Kulkarni, “Steroidal and Non-steroidal Drugs in Endotoxin-Induced Uveitis,” Journal of Ocular Pharmacology, 10(1):329-334 (1994). |
Baudouin C, et al., “Flow cytometry in Impression Cytology Specimens: A new method for evaluation of conjunctival inflammation,” Invest Ophthalmol. Vis. Sci., 38(7):1458-1464 (1997). |
Chiang et al., “Aspirin-Triggered 15-epi-Lipoxin A4 (ATL) Generation by Human Leukocytes and Murine Peritonitis Exudates: Development of a Specific 15-epi-LXA4 ELISA,” Pharmacol. Exp. Ther., 287(2):779-790 (1998). |
Clish et al., “Local and Systemic Delivery of a Stable Aspirin-Triggered Lipoxin Prevents Neutrophil Recruitment in vivo,” Proc. Natl. Acad. Sci., 96(14):8247 (1999). |
Dartt et al., “Vasoactive intestinal peptide-stimulated glycocongjugate secretion from conjunctival goblet cells,” Experimental Eye Research, 63:27-34 (1996). |
Dilly et al., “Surface Changes in the Anaesthetic Conjunctiva in Man, with Special Reference to the Production of Mucus from a Non-Goblet-Cell Source,” British Journal of Ophthalmology, 65:833-842 (1981). |
Gewirtz et al., “Pathogen-induced Chemokine Secretion from Model Intestinal Epithelium is Inhibited by Lipoxin A4 Analogs,” J. Clin. Invest., 101(9):1860-1869 (1998). |
Gewirtz et al., “LXA4 Aspirin-Triggered 15-epi-LXA4, and Their Analogs Selectively Downregulate PMN Azurophilic Degranulation,” Am. J. Physiol., 276(4, Part 1), C988-C994 (1999). |
Greiner et al., “Mucus Secretory Vesicles in Conjunctival Epithelial Cells of Wearers of Contact Lenses,” Archives of Ophthalmology, 98:1843-1846 (1980). |
Lemp, “Report of the Nation Eye Institute/Industry Workshop on Clinical Trials in Dry Eyes,” The CLAO Journal, 21(4):221-231 (1995). |
Maddox et al., “Lipoxin A4 Stable Analogs Are Potent Mimetics That Stimulate Human Monocytes and THP-1 Cells via a G-protein-linked Lipoxin A4 Receptor,” J. Biol. Chem., 272(11):6972-6978 (1997). |
Marom et al., “Human Airway Monohydroxyeicosatetraenoic Acid Generation and Mucous Release,” Journal of Clinical Investigation, 72:122-127 (1983). |
Marsh P and Pflugfelder SC, “Topical nonpreserved methylprednisolone therapy for keratoconjunctivitis sicca in Sjögren's syndrome,” Ophthalmology, 106(1):811-816 (1999). |
McCulley and Shine, “Tear film structure and dry eye,” Contactologia, 20(4):145-49 (1998). |
Nakamura et al., “Gefarnate stimulates secretion of mucin-like glycoproteins by corneal epithelium in vitro and protects corneal epithelium from desiccation in vivo,” Experimental Eye Research, 65:569-574 (1997). |
Pflugfelder SC, et al., “Altered cytokine balance in the tear fluid and conjunctiva of patients with Sjögren's syndrome keratoconjunctivitis sicca,” Curr. Eye Res. 19(3):201-211 (1999). |
Scalia et al., “Lipoxin A4 Stable Analogs Inhibit Leukocyte Rolling and Adherence in the Rat Mesenteric Microvasculature: Role of P-Selectin,” Proc. Natl. Acad. Sci., 94(18):9967-9972 (1997). |
Serhan, C.N. et al., “Lipoxin A Stereochemistry and Biosynthesis,” J. Biol. Chem., 261(35):16340-16345 (1986). |
Serhan, C.N., “On the Relationship Between Leukotriene and Lipoxin Production by Human Neutrophils: Evidence for Differential Metabolism,” Bioch. Biophys. Acta, 1004(2):158-168 (1989). |
Serhan et al., “Design of Lipoxin A4 Stable Analogs That Block Transmigration and Adhesion of Human Neutrophils,” Biochemistry, 34(44):14609-14615 (1995). |
Serhan N. et al., “Lipoxin and Aspirin-Triggered 15-epi-Lipoxin Cellular Interactions Anti-Inflammatory Lipid Mediators,” Clin. Chem. Lab. Med., 37:299-309 (1999). |
Shine and McCulley, “Keratoconjunctivitis Sicca Associated with Meibomian Secretion Polar Lipid Abnormality,” Archives of Ophthalmology, 116(7):849-52 (1998). |
Stern ME, et al., “A Unified Theory of the Role of the Ocular Surface in Dry Eye,” In: Sullivan et al., eds. Lacrimal Gland, Tear Film, and Dry Eye Syndromes 2, New York, Plenum, 1998, pp. 643-651. |
Takano et al., “Neutrophil-mediated Changes in Vascular Permeability are Inhibited by Topical Application of Aspirin-triggered 15-epi-lipoxin A4 and Novel Lipoxin B4,” J. Clin. Invest., 101(4):819-826 (1998). |
Watanabe et al., “Human Corneal and Conjuctival Epithelia Produce a Mucin-Like Glycoprotein for the Apical Surface,” Investigative Ophthalmology and Visual Science (IOVS), 36(2):337-344 (1995). |
Yanni et al., “Effect of Intravenously Administered Lipoxygenase Metabolites on Rat Trachael Mucous Gel Layer Thickness,” International Archives of Allergy And Applied Immunology, 90:307-309 (1989). |