL) was treated with lithium aluminum hydride (2 g) and refluxed overnight. Excess methanol was slowly added to destroy excess reducing agent. Dichloromethane (200 mL) was added, followed by water (2 mL). The mixture was then filtered and the solvent removed. The residue was suspended in hexane, filtered, and the solvent removed. The residue was passed down a silica gel (100 g) column using 2% acetic acid/dichloromethane, followed by a 2-16% methanol/dichloromethane gradient. Purified fractions were washed between hexane and aqueous sodium bicarbonate solution. Removal of the solvent yielded di-(2-hexyldecanyl)amine as a colorless oil (9.5 g).


Example 13
Synthesis of



embedded image


A solution of di-(2-hexyldecanyl)amine (1.4 g) in dichloromethane (20 mL) was treated with triethylamine (1 mL) and a solution of 5-bromopentanoyl chloride (2 g) in dichloromethane (20 mL). The reaction was stirred for an hour and then washed with dilute aqueous hydrochloric acid. The organic phase was dried over anhydrous magnesium sulfate, filtered and the solvent removed. The residue was dissolved in a 2M solution of dimethylamine in tetrahydrofuran (30 mL) and stirred overnight. Most of the solvent was removed and the residue partitioned between hexane and dilute aqueous hydrochloric acid. The organic phase was washed with water, dried over anhydrous magnesium sulfate, filtered and the solvent removed. The residue was passed down a silica gel column using 2% acetic acid/dichloromethane, followed by a 2-12% methanol/dichloromethane gradient, yielding the target compound (0.95 g) as a colorless oil.


Example 14
Synthesis of Compound 5

A solution of




embedded image



(0.3 g) in tetrahydrofuran (20 mL) was treated with lithium aluminum hydride (0.2 g, added slowly). The reaction was stirred overnight. Excess methanol was then slowly added, followed by dichloromethane (100 mL). The suspension was filtered and the solvent removed. The residue was suspended in dichloromethane, filtered again, and the solvent removed. The crude product was passed down a silica gel column using 2% acetic acid/dichloromethane followed by a 2-16% methanol/dichloromethane gradient. The purified fractions were partitioned between hexane and aqueous sodium bicarbonate solution. The solvent was removed, yielding compound 5 (0.11 g) as a colorless oil.


Example 15
Synthesis of Compound 13

A solution of 2-hexyldecanal (3.0 g) in dichloromethane (30 mL) was treated with 3-aminopropan-1,2-diol (0.36 g) and sodium triacetoxyborohydride (2.6 g). The reaction was stirred for three days and then washed with aqueous sodium bicarbonate solution. The organic phase was dried over anhydrous magnesium sulfate, filtered and dried in vacuo. The residue was passed down a silica gel column using initially 2% acetic acid/dichloromethane, followed by a 2-6% methanol/dichloromethane gradient. The purified product was dissolved in hexane and washed with sodium hydrogen carbonate solution. The solvent was removed from the organic fraction and the residue dissolved in ˜5 mL hexane. The solution was passed through a silica gel plug, and dried under a nitrogen stream, yielding compound 13 (1.75 g) as a colorless oil.


Example 16
Synthesis of



embedded image


A solution of di-(2-hexyldecanyl)amine (1.5 g) in dichloromethane (10 mL) was treated with triethylamine (20 drops) and a solution of 6-bromohexanoyl chloride (1 g) in dichloromethane (10 mL). The reaction was stirred for thirty minutes and then the solvent was removed on a rotovap. The residue was dissolved in dichloromethane, filtered through a silica gel bed and the solvent removed. The residue was dissolved in a 2M solution of dimethylamine in tetrahydrofuran (30 mL) and stirred overnight. Most of the solvent was removed and the residue partitioned between dichloromethane and aqueous sodium bicarbonate solution. The organic phase was washed with water, dried over anhydrous magnesium sulfate, filtered and the solvent removed. The residue was passed down a silica gel column using a 0-8% methanol/dichloromethane gradient, yielding the target compound (0.26 g) as a colorless oil.


Example 17
Synthesis of



embedded image


A solution of di-(2-hexyldecanyl)amine (1.25 g) in dichloromethane (20 mL) was treated with triethylamine (5 mL) and 5-bromopentanoyl chloride (1 g). The reaction was stirred for 10 minutes, filtered and the solvent removed. The residue was dissolved in dichloromethane and washed with dilute aqueous hydrochloric acid. The organic phase was dried over anhydrous magnesium sulfate, filtered and the solvent removed. The residue was treated with a solution of diethanolamine (4.9 g) in tetrahydrofuran (20 mL) and heated to 45 C overnight. The reaction mixture was washed twice with water, and the solvent removed. The residue was passed down a silica gel column using a 0-12% methanol/dichloromethane gradient, yielding the target compound (0.32 g) as a colorless oil.


Example 18
Synthesis of Compound 14

A solution of




embedded image



(0.52 g) in tetrahydrofuran (10 mL) was treated with lithium aluminum hydride (0.50 g, added slowly). The reaction was stirred overnight. Excess methanol was then slowly added, followed by dichloromethane (100 mL) and water (1 mL). The suspension was filtered and the solvent removed. The residue was suspended in dichloromethane, filtered again, and the solvent removed. The crude product was passed down a silica gel column using a 1-12% methanol/dichloromethane gradient yielding compound 14 (0.12 g) as a colorless oil.


Example 19
Synthesis of Compound 15

A solution of




embedded image



(0.67 g) in tetrahydrofuran (20 mL) was treated with lithium aluminum hydride (0.35 g, added slowly). The reaction was stirred for two hours. Excess methanol was then slowly added, followed by dichloromethane (100 mL) and water (2 mL). The suspension was filtered and the solvent removed. The crude product was passed down a silica gel column using a 0-12% methanol/dichloromethane gradient yielding compound 15 (0.30 g) as a colorless oil.


Example 20
Synthesis of



embedded image


A solution of di-(2-hexyldecanyl)amine (1.25 g) in dichloromethane (20 mL) was treated with triethylamine (5 mL) and 5-bromopentanoyl chloride (1 g). The reaction was stirred for 10 minutes, filtered and the solvent removed. The residue was dissolved in dichloromethane and washed with dilute aqueous hydrochloric acid. The organic phase was dried over anhydrous magnesium sulfate, filtered and the solvent removed. The residue was treated with isopropylamine (20 mL) and stirred overnight. The solvent was removed and the residue washed between hexane and aqueous sodium bicarbonate solution. The solvent was removed and residue passed down a silica gel column using a 0-8% methanol/dichloromethane gradient, yielding the target compound (0.67 g) as a colorless oil.


Example 21
Synthesis of Compound 16

A solution of




embedded image



(0.22 g) in tetrahydrofuran (10 mL) was treated with lithium aluminum hydride (0.25 g, added slowly). The reaction was stirred overnight. Excess methanol was then slowly added, followed by dichloromethane (50 mL) and water (1 mL). The suspension was filtered and the solvent removed. The residue was suspended in dichloromethane, filtered again, and the solvent removed, yielding 0.24 g of crude product. This was combined with the products from a second reaction for a total of 0.42 g. The crude product was passed down a silica gel column using a 0-12% methanol/dichloromethane gradient. The purified fractions were partitioned between hexane and aqueous sodium bicarbonate solution. The solvent was removed, yielding compound 16 (0.24 g) as a colorless oil.


Example 22
Synthesis of Compound 17

A solution of di-(2-hexyldecanyl)amine (1.1 g) in hexane (20 mL) was treated with 3-bromopropionoyl chloride (0.8 g) and triethylamine (2 mL), and stirred for two hours. The solution was washed with water and the solvent removed. The residue was dissolved in a 2M solution of dimethylamine in tetrahydrofuran (15 ml) and stirred overnight. The solvent was removed and the residue passed down a silica gel column using an acetic acid/methanol/dichloromethane (2-0%; 0-16%; 98-84%) gradient. The purified product was dissolved in tetrahydrofuran (20 mL) and treated with lithium aluminum hydride (0.6 g) overnight. Excess methanol was slowly added, followed by dichloromethane (50 mL) and water (1 mL). The suspension was filtered and the solvent removed. The residue was passed down a silica gel column using an acetic acid/methanol/dichloromethane (2-0%; 0-16%; 98-84%) gradient, yielding compound 17 (0.27 g) as a colorless oil.


The various embodiments described above can be combined to provide further embodiments. All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, if any, including U.S. Provisional Patent Application No. 62/485,278, filed Apr. 13, 2017, are incorporated herein by reference, in their entirety. Aspects of the embodiments can be modified, if necessary to employ concepts of the various patents, applications and publications to provide yet further embodiments. These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.

Claims
  • 1. A compound having the following structure (I):
  • 2. The compound of claim 1, having the following structure (IA):
  • 3. The compound of claim 1, having the following structure (IB):
  • 4. The compound of claim 3, wherein R8, R9, R10 and R11 are each independently straight or branched, saturated or unsaturated C6-C10 alkyl.
  • 5. The compound of claim 1, wherein R1 and R2 are each independently branched, saturated or unsaturated C12-C20 alkyl.
  • 6. The compound of claim 1, wherein R1 and R2 are each saturated.
  • 7. The compound of claim 1, wherein R1 and R2 have the following structure:
  • 8. The compound of claim 1, wherein G1 is —OH.
  • 9. The compound of claim 1, wherein G1 is —NR3R4.
  • 10. The compound of claim 9, wherein G1 is —NH2, —NHCH3 or —N(CH3)2.
  • 11. The compound of claim 1, wherein G1 is —(C═O)NR5.
  • 12. The compound of claim 1, wherein G1 is —NR3(C═O)R5.
  • 13. The compound of claim 12, wherein G1 is —NH(C═O)CH3 or —NH(C═O)CH2CH2CH3.
  • 14. The compound of claim 1, wherein G2 is —CH2—.
  • 15. The compound of claim 1, wherein G2 is —(C═O)—.
  • 16. The compound of claim 1, wherein R1, R2, R3, R4 and R5 are each unsubstituted.
  • 17. The compound of claim 1, having one of the following structures:
  • 18. A composition comprising the compound of claim 1 and a therapeutic agent.
  • 19. A method for administering a therapeutic agent to a patient in need thereof, the method comprising administering the composition of claim 18 to the patient.
  • 20. A lipid nanoparticle comprising the compound of claim 1 and a therapeutic agent.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2018/027556 4/13/2018 WO 00
Publishing Document Publishing Date Country Kind
WO2018/191657 10/18/2018 WO A
US Referenced Citations (243)
Number Name Date Kind
2856420 Crawford, Jr. Oct 1958 A
3340299 Weintraub et al. Sep 1967 A
3729564 Chang et al. Apr 1973 A
3931430 Tada et al. Jan 1976 A
4121898 Kirschnek et al. Oct 1978 A
4491583 Cronin Jan 1985 A
4639468 Roncucci et al. Jan 1987 A
5176996 Hogan et al. Jan 1993 A
5705385 Bally et al. Jan 1998 A
5756785 O'Lenick, Jr. May 1998 A
5919743 O'Lenick, Jr. Jul 1999 A
5965542 Wasan et al. Oct 1999 A
5976567 Wheeler et al. Nov 1999 A
5981501 Wheeler et al. Nov 1999 A
6013813 O'Lenick, Jr. Jan 2000 A
6034137 Belloni et al. Mar 2000 A
6077509 Weiner et al. Jun 2000 A
6107286 Byk et al. Aug 2000 A
6300321 Scherman et al. Oct 2001 B1
6333433 Baneqee et al. Dec 2001 B1
6410328 Maclachlan et al. Jun 2002 B1
6458381 Sourovoi et al. Oct 2002 B1
6534484 Wheeler et al. Mar 2003 B1
6586410 Wheeler et al. Jul 2003 B1
6620794 O'Lenick, Jr. et al. Sep 2003 B1
6794136 Eisenberg et al. Sep 2004 B1
6815432 Wheeler et al. Nov 2004 B2
6858224 Wheeler et al. Feb 2005 B2
6933113 Case et al. Aug 2005 B2
6986902 Chen et al. Jan 2006 B1
7067317 Rebar et al. Jun 2006 B2
7112337 Huang et al. Sep 2006 B2
7217509 Wolffe et al. May 2007 B2
7404969 Chen et al. Jul 2008 B2
7470781 Crouzet et al. Dec 2008 B2
7745651 Heyes et al. Jun 2010 B2
7799565 MacLachlan et al. Sep 2010 B2
7803397 Heyes et al. Sep 2010 B2
7811602 Cullis et al. Oct 2010 B2
7893302 Chen et al. Feb 2011 B2
7901708 MacLachlan et al. Mar 2011 B2
7938295 Wootton May 2011 B2
7982027 MacLachlan et al. Jul 2011 B2
8034376 Manoharan et al. Oct 2011 B2
8158601 Chen et al. Apr 2012 B2
8278036 Kariko et al. Oct 2012 B2
8283333 Yaworski et al. Oct 2012 B2
8329070 MacLachlan et al. Dec 2012 B2
8466122 Heyes et al. Jun 2013 B2
8569256 Heyes et al. Oct 2013 B2
8575123 Manoharan et al. Nov 2013 B2
8642076 Manoharan et al. Feb 2014 B2
8691750 Constien et al. Apr 2014 B2
8722082 Manoharan et al. May 2014 B2
8748089 Kariko et al. Jun 2014 B2
8802644 Chen et al. Aug 2014 B2
8822668 Yaworski et al. Sep 2014 B2
8835108 Kariko et al. Sep 2014 B2
9012498 Manoharan et al. Apr 2015 B2
9139554 Hope et al. Sep 2015 B2
9352042 Heyes et al. May 2016 B2
9682922 Manoharan et al. Jun 2017 B2
9693958 Zhu Jul 2017 B2
9737619 Ansell et al. Aug 2017 B2
9738593 Ansell et al. Aug 2017 B2
9750824 Kariko et al. Sep 2017 B2
9795566 Oya et al. Oct 2017 B2
10106490 Du et al. Oct 2018 B2
10144725 Brown Dec 2018 B2
10166298 Ansell et al. Jan 2019 B2
10221127 Du et al. Mar 2019 B2
10723692 Ansell et al. Jul 2020 B2
11040112 Ansell et al. Jun 2021 B2
11168051 Du et al. Nov 2021 B2
20020062044 Banerjee et al. May 2002 A1
20030031704 Huang et al. Feb 2003 A1
20030153081 Tagawa et al. Aug 2003 A1
20040142025 MacLachlan et al. Jul 2004 A1
20040142474 Mahato et al. Jul 2004 A1
20050032730 Von Der Mulbe et al. Feb 2005 A1
20050059624 Hoerr et al. Mar 2005 A1
20050064595 MacLachlan et al. Mar 2005 A1
20050250723 Hoerr et al. Nov 2005 A1
20060100177 Nishimura et al. May 2006 A1
20060188490 Hoerr et al. Aug 2006 A1
20070042031 MacLachlan et al. Feb 2007 A1
20080025944 Hoerr et al. Jan 2008 A1
20080267873 Hoerr et al. Oct 2008 A1
20090209037 Tagawa et al. Aug 2009 A1
20090247608 Manoharan et al. Oct 2009 A1
20090324584 Hoerr et al. Dec 2009 A1
20100048883 Ketterer et al. Feb 2010 A1
20100189729 Hoerr et al. Jul 2010 A1
20100203076 Fotin-Mleczek et al. Aug 2010 A1
20100285112 Novobrantseva et al. Nov 2010 A1
20100291156 Barner et al. Nov 2010 A1
20100305196 Probst et al. Dec 2010 A1
20100324120 Chen et al. Dec 2010 A1
20110045473 De Fougerolles et al. Feb 2011 A1
20110053829 Baumhof et al. Mar 2011 A1
20110091525 Heyes et al. Apr 2011 A1
20110097720 Ciufolini et al. Apr 2011 A1
20110250225 Fotin-Mleczek et al. Oct 2011 A1
20110256175 Hope et al. Oct 2011 A1
20110262527 Heyes et al. Oct 2011 A1
20110300205 Geall et al. Dec 2011 A1
20110305770 Zhao et al. Dec 2011 A1
20110311582 Manoharan et al. Dec 2011 A1
20110311583 Manoharan et al. Dec 2011 A1
20120021043 Kramps et al. Jan 2012 A1
20120027796 Manoharan et al. Feb 2012 A1
20120027803 Manoharan et al. Feb 2012 A1
20120046478 Manoharan et al. Feb 2012 A1
20120058144 Manoharan et al. Mar 2012 A1
20120058188 Manoharan et al. Mar 2012 A1
20120095075 Manoharan et al. Apr 2012 A1
20120101148 Aking et al. Apr 2012 A1
20120128760 Manoharan et al. May 2012 A1
20120172411 Heyes et al. Jul 2012 A1
20120183602 Chen et al. Jul 2012 A1
20120225434 Ciufolini et al. Sep 2012 A1
20120244207 Fitzgerald et al. Sep 2012 A1
20120251618 Schrum et al. Oct 2012 A1
20120258046 Mutzke Oct 2012 A1
20120264810 Lin et al. Oct 2012 A1
20120276209 Cullis et al. Nov 2012 A1
20120295832 Constien et al. Nov 2012 A1
20130017223 Hope et al. Jan 2013 A1
20130022649 Yaworski et al. Jan 2013 A1
20130108685 Kuboyama et al. May 2013 A1
20130122104 Yaworski et al. May 2013 A1
20130123338 Heyes et al. May 2013 A1
20130129754 Thess et al. May 2013 A1
20130129811 Kuboyama et al. May 2013 A1
20130142818 Baumhof et al. Jun 2013 A1
20130259879 Baumhof et al. Oct 2013 A1
20130261172 Kariko et al. Oct 2013 A1
20130266640 de Fougerolles et al. Oct 2013 A1
20130280283 Lorenz et al. Oct 2013 A1
20130280305 Kuboyama et al. Oct 2013 A1
20130295043 Kallen et al. Nov 2013 A1
20130310555 Chong Nov 2013 A1
20130323269 Manoharan et al. Dec 2013 A1
20130336998 Kallen et al. Dec 2013 A1
20130338210 Manoharan et al. Dec 2013 A1
20140044772 MacLachlan et al. Feb 2014 A1
20140121393 Manoharan et al. May 2014 A1
20140134260 Heyes et al. May 2014 A1
20140179761 Manoharan et al. Jun 2014 A1
20140256785 Manoharan et al. Sep 2014 A1
20140294937 MacLachlan et al. Oct 2014 A1
20140295449 Ciufolini et al. Oct 2014 A1
20140308304 Manoharan et al. Oct 2014 A1
20140323548 Budzik et al. Oct 2014 A1
20150037326 Butler-Ransohoff et al. Feb 2015 A1
20150050302 Thess Feb 2015 A1
20150057340 Thess et al. Feb 2015 A1
20150093413 Thess et al. Apr 2015 A1
20150118183 Baumhof Apr 2015 A1
20150118264 Baumhof et al. Apr 2015 A1
20150165006 Thess et al. Jun 2015 A1
20150184195 Thess et al. Jul 2015 A1
20150203446 Manoharan et al. Jul 2015 A1
20150218554 Thess Aug 2015 A1
20150306249 Baumhof et al. Oct 2015 A1
20150320847 Thess et al. Nov 2015 A1
20150376115 Ansell et al. Dec 2015 A1
20160009637 Manoharan et al. Jan 2016 A1
20160095924 Hope et al. Apr 2016 A1
20160130345 Fotin-Mleczek et al. May 2016 A1
20160166668 Kallen et al. Jun 2016 A1
20160166678 Kallen et al. Jun 2016 A1
20160166710 Baumhof Jun 2016 A1
20160166711 Schnee et al. Jun 2016 A1
20160168207 Kramps et al. Jun 2016 A1
20160168227 Kallen et al. Jun 2016 A1
20160235864 Schlake et al. Aug 2016 A1
20160304883 Grund et al. Oct 2016 A1
20160304938 Wochner Oct 2016 A1
20160326575 Von Der Mülbe et al. Nov 2016 A1
20160331844 Fotin-Mleczek et al. Nov 2016 A1
20160361411 Gindy et al. Dec 2016 A1
20160376224 Du et al. Dec 2016 A1
20170014496 Fotin-Mleczek et al. Jan 2017 A1
20170029847 Thess Feb 2017 A1
20170114378 Wochner et al. Apr 2017 A1
20170119904 Ansell et al. May 2017 A1
20170157268 Ansell et al. Jun 2017 A1
20170252430 Fotin-Mleczek et al. Sep 2017 A1
20170266292 Luo et al. Sep 2017 A1
20170283367 Du Oct 2017 A1
20170326225 Rauch et al. Nov 2017 A1
20180044687 Thess et al. Feb 2018 A1
20180125952 Fotin-Mleczek et al. May 2018 A1
20180126003 Hoerr May 2018 A1
20180142275 Roos et al. May 2018 A1
20180147146 Eber et al. May 2018 A1
20180148727 Grund et al. May 2018 A1
20180201967 Eber et al. Jun 2018 A1
20180208957 Roos et al. Jun 2018 A1
20180185516 Ansell et al. Jul 2018 A1
20180214537 Mutzke et al. Aug 2018 A1
20180237786 Schlake et al. Aug 2018 A1
20180237817 Roos et al. Aug 2018 A1
20180243219 Ketterer et al. Aug 2018 A1
20180296663 Hipp et al. Oct 2018 A1
20180298372 Funkner et al. Oct 2018 A1
20180303925 Weissman et al. Oct 2018 A1
20180312545 Baumhof et al. Nov 2018 A1
20180371392 Mayer et al. Dec 2018 A1
20190010485 Yazdan Panah et al. Jan 2019 A1
20190017100 Wochner et al. Jan 2019 A1
20190022247 Ansell et al. Jan 2019 A1
20190024096 Schmid et al. Jan 2019 A1
20190040378 Fotin-Mleczek et al. Feb 2019 A1
20190049414 Wochner et al. Feb 2019 A1
20190083602 Roos et al. Mar 2019 A1
20190100784 Eber et al. Apr 2019 A1
20190125857 Rauch et al. May 2019 A1
20190133950 Eber et al. May 2019 A1
20190151434 Barouch et al. May 2019 A1
20190160164 Rauch et al. May 2019 A1
20190175517 Martini et al. Jun 2019 A1
20190177714 Kunze et al. Jun 2019 A1
20190185859 Fotin-Mleczek et al. Jun 2019 A1
20190194760 Koch et al. Jun 2019 A1
20190225971 Williams Jun 2019 A1
20190241633 Fotin-Mleczek et al. Aug 2019 A1
20190270697 Ansell et al. Sep 2019 A1
20190274968 Weissman et al. Sep 2019 A1
20190314524 Ansell et al. Oct 2019 A1
20190358314 Weissman et al. Nov 2019 A1
20190359556 Du et al. Nov 2019 A1
20200121809 Hope et al. Apr 2020 A1
20200163878 Baumhof et al. May 2020 A1
20200172472 Du Jun 2020 A1
20200283372 Du Sep 2020 A1
20210107861 Ansell et al. Apr 2021 A1
20210122702 Du Apr 2021 A1
20210122703 Du Apr 2021 A1
20210128488 Du May 2021 A1
20210251898 Baumhof et al. Aug 2021 A1
20210395188 Ansell Dec 2021 A1
Foreign Referenced Citations (79)
Number Date Country
104876831 Sep 2015 CN
1 083 232 Feb 2005 EP
1 277 947 Jun 1972 GB
H05-331118 Dec 1993 JP
H10-3643 Jan 1998 JP
2001-338416 Dec 2001 JP
4681425 May 2011 JP
8707183 Dec 1987 WO
9703939 Feb 1997 WO
9816599 Apr 1998 WO
9905094 Feb 1999 WO
9933493 Jul 1999 WO
0030444 Jun 2000 WO
0107548 Feb 2001 WO
0148233 Jul 2001 WO
03053409 Jul 2003 WO
2005060934 Jul 2005 WO
2006138380 Dec 2006 WO
2007024708 Mar 2007 WO
2009132131 Oct 2009 WO
2010042877 Apr 2010 WO
2010048536 Apr 2010 WO
2010054405 May 2010 WO
2010054406 May 2010 WO
2010057150 May 2010 WO
2010062322 Jun 2010 WO
2010088537 Aug 2010 WO
2011075656 Jun 2011 WO
2011141703 Nov 2011 WO
2011141705 Nov 2011 WO
2011143230 Nov 2011 WO
2011153493 Dec 2011 WO
2012000104 Jan 2012 WO
2012016184 Feb 2012 WO
2012019630 Feb 2012 WO
2012068176 May 2012 WO
2013014073 Jan 2013 WO
2013016058 Jan 2013 WO
2013044008 Mar 2013 WO
2013059496 Apr 2013 WO
2013086322 Jun 2013 WO
2013086354 Jun 2013 WO
2013086373 Jun 2013 WO
2013143555 Oct 2013 WO
2014008334 Jan 2014 WO
2014028487 Feb 2014 WO
2014089239 Jun 2014 WO
2014153163 Sep 2014 WO
2014160243 Oct 2014 WO
2014160284 Oct 2014 WO
2015074085 May 2015 WO
2015123576 Aug 2015 WO
2015130584 Sep 2015 WO
2015164674 Oct 2015 WO
2015177752 Nov 2015 WO
2015199952 Dec 2015 WO
2016010840 Jan 2016 WO
2016176330 Nov 2016 WO
WO-2016176330 Nov 2016 WO
2017004143 Jan 2017 WO
2017021546 Feb 2017 WO
2017048770 Mar 2017 WO
2017049245 Mar 2017 WO
2017075531 May 2017 WO
2017112865 Jun 2017 WO
2017117528 Jul 2017 WO
2017140905 Aug 2017 WO
2017173054 Oct 2017 WO
2017182634 Oct 2017 WO
2017194454 Nov 2017 WO
2017201332 Nov 2017 WO
2018078053 May 2018 WO
2018081638 May 2018 WO
2018191719 Oct 2018 WO
2018200943 Nov 2018 WO
2019036008 Feb 2019 WO
2019089828 May 2019 WO
2020061426 Mar 2020 WO
2021030701 Feb 2021 WO
Non-Patent Literature Citations (69)
Entry
Van Doren, H.A.; et al. “Structure-Property Relationships in DIGlucitol Derivatives with Two Geminal Hydrocarbon Chains” J. Mater. Chem. 1995, 5(12), 2153-2160 (Year: 1995).
Akinc et al., “A combinatorial library of lipid-like materials for delivery of RNAi therapeutics,” Nature Biotechnology 26(5):561-569, 2008.
Alabi et al., “Multiparametric approach for the evaluation of lipid nanoparticles for siRNA delivery,” PNAS 110(32):12881-12886, 2013.
Alexidis et al., “Novel 1,4 Substituted Piperidine Derivatives. Synthesis and Correlation of Antioxidant Activity with Structure and Lipophilicity,” J Pharm. Pharmacol. 47:131-137, 1995.
Brito et al., “A Cationic Nanoemulsion for the Delivery of Next-generation RNA Vaccines,” Molecular Therapy 22(12):2118-2129, 2014.
Chen et al., “Rapid Discovery of Potent siRNA-Containing Lipid Nanoparticles Enabled by Controlled Microfluidic Formulation,” J. Am. Chem. Soc. 134:6948-6951, 2012.
Chevalier et al., “Design, Activity, and Structure of a Highly Specific Artificial Endonuclease,” Molecular Cell 10:895-905, 2002.
Choo et al., “Advances in Zinc Finger Engineering,” Current Opinion in Structural Biology 10:411-416, 2000.
Fagerlund et al., “The Cpfl CRISPR-Cas Protein Expands Genome-Editing Tools,” Genome Bio 76:251, 2015 (3 pages).
Falcone et al., “Both the 5′ Untranslated Region and the Sequences Surrounding the Start Site Contribute to Efficient Initiation of Translation In Vitro,” Molecular and Cellular Biology 11(5):2656-2664, 1991.
Frisch et al. “A New Triantennary Galactose-Targeted PEGylated Gene Carrier, Characterization of Its Complex with DNA, and Transfection of Hepatoma Cells,” Bioconjugate Chem. 15: 754-764, 2004.
Haft et al., “A Guild of 45 CRISPR-Associated (Cas) Protein Families and Multiple CRISPR/Cas Subtypes Exist in Prokaryotic Genomes,” PLoS Computational Biology 1(6):e60, 2005.
Han et al., “Synthesis and Properties of Di-Chain Esterquat Surfactants,” J. Surfact Deterg. 18: 91-95, 2015.
Heuer et al., “Repeat Domain Diversity of avrBs3-Like Genes in Ralstonia solanacearum Strains and Association with Host Preferences in the Field,” Applied and Environmental Microbiology 73(13):4379-4384, 2007.
Jasin, “Genetic Manipulation of Genomes with Rare-Cutting Endonucleases,” Trends Genet 12:224-228, 1996.
Kay et al., “A Bacterial Effector Acts as a Plant Transcription Factor and Induces a Cell Size Regulator,” Science 318:648-651, 2007.
Kim et al., “Highly Efficient RNA-Guided Genome Editing in Human Cells via Delivery of Purified Cas9 Ribonucleoproteins,” Genome Research 24(6):1012-1019, 2014.
Kim et al., “Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain,” PNAS USA 93(3):1156-1160, 1996.
Makarova et al., “A Putative RNA-Interference-Based Immune System in Prokaryotes: Computational Analysis of the Predicted Enzymatic Machinery, Functional Analogies with Eukaryotic RNAi, and Hypothetical Mechanisms of Action,” Biology Direct 1:7, 2006.
Nguyen et al., “Lipid-derived nanoparticles for immunostimulatory RNA adjuvant delivery”, Proceedings of the National Academy of Sciences 109(14):E797-E803, 2012.
Pabo et al., “Design and Selection of Novel Cys2-His2 Zinc Finger Proteins,” Ann. Rev. Biochem. 70:313-340, 2001.
Rajesh et al., “Dramatic Influence of the Orientation of Linker between Hydrophilic and Hydrophobic Lipid Moiety in Liposomal Gene Delivery,” Journal of the American Chemical Society 129(37):11408-11420, 2007.
Schar et al., “Long Chain Linear Fatty Alcohols from ZIEGLER—Synthesis, their Mixtures, Derivatives and Use,” IP.com Prior Art Database Technical Disclosure, Jan. 17, 2011, 39 pages.
Semple et al., “Interactions of liposomes and lipid-based carrier systems with blood proteins: Relation to clearance behaviour in vivo,” Advanced Drug Delivery Reviews 32:3-17, 1998.
Semple et al., “Rational design of cationic lipids for siRNA delivery,” Nature Biotechnology 28(2):172-176, 2010, (26 pages).
Tam et al., “Advances in Lipid Nanoparticles for siRNA Delivery,” Pharmaceutics 5:498-507, 2013.
Tekmira Pharmaceuticals Corp, Form 20-F, EDGAR Online, filed Mar. 27, 2013, 298 pages.
Tekmira, “Tekmira and Alnylam Restructure Relationship and Settle All Litigation,” Tekmira Pharmaceuticals Corporation, Nov. 12, 2012, 3 pages.
Torrecilla et al., “Lipid Nanoparticles as Carriers for RNAi against Viral Infections: Current Status and Future Perspectives,” BioMed Research Internationa, Article ID 161794, 17 pages, 2014.
Wang et al., “Composite Nanoparticles for Gene Delivery,” Adv. Genet. 88:111-137, 2014.
Whitehead et al., “Synergistic Silencing: Combinations of Lipid-like Materials for Efficacious siRNA Delivery,” Molecular Therapy 79(9):1688-1694, 2011.
Wilson et al., “The Combination of Stabilized Plasmid Lipid Particles and Lipid Nanoparticle Encapsulated CpG Containing Oligodeoxynucleotides as Systemic Genetic Vaccine,” The Journal of Gene Medicine 11(1):14-25, 2009.
Yoshimura et al., “Solution Properties of Tadpole-type Cationic Amphiphilic Dendrimers Consisting of an Alkyl Chain, a Quaternary Ammonium, and a Poly(amidoamine) Dendron,” Journal of Oleo Science 62(4):213-221, 2013.
Zhang et al., “Biodegradable Amino-Ester Nanomaterials for Cas9 mRNA Delivery in Vitro and in Vivo,” ACS Appl. Mater. Interfaces 9(30):25481-25487, 2017, (15 pages).
Akinc et al., “Targeted delivery of RNAi therapeutics with endogenous and exogenous ligandbased mechanisms,” Mol. Ther. 18(7):1357-1364, 2010.
Anderson et al., “Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation,” Nucleic Acids Res. 38(17):5884-5892, 2010.
Anderson et al., “Nucleoside modifications in RNA limit activation of 2′-5′-oligoadenylate synthetase and increase resistance to cleavage by RNase L.,” Nucleic Acids Research 39(21):9329-9338, 2011.
Ansell et al., “Application of Oligo-(14-amino-3,6,9,12-tetraoxatetradecanoic acid) Lipid Conjugates as Steric Barrier Molecules in Liposomal Formulations,” Bioconjugate Chem. 10:653-666, 1999.
Basha et al., “Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells,” Mol. Ther. 19(12):2186-2200, 2011.
Belliveau et al., “Microfluidic Synthesis of Highly Potent Limit-size Lipid Nanoparticles for In Vivo Delivery of siRNA,” Mol. Ther. Nucleic Acids 1:e37, 2012 (9 pages).
Bhattacharya et al., “Synthesis, Thermotropic Behavior, and Permeability Properties of Vesicular Membranes Composed of Cationic Mixed-Chain Surfactants,” Langmuir 11:4748-4757, 1995.
Cattanach et al., “Studies in the Indole Series. Part IV. Tetrahydro-lH-pyrido[4,3-b]-indoles as Serotonin Antagonists,” J. Chem Soc. (C):1235-1243, 1968.
Chen et al., “Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA,” Journal of Controlled Release 235:236-244, 2016.
Cook et al., “Synthesis and Characterization of cis-Dioxomolybdenum(VI) Complexes with Sterically Bulky Tripodal Tetradentate Ligands,” Inorganica Chimica Acta 144:81-87, 1988.
Durbin et al., “RNAs Containing Modified Nucleotides Fail to Trigger RIG-I Conformational Changes for Innate Immune Signaling,” mBio 7(5):e00833-16, 2016 (11 pages).
Emsting et al., “Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles,” Journal of Controlled Release 172:782-794, 2013.
Hekele et al., “Rapidly produced SAM® vaccine against H7N9 influenza is immunogenic in mice,” Emerging Microbes and Infections 2:e52, 2013 (7 pages).
Jayaraman et al., “Maximizing the Potency of siRNA Lipid Nanoparticles for Hepatic Gene Silencing In Vivo,” Angew. Chem. Int. Ed. 51(34):8529-8533, XP055063645, 2012.
Karikó et al., “Incorporation of Pseudouridine into mRNA Yields Superior Nonimmunogenic Vector With Increased Translational Capacity and Biological Stability,” Mol. Ther. 16(11):1833-1840, 2008.
Karikó et al., “Increased Erythropoiesis in Mice Injected with Submicrogram Quantities of Pseudouridine-containing mRNA Encoding Erythropoietin,” Mol. Ther. 20(5):948-953, 2012.
Karikó et al., “Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA,” Immunity 23:165-175, 2005.
Lee et al., “Lipid nanoparticle siRNA systems for silencing the androgen receptor in human prostate cancer in vivo,” Int. J. Cancer 131(5):E781-E790, 2012.
Leroueil et al., “Wide Varieties of Cationic Nanoparticles Induce Defects in Supported Lipid Bilayers,” Nano Letters 8(2):420-424, 2008.
Leung et al., “Lipid Nanoparticles Containing siRNA Synthesized by Microfluidic Mixing Exhibit an Electron-Dense Nanostructured Core,” J. Phys. Chem. C. Nanomater. Interfaces 116(34):18440-18450, 2012.
Leung et al., “Microfluidic Mixing: A General Method for Encapsulating Macromolecules in Lipid Nanoparticle Systems,” J. Phys. Chem. B 119:8698-8706, 2015.
Maier et al., “Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics,” Mol. Ther. 21(8):1570-1578, 2013.
Marchi-Artzner et al., “Adhesion of Arg-Gly-Asp (RGD) Peptide Vesicles onto an Integrin Surface: Visualization of the Segregation of RGD Ligands into the Adhesion Plaques by Fluorescence,” Langmuir 19:835-841, 2003.
Masuda et al., “Envelope-type lipid nanoparticles incorporating a short PEG-lipid conjugate for improved control of intracellular trafficking and transgene transcription,” Biomaterials 30:4806-4814, 2009.
Mui et al., “Influence of Polyethylene Glycol Lipid Desorption Rates on Pharmacokinetics and Pharmacodynamics of siRNA Lipid Nanoparticles,” Mol. Ther. Nucleic Acids 2:e139, 2013 (8 pages).
Nishida, “Disk-shaped magnetic recording medium,” Caplus Database, Accession No. 2001:881906, 2001 (1 page).
Pardi et al., “Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes,” Journal of Controlled Release 217:345-351, 2015.
Petsch et al., “Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection,” Nature Biotechnology 30(12):1210-1216, 2012 (9 pages).
Schnee et al., “An mRNA Vaccine Encoding Rabies Virus Glycoprotein Induces Protection against Lethal Infection in Mice and Correlates of Protection in Adult and Newborn Pigs,” PLoS Negl. Trop. Dis. 10(6):e0004746, 2016 (20 pages).
Szebeni et al., “Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: Prediction and prevention,” Advanced Drug Delivery Reviews 63:1020-1030, 2011.
Szebeni et al., “Complement activation as a bioequivalence issue relevant to the development of generic liposomes and other nanoparticulate drugs,” Biochemical and Biophysical Research Communications 468:490-491, 2015.
Szebeni, “Complement activation-related pseudoallergy: A stress reaction in blood triggered by nanomedicines and biologicals,” Molecular Immunology 61:163-173, 2014.
Tam et al., “Small molecule ligands for enhanced intracellular delivery of lipid nanoparticle formulations of siRNA,” Nanomedicine 9(5):665-674, 2013.
Van Doren et al., “Structure-Property Relationships in D-Glucitol Derivatives with Two Geminal Hydrocarbon Chains,” J. Mater. Chem. 5(12):2153-2160, 1995.
Xue et al., “Lipid-Based Nanocarriers for RNA Delivery,” Current Pharmaceutical Design 21:3140-3147, 2015.
Related Publications (1)
Number Date Country
20200046838 A1 Feb 2020 US
Provisional Applications (1)
Number Date Country
62485278 Apr 2017 US