Skin is a complex living tissue, which is composed of two main layers: the dermis and the epidermis. The epidermis is the outer layer of the skin, and is organized in layers of cells called keratinocytes that progressively differentiate to form the outermost layer of the epidermis, known as the stratum corneum. Fully differentiated keratinocytes, known as corneocytes, are devoid of nuclei and are filled with insoluble keratin fibers. They are arranged like bricks and separated by lipid-rich layers in an array that is often referred to as the brick-and-mortar model of the stratum corneum. In addition to protecting the inner layers of the skin from deleterious chemicals and harmful radiation, the stratum corneum acts as a barrier to the passage of hydrophilic compounds. Metabolically active keratinocytes, which form the remainder of the epidermis, and cells that respond to external stimuli are located below the stratum corneum. The dermis lies below the epidermis and is constituted mainly of fibroblasts, which are metabolically active cells that can respond to signals coming from upper layers of the skin and from the external environment.
Bioactive botanical extracts, having beneficial effects on the skin, e.g., photoprotection, anti-aging, moisturizing, antioxidant, astringent, anti-irritant, and antimicrobial properties, are being increasingly used in the cosmetic industry and are featured in a growing variety of cosmetic formulations and products available in the marketplace. Such bioactive botanical extracts and mixtures of botanical extracts are often obtained by extracting biomasses in solvents that are compatible with cosmetic uses. For safety, environmental and economic reasons, water is generally the extraction solvent of choice and the extractions result in water soluble, or hydrophilic, biological active ingredients. Generally these extracts are formulated in a cosmetically acceptable carrier for application to the skin. Because they have been obtained through water extraction, these extracts are hydrophilic and can be easily added to hydrophilic gels and toiletries or to the water phase of an emulsion. However, because of their hydrophilic nature, the active ingredients in these extracts may have difficulty penetrating the lipophilic stratum corneum barrier of the skin. This decreased penetration generally is thought to lead to decreased efficacy. While means for facilitating the passage of hydrophilic active ingredients through the stratum corneum's lipophilic barrier exist, e.g., incorporation into liposomes or other vehicles having lipophilic characteristics, these means generally involve additional transformation of the active ingredients and may affect their efficacy.
The cosmetics industry is therefore becoming more interested in lipophilic bioactive botanical extracts. Due to their lipophilic nature and enhanced physiological compatibility relative to hydrophilic compounds, lipophilic bioactive extracts are thought to have enhanced ability to penetrate the skin's lipophilic stratum corneum barrier and thus improved biological efficacy resulting from a better ability to reach the metabolically active cells in the dermis and lower layers of the epidermis.
Lipophilic bioactive botanical extracts are known. Unfortunately, because of their physico-chemical properties, in particular their lipophilic nature, many of such lipophilic bioactive botanical extracts have the disadvantage that they do not lend themselves to easy incorporation in an effective amount into cosmetic formulations because, inter alia, they are not readily soluble in cosmetic formulation media and their solubilization requires conditions, such as excessive processing, e.g., stirring, sonication or mixing, elevated temperatures or aggressive solvents, that often result in their degradation, or conditions that are not compatible with cosmetic uses, or conditions that may be deleterious to other compounds present in the formulation.
Another major challenge in providing high quality cosmetic products based on “natural” ingredients such as bioactive botanical extracts is their poor stability in formulations. Many bioactive botanical extracts do not tolerate processing and storage conditions that are generally acceptable for more stable synthetic ingredients.
A further challenge in providing high quality cosmetic products using “natural” ingredients is the poor stability of certain vegetable oils used in cosmetic formulations. Due to their poor stability, unsaturated vegetable oils do not tolerate processing conditions, storage conditions, or the presence of other reactive ingredients in formulations that are generally acceptable for more stable synthetic ingredients. For example, some seed derived polyunsaturated oils, those containing essential fatty acids in particular, have been shown to improve the structure and function of cell membranes, improve skin barrier function and enhance skin penetration. However, because these oils contain high amounts of unsaturated fatty acids, which are in part responsible for those properties, they are also very vulnerable to oxidation. The labile olefin moiety characteristic of these oils is very easily oxidized upon exposure to oxygen, especially at elevated temperatures. As a result, it is often the case that, by the time products containing these oils reach the consumer, the benefits of such oils have been lost. Although microencapsulation technology has been proposed to protect such oils from oxidation, investment in new apparatus is generally required to utilize such technology and the process is generally time consuming and expensive. Furthermore, depending upon the microencapsulation used, the skin bioavailability of oil components may be hampered.
There remains a need in the cosmetics industry to provide a means of incorporating lipophilic bioactive botanical extracts into a variety of topical dermatological, pharmaceutical and cosmetic preparations that is cost-effective and compatible with standard equipment while preserving the integrity and beneficial properties of these materials, particularly the beneficial properties of the oil components of these materials.
The present invention provides a simple and cost-effective solution to this need by providing a lipophilic bioactive botanical extract presolubilized in an oxidation stable and cosmetically acceptable vegetable oil carrier (i.e., a lipophilic carrier composition). The inventive lipophilic carrier composition is oxidation stable and can readily be incorporated into a variety of cosmetic formulations, improving the processing time and providing a more shelf stable product.
In one embodiment, the present invention provides a lipophilic carrier composition comprising a lipophilic bioactive botanical extract, a vegetable oil, a solubilization system, and, optionally, an antioxidant, where the vegetable oil is present in a stable, relatively unoxidized state. In certain embodiments, the vegetable oil is resistant to oxidation such that the Rancimat induction time for the lipophilic carrier composition according to ISO Method no. 6886-2006 is greater than 3 hours, greater than 4 hours, greater than 5 hours, greater than 7 hours, greater than 10 hours, greater than 15 hours, or greater than 20 hours.
In another embodiment, the present invention provides a lipophilic carrier composition comprising a lipophilic bioactive botanical extract, a vegetable oil, a solubilization system, and, optionally, an antioxidant, where the lipophilic carrier composition is produced by a method comprising:
In some embodiments, the mixture of step (c) is cooled to about room temperature.
If the antioxidant is part of the lipophilic carrier composition, it may be added along with the vegetable oil in step (d) or it may be added after the vegetable oil but before step (e). Generally, the antioxidant is dissolved in a cosmetically acceptable alcohol before addition.
In another embodiment, the present invention provides a lipophilic antioxidant composition comprising an antioxidant, a vegetable oil, and a solubilization system, but not comprising a lipophilic bioactive botanical extract, where the vegetable oil is present in a stable, relatively unoxidized state. In certain embodiments, the vegetable oil is resistant to oxidation such that the Rancimat induction time for the lipophilic antioxidant composition according to ISO Method no. 6886-2006 is greater than 3 hours, greater than 4 hours, greater than 5 hours, greater than 7 hours, greater than 10 hours, greater than 15 hours, or greater than 20 hours.
In another embodiment, the present invention provides a lipophilic antioxidant composition comprising an antioxidant, a vegetable oil, and a solubilization system, but not comprising a lipophilic bioactive botanical extract, where the lipophilic antioxidant composition is produced by a method comprising:
In some embodiments, the temperature that is higher than room temperature of step (b) is between 40-100° C. In some embodiments, the temperature that is higher than room temperature of step (b) is between 40-50° C., between 50-60° C., between 60-70° C., between 70-80° C., between 80-90° C., or between 90-100° C.
In certain embodiments, the solubilization system comprises a branched, long chain alcohol such as octyldodecanol, a cosmetically acceptable alcohol such as ethanol, and one or more fatty acid esters of a branched, long chain alcohol, for example, octyldodecyl oleate and/or octyldodecyl stearoyl stearate. In certain embodiments, the branched, long chain alcohol in the fatty acid esters is the same branched, long chain alcohol as the unesterified branched, long chain alcohol. In other embodiments, the branched, long chain alcohol in the fatty acid esters is a different branched, long chain alcohol from the unesterified branched, long chain alcohol. In certain embodiments, the fatty acids of the esters are resistant to oxidation. For example, in certain embodiments, the fatty acids do not contain a double bond. In other embodiments, the fatty acids contains only one double bond. Suitable fatty acids include monounsaturated fatty acids such as myristoleic acid (14:1), palmitoleic acid (16:1), sapienic acid (16:1), oleic acid (18:1), elaidic acid (18:1), vaccenic acid (18:1), eicosenoic acid (20:1), and erucid acid (22:1). Other suitable fatty acids include saturated fatty acids such as caprylic acid (8:0), capric acid (10:0), lauric acid (12:0), myristic acid (14:0), palmitic acid (16:0), stearic acid (18:0), arachidic acid (20:0), behenic acid (22:0), lignoceric acid (24:0), and cerotic acid (26:0).
The solubilization system enables the complete dissolution of lipophilic bioactive botanical extracts therein. The solubilization system thus allows for the convenient incorporation of lipophilic active ingredients such as those found in lipophilic bioactive botanical extracts into a vegetable oil, thus forming a lipophilic carrier composition comprising the solubilization system, lipophilic bioactive botanical extract, and vegetable oil, without exposing the vegetable oil to elevated temperatures or extended processing time. As is known in the art, elevated temperatures and extended processing times can lead to the undesired oxidation of vegetable oils. Thus, the lipophilic carrier composition of the present invention contains the vegetable oil in a stable, relatively unoxidized state. The ability to provide lipophilic bioactive botanical extracts in combination with a stable, relatively unoxidized vegetable oil is an advantageous feature of the present invention.
The lipophilic carrier composition can conveniently be used to store and distribute lipophilic active ingredients and to formulate topical cosmetic, pharmaceutical, and dermatologic formulations while maintaining the bioactivity of the lipophilic bioactive botanical extract and preventing oxidation of the vegetable oil and other oxidizable components of the formulation made from the lipophilic carrier composition.
A presolubilized lipophilic bioactive botanical extract for use in the present invention may be made by a method comprising combining a solubilization system with a lipophilic bioactive botanical extract and, if necessary to dissolve the lipophilic bioactive botanical extract, heating the mixture to a temperature between 40-100° C. under a nitrogen or other inert gas atmosphere. In some embodiments, the mixture is heated to a temperature between 40-50° C., between 50-60° C., between 60-70° C., between 70-80° C., between 80-90° C., or between 90-100° C. In some embodiments, the inert gas is selected from the group consisting of noble gases such as argon, xenon, neon, and helium. In some embodiments, a mixture of nitrogen and another inert gas is used. In alternative embodiments, rather than using an inert gas to prevent oxidation, a vacuum is used to prevent contact with air, and thus prevent oxidation.
The present invention also provides a method of making a lipophilic carrier composition comprising combining the solubilization system with the lipophilic bioactive botanical extract and, if necessary to dissolve the lipophilic bioactive botanical extract, heating the mixture to a temperature between 40-100° C. under a nitrogen or other inert gas atmosphere until the extract is dissolved, then cooling the mixture to room temperature, adding a vegetable oil, and then, optionally, adding an antioxidant extract dissolved in a cosmetically acceptable alcohol. The mixture is then agitated until a homogeneous composition is obtained.
The lipophilic active carrier compositions of the invention can be used to prepare cosmetics having extended shelf life, for the convenient storage and distribution of a lipophilic biological extract, for use as a base or ingredient in a variety of cosmetic compositions, and for preserving the biological activity of additional ingredients included in products produced using the inventive lipophilic active carrier composition (e.g., unsaturated fatty acids, polyphenols, additional liposoluble actives).
The invention also provides a method of protecting skin against erythema and/or skin barrier function loss due to exposure of the skin to radiation or chemical stress using the inventive lipophilic active carrier compositions disclosed herein. Such methods of protecting skin generally involve applying a cosmetic or pharmaceutical formulation produced by incorporating a lipophilic carrier composition of the present invention into a base cream before the insult that results in erythema and/or skin barrier function loss. Thus, included in the present invention are methods of protecting skin against erythema and/or skin barrier function loss by applying a cosmetic or pharmaceutical formulation produced by incorporating a lipophilic carrier composition of the present invention into a base cream to skin that is at risk of suffering radiation or chemical stress. Such “at risk” skin might include, e.g., the skin of a person who contemplates exposing his or her skin to a significant amount of strong sunlight, e.g., by spending a day at the beach. Other “at risk” skin might include the skin of a person who is exposed to chemical stress (e.g., by occupational exposure to chemical aggressors or by frequent use of soaps or cleansers).
A method of treating skin that has developed erythema and/or skin barrier function loss due to exposure of the skin to radiation or chemical stress using the lipophilic active carrier compositions disclosed herein is also provided. Such methods of treating skin generally involve applying a cosmetic or pharmaceutical formulation produced by incorporating a lipophilic carrier composition of the present invention into a base cream after the insult that results in erythema and/or skin barrier function loss.
Of course, cosmetic or pharmaceutical formulations produced by incorporating a lipophilic carrier composition of the present invention into a base cream may be utilized by applying such formulations to the skin both before and after an insult.
The invention also provides methods of treating age spots using the inventive lipophilic active carrier compositions disclosed herein. Such methods of treating age spots generally involve applying a cosmetic or pharmaceutical formulation produced by incorporating a lipophilic carrier composition of the present invention into a base cream to an area of skin containing age spots. Thus, included in the present invention are methods of treating age spots by applying a cosmetic or pharmaceutical formulation produced by incorporating a lipophilic carrier composition of the present invention into a base cream to skin containing age spots. In some embodiments, the cosmetic or pharmaceutical formulation is applied to an area of skin including the age spots and surrounding areas of skin. In some embodiments, the cosmetic or pharmaceutical formulation is applied directly to the age spots and not also to the surrounding skin areas. In some embodiments, the age spots are on the face, the upper body or chest area, the legs, the hands, or the arms. In some embodiments, the cosmetic or pharmaceutical formulation comprises an extract from Paeonia suffruticosa root and Ribes nigrum seed oil.
Furthermore, the clinical advantages of using cosmetic and similar formulations made from the lipophilic active carrier compositions of the present invention over formulations containing i) only a vegetable oil, ii) a vegetable oil with a solubilization system but without the lipophilic bioactive extract or iii) a simple placebo representing the formulation base are shown herein.
The present invention provides a lipophilic carrier composition comprising Cnidium monnieri fruit extract, Echium plantagineum seed oil, ethanol, octyldodecanol, octyldodecyl oleate, and octyldodecyl stearoyl stearate. The present invention also provides a lipophilic carrier composition comprising Paeonia suffruticosa root extract, Ribes nigrum seed oil, ethanol, octyldodecanol, octyldodecyl oleate, and octyldodecyl stearoyl stearate.
The term “topical” as used herein refers to the route of administration of a cosmetic composition that involves direct application to the body part being treated, e.g., the skin, hair or nails. Examples of topical application include application to the skin of creams, lotions, gels, ointments or other semisolids to rub-on, solutions to spray, or liquids to be applied by an applicator. Rinse-off applications with washes, cleansers, or shampoos are also examples of topical application. Typically, areas of the body suitable for application of the cosmetic compositions include the skin of the face, throat, neck, scalp, chest, back, ears, hands, arms, and other skin sites where dermatological conditions may occur.
The term “cosmetic” is intended to encompass compositions that improve the health and/or appearance of skin and hair and is used interchangeably with dermatologic and naturopathic, cosmeceutical, pharmaceutical, nutraceutical and other similar terms.
As used herein, “room temperature” refers to a temperature of about 18-25° C., preferably 20-22° C.
As used herein, “homogeneous composition” refers to a composition that is a single phase that appears clear or translucent by visual inspection.
In the various embodiments discussed herein the vegetable oil is preferably one with beneficial pharmacological, cosmetic or dermatological properties. Most preferably the vegetable oil has a high level of polyunsaturated fatty acids, e.g., at least about 25%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or at least about 95%.
Vegetable oils which can be used in the present invention include any cosmetically compatible vegetable oil derived from a botanical source, such as a plant. Various parts of a plant may be used to obtain the vegetable oil, e.g., leaves, stems, bark, flowers, seeds, fruits, spores or roots. The vegetable oil may be obtained by conventional methods, e.g., by cold-press extraction and the like. Preferably the vegetable oil has beneficial pharmaceutical, cosmetic, or dermatological properties. Vegetable oils that include a significant proportion of polyunsaturated oils, such as the essential fatty acids omega-3 and omega-6, as well as omega-5 and omega-9 fatty acids, are particularly suitable for use in the inventive compositions and methods. In certain embodiments, the omega-3 fatty acids comprise alpha-linolenic acid (ALA) and its longer chain derivatives eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and the omega-6 fatty acids comprise linoleic acid (LA) and its longer chain derivatives such as gamma-linolenic acid (GLA) and arachidonic acid (AA). Topical application of some polyunsaturated fatty acids have been shown to have bioactivity, e.g., to improve the structure and function of cell membranes and improve skin barrier function. Improving skin barrier function reduces transepidermal water loss, leaving skin more hydrated, moisturized, and protected. The amount of vegetable oil used in the inventive compositions described herein is not particularly limited. A formulations scientist will readily be able to determine the appropriate amount of vegetable oil in the composition to achieve the desired properties in the composition. Typical embodiments of the invention include lipophilic carrier compositions comprising a vegetable oil in an amount from about 10-50%.
Vegetable oils that are well suited for the invention include Ribes nigrum (black currant) seed oil, Echium plantagineum (purple viper's bugloss) seed oil, baobab seed oil, black cumin seed oil, borage oil, burit fruit oil, calophyllum oil, elderberry seed oil, evening primrose oil, flax seed oil, gevuina nut oil, goji seed oil, hemp seed oil, jobs tears seed oil, jojoba oil, kiwi seed oil, neem oil, olive oil, passion fruit oil, pitanga seed oil (orange, red and purple varieties), pumpkin seed oil, raspberry seed oil, rose hip oil, sacha inchi seed oil, safflower oil, sea buckthorn seed oil, sesame oil, soybean oil, sunflower seed oil and walnut oil. Vegetable oils particularly suited for use in the invention include Ribes nigrum (black currant) seed oil, Echium plantagineum (Purple Viper's Bugloss) seed oil or a combination thereof. Suitable vegetable oils for use in the present invention include those in the following table.
Lipophilic bioactive botanical extracts for use in the present invention are not particularly limited and include any lipophilic extract derived from a botanical source that has beneficial effects on the skin. The term botanical, as used herein, is intended to include material derived from organisms such as plants as well as fungi, algae, marine plant organisms, microorganism fermentation broths and other biological sources of cosmetic ingredients. Examples of various plant tissues include, but are not limited to whole plants, leaves, bark, roots, root bark, fruits, flowers, seeds, and pollen. The lipophilic bioactive botanical extract or compounds therefrom may be obtained by methods known in the art, e.g., by extraction with organic solvents, e.g., lipophilic organic solvents, or combinations of water and organic solvents, or by supercritical fluid carbon dioxide (SCF-CO2) extraction with, or without, the addition or the presence of water.
Lipophilic bioactive botanical extracts include those having beneficial pharmaceutical, cosmetic, or dermatological properties. However, hydrophobic powders, waxes and other extracts having physico-chemical properties that require an inconvenient amount of cosmetically acceptable solvent, inconvenient amount of processing time, or elevated temperatures in order to incorporate the extract into a cosmetic formulation are particularly well suited for use in the inventive compositions and methods. Suitable lipophilic bioactive botanical extracts include those antioxidants listed in Table 2 that provide, in addition to antioxidant activity, a health benefit such as the health benefits listed in Table 2 under “Health Applications.” Thus, the categories of lipophilic bioactive botanical extracts and antioxidants are not intended to be mutually exclusive. Typical embodiments of the invention include lipophilic carrier compositions comprising a lipophilic bioactive botanical extract or extracts in an amount from about 0.1-5%, about 0.3-4%, about 0.5-3%, about 0.7-3%, or about 1-2% (w/w). In other embodiments, the lipophilic carrier composition comprises a lipophilic bioactive botanical extract in an amount from about 0.1-0.3%, about 0.3-0.5%, about 0.5-0.7%, about 0.7-1%, about 1.1-1.3%, about 1.3-1.5%, about 1.5-1.7%, about 1.7-2%, about 2.1-2.3%, about 2.3-2.5%, about 2.5-2.7%, about 2.7-3%, about 3.1-3.3%, about 3.3-3.5%, about 3.5-3.7%, about 3.7-4%, about 4.1-4.3%, about 4.3-4.5%, about 4.5-4.7%, or about 4.7-5% (w/w).
Lipophilic bioactive botanical extracts that are particularly well suited to this invention are Cnidium monnieri fruit extract (enriched in the compound osthol) and Paeonia suffruticosa root extract (enriched in the compound paeonol) or a combination thereof. Use of these extracts has been found to protect against erythema and/or skin barrier function loss due to exposure of the skin to radiation or chemical stress.
Suitable antioxidants for use in the present invention are not particularly limited and may be antioxidants or free radical scavengers such as vitamins, synthetic antioxidants, or plant-derived antioxidants that protect at least the vegetable oil from endogenous oxidation and/or oxidation induced or accelerated by heat, radiation or the addition of pro-oxidant compounds, thus extending shelf life and expanding compatibility of bioactive ingredients in the inventive compositions and formulations that include the inventive compositions. A list of suitable antioxidants appears in Table 2 below.
Ampelopsis
grossedentata
sativum;
Scutellaria
baicalensis &
Oroxylum
indicum
Ganoderma
lucidum, red
orellana) tree
Lindera aggregata
Crocus flower and
Gardenia
jasminoides fruits,
Curcuma longa
vera leaf, Frangula
Aloe vera leaf active principles
Magnolia
grandifloris
Propionibacterium sp. Eur J
Magnolia family. Pharmacol
Reseda luteola,
Achillea
millefolium,
Chamomillae
requtita, Cynara
scolymus, Thymus
vulgaris, Erigeron
canadensis,
Propolis, etc.
Rhus javanica (a
Syzygium species.
Capsicum annuum
Lindera aggregate;
cerasoides
officinalis), and
Chem., 1996, 44 (1): 131-135
Rosmarinus
officinalis leaves
leriaefolia
officinalis leaves. J Agric Food
miltiorrhiza &
Aquilaria sinensis;
Nigella sativa
Thymus vulgaris
montana
Angelica sinensis,
Origanum vulgare,
Allium cepa,
Allium sativum,
Armoracia
rusticana, &
Aspalathus
vulgare. Exp Dermatol. 2010
linearis
Buddleja davidii
Ampelopsis
grossedentata
polyrhiza inhibit adipogenesis in
curcas leaves;
Arnebia
hispidissima;
Ochrocarpus
longifolius; Acer
palmatum
When present, antioxidants may be present in an amount that increases the Rancimat induction time (according to the ISO Method no. 6886-2006) to greater than 3 hours, greater than 4 hours, or greater than 5 hours, or more. Natural antioxidants may be selected from botanical extracts known to have antioxidant activity. Typically, amounts from about 0.1-2% (w/w) of such extracts are sufficient to impart the desired stability to a lipophilic carrier composition. Preferably, amounts from 0.2% to 2.0% or from 0.5% to 1.5% (w/w) are present in the inventive lipophilic carrier compositions. Suitable antioxidants for use with the present invention include natural or synthetic caffeic acid and carnosic acid and mixtures thereof. Preferably, the antioxidants are Rosmarinus officinalis (rosemary) leaf extract and/or Solidago virgaurea (goldenrod) extract. Most preferable is a combination of Rosmarinus officinalis extract and Solidago virgaurea extract. When used in normal daily conditions, oils or any compounds used in formulations may be exposed to light (UV) or a combination of light, heat, and air. Furthermore, they may also be in contact with other compounds having pro-oxidative properties. In such conditions, various types of reactive oxygen species or free radicals may be generated. Antioxidants usually target specific types of reactive oxygen species or free radicals. To ensure broader protection (especially of the vegetable oil), rosemary and goldenrod extracts together may be suitable.
Nevertheless, rosemary extract and goldenrod extract may also be used separately. For example, either only 0.1% of rosemary extract (and no solidago extract) or only 0.1% of solidago extract (and no rosemary extract) in the lipophilic carrier composition may be used.
The solubilizing system of the present invention preferably includes a cosmetically acceptable alcohol such as ethanol, and preferably also octyldodecanol and a fatty acid ester of octyldodecanol, e.g., octyldodecyl oleate and/or octyldodecyl stearoyl stearate. In some embodiments, the solubilization system comprises ethanol at 2-20% (w/w) of the total solubilization system, octyldodecanol at 20-40% (w/w) of the total solubilization system, a first fatty acid ester of octyldodecanol at 20-55% (w/w) of the total solubilization system, and, optionally, a second fatty acid ester of octyldodecanol at 20-55% (w/w) of the total solubilization system.
Preferably, the amounts of the components of the solubilization system are chosen such that, when the solubilization system is used to prepare a lipophilic carrier composition, the ethanol is present in an amount from 2-15%, 2-10%, 2-7%, 3-10%, or 4-8% (w/w) of the lipophilic carrier composition. Preferably, the octyldodecanol is present in the lipophilic carrier composition in an amount from 15-35%, 15-30%, 20-30%, or 25-30% (w/w) of the lipophilic carrier composition. Preferably, octyldodecyl oleate is present in an amount from 15-25%, 15-20%, or 20-25% (w/w) of the lipophilic carrier composition. Preferably, octyldodecyl stearoyl stearate is present in an amount from 5-15%, 5-10%, or 10-15% (w/w) of the lipophilic carrier composition.
In certain embodiments, the solubilization system may contain different components from those described above. In such embodiments, the solubilization system is such that the lipophilic bioactive botanical extract may be dissolved therein, if necessary by the use of elevated temperatures (e.g., 40-100° C.), and remain dissolved as the temperature is lowered to about room temperature, at which point the vegetable oil is added. The solubilization system allows for the combining of bioactive botanical extract and vegetable oil in one composition, without unacceptable oxidation of the fatty acids in the vegetable oil.
Lipophilic bioactive botanical extracts can be solubilized in a lipophilic carrier composition comprising a vegetable oil using a solubilizing system as described above. In one embodiment, a first phase is prepared by combining the lipophilic bioactive botanical extract and the solubilizing system to form a mixture. The mixture is then heated to between 40° C. and 100° C. under a nitrogen atmosphere until complete solubilization of the extract, as judged by visual inspection. The solution is then cooled, preferably to a temperature of about 35-40° C., about 30-35° C., about 25-30° C., about 20-25° C., or about 15-20° C., the vegetable oil is added, and the mixture is cooled to room temperature, if not already at room temperature. A second phase is prepared separately by dissolving the antioxidant extracts in a cosmetically compatible alcohol, e.g., ethanol, and the resulting mixture is then agitated at room temperature until the extracts are dissolved. The first and second phases are then combined together under agitation until a homogenous mixture is obtained.
In certain embodiments, the lipophilic carrier composition of the present invention comprises more than one lipophilic bioactive botanical extract, more than one vegetable oil, or more than one antioxidant. In certain embodiments, the lipophilic carrier composition comprises two lipophilic bioactive botanical extracts, two vegetable oils, or two antioxidants.
In certain embodiments, the vegetable oil is present at 20-25%, 25-30%, 30-35%, or 35-40% (w/w). In certain embodiments, the octyldodecanol is present at 15-20%, 20-25%, 25-30%, or 30-35% (w/w). In certain embodiments, the octyldodecyl oleate is present at 15-20% or 20-25% (w/w). In certain embodiments, the octyldodecyl stearoyl stearate is present at 5-10% or 10-15% (w/w). In certain embodiments, the lipophilic bioactive botanical extract is present at 0.1-0.5%, 0.5-1%, 1-2%, 2-3%, 3-4%, or 4-5% (w/w).
The presolubilized extracts in lipophilic carrier compositions are easily incorporated into a wide variety of product types that include but are not limited to solid and liquid compositions intended for topical use such as lotions, creams, gels, sticks, sprays, shaving creams, ointments, cleansing liquid washes and solid bars, pastes, powders, mousses, masks, peels, makeup, and wipes. The compositions may be used in conjunction with other devices such as skin abrading, skin massaging, or electro-stimulation devices, light-therapy devices, ultrasound devices, radio frequency devices, thermal/cooling devices, iontophoresis devices, and micro-penetration devices.
To assess the efficacy of skin protective, soothing and repairing effects as well as the oxidation stability of a cosmetic topical product incorporating the inventive lipophilic carrier compositions, the following generic formulations were prepared. In a first embodiment, a lipophilic bioactive botanical extract of Cnidium monnieri fruit in a lipophilic carrier composition that included Echium plantaginium seed oil was used to prepare a cosmetic formulation that was evaluated for skin protective, soothing and repairing effect upon exposure to a chemical agent.
In a second embodiment, a lipophilic bioactive botanical extract of Cnidium monnieri fruit in a lipophilic carrier composition that included Echium plantaginium seed oil was used to prepare a cosmetic formulation that was evaluated for skin protective, soothing and repairing effect upon exposure to ultraviolet radiation.
The following general formulations were prepared in order to assess the stability and efficacy of the inventive compositions:
†Exemplified Vegetable Oil Example 6: Echium plantagineum seed oil; Example 7: Ribes nigrum (black currant) seed oil.
Phase A and Phase B (see Table 4) were prepared separately by weighing their ingredients at room temperature, warming the ingredients to 75° C., and then combining the respective ingredients of the two phases with stirring. The phases were then warmed to about 75° C. and combined with agitation until homogenous.
Phase A and Phase B were prepared separately by weighing their ingredients at room temperature, warming the ingredients to 75° C., and then combing the respective ingredients of the two phases with stirring. The phases were then warmed to about 75° C. and combined with homogenization until homogenous. Vegetable oil was then added at 75° C. with agitation until homogenous.
Phase A and Phase B were prepared separately by weighing their ingredients at room temperature, warming the ingredients to 75° C., and then combing the respective ingredients of the two phases with stirring. The phases were then warmed to about 75° C. and combined with agitation until homogenous. Part C was prepared by separately combining the respective ingredients of Parts C1 (lipophilic bioactive extract is not included) and C2 with stirring and then combining Parts C1 and C2 at room temperature. Part C was then added to the mixture of Phase A and Phase B and homogenized.
A presolubilized lipophilic bioactive botanical extract was prepared as follows: Part C was prepared by first combining the lipophilic bioactive botanical extract in a mixture of octyldodecanol, octyldodecyl oleate, and octyldodecyl stearoyl stearate while heating to between 65-70° C. under a nitrogen atmosphere until complete solubilization of the extract resulting in a clear or translucent solution. The solution was then cooled to 45° C., the vegetable oil was added, and the mixture was cooled to room temperature. A mixture of the antioxidants dissolved in ethanol was then added to the cooled solution with agitation. This presolubilized lipophilic bioactive botanical extract in a lipophilic carrier composition (Part C) was then combined with a base cream of Formula 1 (comparative example 1) and homogenized.
Experiments were performed using the Rancimat method (Method: ISO 6886-2006) to assess the efficacy of a lipophilic carrier composition comprising Rosmarinus officinalis leaf extract and Solidago virgaurea (Goldenrod) extract to protect oil derived from Echium plantagineum seeds or from Ribes nigrum seeds from oxidation when the oil and the antioxidants are present in the lipophilic carrier composition. In the Rancimat method, a sample of oil is heated under atmospheric pressure, and air is allowed to bubble through the oil at a selected temperature. Under these conditions, a lipoperoxidative reaction occurs and the short-chain volatile acids produced thereby are recovered and measured conductometrically in distilled water. The time required to produce a sudden increase in conductivity, due to the formation of volatile acids, determines an induction time which can be defined as a measure of the oxidative stability of the oil. A Metrohm Rancimat model 743® (Herisau, Switzerland) was used. Results obtained showed that the presence of Rosmarinus officinalis leaf extract and Solidago virgaurea extract protected the oil derived from Echium plantagineum seeds (Table 5) or from Ribes nigrum seed extract (Table 6) from degradation induced by heat and air contact. Furthermore, it was demonstrated that the addition of other ingredients of the lipophilic carrier composition, e.g., a Cnidium monnieri fruit extract or a Paeonia suffruticosa root extract, does not negatively affect the stability of Echium plantagineum oil or Ribes nigrum oil towards oxidation.
Echium
Rosmarinus
Solidago
Cnidium
plantagineum
officinalis
virgaurea
monnieri
Ribes nigrum
Rosmarinus
Solidago
Paeonia
officinalis
virgaurea
suffruticosa
Several lipophilic bioactive botanical extracts solubilized using the solubilization system described herein and present in a lipophilic carrier composition comprising vegetable oil were tested in human clinical trials for efficacy. These tests showed safety and efficacy in preventing and treating skin erythema and lessening the reduction of the skin barrier function after exposure to radiation and chemical stress.
Formulas 1-4 as described above were prepared, wherein the lipophilic bioactive botanical extract was Cnidium monnieri fruit extract and the vegetable oil was Echium plantaginium seed oil.
The skin protective, soothing and repairing effect of a cosmetic topical product incorporating the presolubilized Cnidium monnieri fruit extract in a lipophilic carrier composition comprising Echium plantaginium seed oil upon exposure of the skin to a chemical agent was evaluated by applying topical treatments (2 mg/cm2) of each of Formulas 1 through 4.
The test was carried out on a panel of 10 healthy volunteers. Selected skin areas were kept untreated and unexposed to the chemical agent as controls. Other skin areas were treated with the relevant formulation for a period of 10 days (from Day 1 to Day 10) preceding exposure to the chemical agent.
On Day 11, a solution of sodium lauryl sulfate (SLS) was applied to the skin using Finn chambers to chemically aggress the skin. Finn chambers were kept in contact with the skin for 20±4 hours. On Day 12, the Finn chambers were removed and skin erythema and the skin barrier function were assessed to measure the protective effect of the treatment with the formulations. The skin barrier function was assessed by the measurement of trans-epidermal water loss (TEWL) using the TEWAMETER 300® (Courage+Khazaka, electronic GmbH) apparatus and skin erythema was measured using the MEXAMETER® MX 18 (Courage+Khazaka, electronic GmbH) apparatus. Results are shown in Tables 7 and 8.
Application of the Echium Plantaginium Active Cream with Cnidium Monnieri Fruit Extract prior to the application of the SLS-containing Finn chambers resulted in a reduction of the SLS-induced increase in TEWL (Table 7). This demonstrated that the Echium Plantaginium Active Cream with Cnidium Monnieri Fruit Extract (made with a lipophilic carrier composition of the present invention) can protect the skin barrier function from a chemical aggression.
Cnidium monnieri fruit extract in a lipophilic carrier composition
Echium plantagineum seed oil
1Compared to non-chemically stressed skin (baseline)
2Statistically significant when compared to Placebo cream
3Statistically significant when compared to Placebo cream
4Statistically significant when compared to Active cream
5Statistically significant when compared to Placebo cream
6Statistically significant when compared to Active cream
The measurement of skin erythema (Table 8) also demonstrated that the application of the Echium plantaginium Active Cream with Cnidium monnieri Fruit Extract can protect from chemically-induced skin erythema.
The above results demonstrate that a topical composition comprising a lipophilic carrier composition of the present invention that was produced using a presolubilized Cnidium monnieri fruit extract provided better protection against an increase in TEWL than the same composition lacking certain ingredients present in the inventive composition.
Cnidium monnieri fruit extract in a lipophilic carrier composition
Echium plantagineum seed oil
1Compared to non-chemically stressed skin (baseline)
2Statistically significant when compared to Placebo cream
3Statistically significant when compared to Placebo cream
4Statistically significant when compared to Active cream
5Statistically significant when compared to Placebo cream
6Statistically significant when compared to Active cream
The above results demonstrate that a topical composition comprising a lipophilic carrier composition of the present invention that was produced using a presolubilized Cnidium monnieri fruit extract provided better protection against chemically-induced skin erythema than the same composition lacking certain ingredients present in the inventive composition.
In another experiment, some skin areas were treated only upon removal of the SLS-containing Finn chambers (Day 12). In this case, skin was post-treated with one application (2 mg/cm2) of the Placebo cream prepared according to Formula 1 or the Echium Plantaginium Active Cream with Cnidium Monnieri Fruit Extract prepared according to Formula 4. The repairing effect of the treatments was assessed for skin barrier function and for skin erythema at time 30 minutes, 1 hour, 2 hours and 24 hours after the topical application of the cream formulations. The skin barrier function and erythema were assessed as described in Example 6A above. Results are shown in Tables 9 and 10 and reveal that applying the active cream formulation after the chemical stress with SLS significantly reduces the extent of skin barrier damage. This demonstrates the therapeutic action of the active cream formulation in promoting skin barrier function. The data on skin erythema in Table 10 also demonstrate that the therapeutic application of the active cream formulation can help repair chemically-induced skin erythema.
Cnidium monnieri fruit extract in a lipophilic carrier composition
1Statistically significant when compared to Placebo cream
Cnidium monnieri fruit extract in a lipophilic carrier composition
1Statistically significant when compared to Placebo cream
2Not statistically significant when compared to Placebo cream
The data shown in Tables 9 and 10 demonstrate that a topical composition comprising a lipophilic carrier composition of the present invention that was produced using a presolubilized Cnidium monnieri fruit extract provided better protection against an increase in TEWL as well as better protection against chemically-induced skin erythema than the same composition lacking certain ingredients present in the inventive composition.
Formulas 1-4 as described above were prepared wherein the lipophilic bioactive botanical extract was Paeonia suffruticosa root extract and the vegetable oil was Ribes nigrum seed oil.
The skin protective, soothing and repairing effect of a cosmetic topical product incorporating the presolubilized Paeonia suffruticosa root extract in a lipophilic carrier composition comprising Ribes nigrum seed oil upon UV exposure (UVA+B using a solar simulator) was evaluated by applying topical treatments (2 mg/cm2) of each of Formulas 1 through 4.
The UV exposure intensity was calibrated to induce 1.5 MED. 1 MED, or Minimal Erythema Dose, corresponds to the minimum amount of UVB radiation required to produce redness 24 hours after skin exposure. The test was carried out on a panel of 10 healthy volunteers. Selected skin areas were kept untreated and unexposed to UV as controls. Other skin areas were treated with the relevant formulation for a period of 10 days (from Day 1 to Day 10) preceding UV exposure.
On Day 11, specific skin sites were exposed to UV. On Day 12, 20±4 hours after UV exposure, skin erythema and the skin barrier function were assessed to measure the protective effect of the treatments. The skin barrier function was assessed by the measurement of trans-epidermal water loss (TEWL) using the TEWAMETER 300® apparatus (Courage+Khazaka, electronic GmbH) and skin erythema was measured using the MEXAMETER® MX 18 apparatus (Courage+Khazaka, electronic GmbH). The results are reported in Tables 11 and 12.
The application of the cosmetic topical product incorporating the presolubilized Paeonia suffruticosa root extract in a Ribes nigrum seed oil prior to the application of UV light resulted in a reduction of the UV-induced increase in TEWL (Table 11). The most favorable results were observed for the active cream formulation, which was produced by using the solubilization system of the present invention to presolubilize the Paeonia suffruticosa root extract, followed by addition of the Ribes nigrum seed oil to form a lipophilic carrier composition comprising both the Paeonia suffruticosa root extract and the Ribes nigrum seed oil. This lipophilic carrier composition was incorporated into the base formulation to give the active cream. These results demonstrate that the active cream formulation can protect against UV-induced skin barrier function loss.
The measurement of skin erythema (Table 12) demonstrated that the application of the active cream formulation can protect from UV-induced skin erythema.
Paeonia suffruticosa root extract in a lipophilic carrier
nigrum (black currant) seed carrier oil
suffruticosa root extract
1Compared to non-irradiated skin (baseline)
2Statistically significant when compared to Placebo cream
3Statistically significant when compared to Placebo cream
4Non-statistically significant when compared to Active cream
5Statistically significant when compared to Placebo cream
6Non-statistically significant when compared to Active cream
Paeonia suffruticosa root extract in a lipophilic carrier composition
1Compared to non-irradiated skin (baseline)
2Statistically significant when compared to Placebo cream
3Statistically significant when compared to Placebo cream
4Non-statistically significant when compared to Active cream
5Statistically significant when compared to Placebo cream
6Non-statistically significant when compared to Active cream
In another experiment, some skin areas were treated only after exposure of the skin to UV (Day 12). In this case, skin was post-treated with one application (2 mg/cm2) of the Placebo cream prepared according to Formula 1 or the Active Cream prepared according to Formula 4. The repairing effect of the treatments was assessed for skin barrier function and for skin erythema at time 30 minutes, 1 hour, 2 hours and 24 hours upon the topical application of the cream formulations. The skin barrier function and erythema were assessed as described above. Results are reported in Tables 13 and 14 and show that applying the active cream formulation after UV exposure significantly reduces the extent of skin barrier damage (Table 13). This provides evidence for the therapeutic action of the active cream formulation in promoting skin barrier function. The measurement of skin erythema (Table 14) also demonstrated that the therapeutic application of the active cream formulation can help repair damage from UV-induced skin erythema.
Paeonia suffruticosa root extract in a lipophilic carrier composition
1Statistically significant when compared to Placebo cream
Paeonia suffruticosa root extract in a lipophilic carrier composition
1Statistically significant when compared to Placebo cream
Another experiment demonstrated the efficacy of a cosmetic topical product incorporating the presolubilized Paeonia suffruticosa root extract in a lipophilic carrier composition comprising Ribes nigrum seed oil in reducing the appearance of age spots (also known as brown spots, liver spots, melasma, solar lentigo, freckles, senile freckles, lengitines or chloasma “mask of pregnancy”). Age spots are hyperpigmented skin areas that may arise from over UV-exposure, in pregnant women, or in subjects undergoing hormonal replacement therapies. Their visual appearance is due to an accumulation of melanocytes and/or an excessive production of melanin pigments and this phenomenon becomes more apparent with increasing age. The efficacy of the cosmetic topical products disclosed herein for the treatment of age spots was evaluated by applying topical treatments (2 mg/cm2) of each of Formula 1 (Placebo cream) and Formula 4 (Active cream).
The test was carried out on a panel of 15 healthy volunteers with visible age spots. Formulas 1 and 4 were tested as a split-face clinical protocol where each Formula was applied on separate sides of the face down up to the upper chest area, twice daily. Evaluation of age spot appearance was measured at Day 0 (baseline) and after 30 (Day 30) and 60 days (Day 60) of product applications. The MEXAMETER® MX 18 apparatus (Courage+Khazaka, electronic GmbH) was used to measure the age spot color based on specific light wave-length absorption by melanin-related chromophores. Results are expressed as variation of the melanin index. The Spectrophotometer CM-700d (Konica Minolta Optics, Inc) was chosen to measure the age spot color intensity by computing specific light wave-length reflection of L* parameter (skin brightness) and b* parameter (variation from blue to yellow color) as the Individual Typology Angle)(ITA°). An increase in ITA° is indicative of a color intensity reduction. A separate individual measurement of the L* parameter was also performed to assess variations in general skin color lightness.
As a more visual assessment of the effect the treatments, a skilled dermatologist evaluated, in a blind fashion, the visual reduction of age spot appearance and the increase in skin complexion (color homogeneity). The evaluation criteria were as follows:
Topical applications of the Active cream statistically reduced the melanin index (age spot pigment density) and increased the lightening of age spots present in the face, neck, and upper chest areas (Table 16 and 17, respectively). Furthermore, treatment with the Active cream statistically improved the general skin lightness (Table 18). Dermatologist assessments have shown that a reduction of age spot color appearance (Table 19) and an improvement in skin complexion (Table 20) can be visually observed already after 30 days of treatment. Those results demonstrate that topical applications of a cosmetic product incorporating the presolubilized Paeonia suffruticosa root extract in a lipophilic carrier composition comprising Ribes nigrum seed oil reduces the color pigmentation and the visual appearance of age spots. Furthermore, a general improvement in skin complexion could be observed.
Paeonia suffruticosa root extract in a lipophilic carrier composition
1Statistically significant when compared to Placebo cream
Paeonia suffruticosa root extract in a lipophilic carrier composition
1Statistically significant when compared to Placebo cream
Paeonia suffruticosa root extract in a lipophilic carrier composition
1Statistically significant when compared to Placebo cream
Paeonia suffruticosa root extract in a lipophilic carrier composition
Paeonia suffruticosa root extract in a lipophilic carrier composition
This application claims priority from U.S. Provisional Patent Application Ser. No. 61/614,838, filed Mar. 23, 2012, the disclosures of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61614838 | Mar 2012 | US |