The present application relates to the field of lighting, and more particularly to an arrangement in which a lighting controller transfers a dead time between switching patterns across an isolation transformer.
Fluorescent lamps and light emitting diodes (LEDs) are used in a number of applications including, without limitation, backlighting of display screens, televisions and monitors and general lighting applications. One particular type of fluorescent lamp is a cold cathode fluorescent lamp (CCFL). Such lamps require a high starting voltage (typically on the order of 700 to 1,600 volts) for a short period of time to ionize a gas contained within the lamp tubes and fire or ignite the lamp. This starting voltage may be referred to as a strike voltage or striking voltage. After the gas in a CCFL is ionized and the lamp is fired, less voltage is needed to keep the lamp on.
In liquid crystal display (LCD) applications, a backlight is needed to illuminate the screen so as to make a visible display. Backlight systems in LCDs or other applications typically include one or more CCFLs and an inverter system to provide both DC to AC power conversion and control of the lamp brightness. Even brightness across the panel and clean operation of inverters with low switching stresses, low EMI, and low switching losses is desirable. While CCFL backlighting is common, other fluorescent lamps such as external electrode fluorescent lamps (EEFLs) or flat fluorescent lamps (FFLs) may be utilized in place of CCFLs, with somewhat similar requirements. With the increasing size of LCDs and the high screen brightness requirements for better display quality, the power consumption of the backlight system becomes a major factor in the total system power consumption of an LCD based monitor or television.
In many prior art systems, the incoming power line voltage is first rectified, and a power factor corrector (PFC) is typically provided. The rectified voltage is then converted to a low voltage, typically on the order of 24 volts, and the low voltage is fed to a backlight controller. The backlight controller controls a switching network connected to the primary side of a transformer, and the fluorescent lamps are connected to the secondary side of the transformer. The backlight controller is operative to produce the necessary AC driving voltage by controlling the operation of the individual switches of the switching network. Such an operation is described, for example, in U.S. Pat. No. 5,615,093 issued Mar. 27, 1997 to Nalbant, the entire contents of which is incorporated herein by reference.
Unfortunately, the above architecture leads to excessive power loss, since an incoming AC line voltage is first converted to a high voltage DC, the high voltage DC is then converted to a low voltage DC, and the low voltage DC is then again converted to a higher AC voltage for driving the fluorescent lamps. In a move to reduce power consumption, an architecture called LCD Integrated Power Systems (LIPS) has been developed. For example, ON Semiconductor has published a GreenPoint reference design, certain selected portions of which are shown in
The output of A/C line source 10 is received by EMI filter 20, and the output of EMI filter is connected to the input of full wave rectifier 30. The output of full wave rectifier 30 is fed to PFC circuit 40, and the output of PFC circuit 40 is fed to switching network 50. The output of switching network 50 is connected to the primary winding of output transformer 60, and the secondary windings of output transformer 60 are connected to each of the plurality of CCFL lamps 100 via balancing network 90. The current sense output of current sensing and over-voltage detecting circuitry 80 is connected to a respective input of backlight controller 70, and the over-voltage detecting output of current sensing and over-voltage detecting circuitry 80 is connected to a respective input of backlight controller 70. A PWM dimming input, denoted PWM DIM, an analog dimming input, denoted ANALOG DIM, an enable input, denoted ENABLE, and a synchronization input, denoted SYNCH, preferably sourced by a separate video processor (not shown), are further fed to respective inputs of backlight controller 70. The in-phase closed loop formed by the secondary windings of the balancing transformers of balancing network 90 is also coupled to a respective input of backlight controller 70. Backlight controller 70 exhibits a plurality of outputs, which are each fed via a respective isolation circuit 110 to the control input of the respective electronically controlled switch of switching network 50.
Switching network 50 is preferably a full bridge network comprising 4 electronically controlled switches, due to its inherent ability to provide soft switching while providing lamp current regulation with pulse width modulation. The full bridge network can be replaced with a half bridge switching work, thereby reducing cost, however there is often a penalty of severe ringing at turn off due to the hard switching behavior associated with half bridge switching with resulting high switching losses and strong EMI emissions. These problems can be mitigated with additional circuitry; however this again increases the cost. Alternatively, a resonant half bridge switching method may be implemented; however resonant operation varies the switching frequency with operating conditions which is not favored in many display applications. In order to minimize cost, isolation circuits 110 are typically implemented as low cost transformers.
The output of PFC circuit 40 is normally in the range of 375V to 400 VDC, and in the LIPS architecture of
One of the challenges of the LIPS architecture of
In order to reduce cost, isolation circuits 110 are preferably implemented as transformers, however transformers can only reliably transfer FET drive signals when the length of time of the positive going section of the waveform matches that of the negative going section of the waveform, since the total of areas of the curve above and below zero must be equal to avoid DC bias or saturation. Thus, the use of a PWM drive for switching network 50 is problematic, since as the duty cycle changes the resultant drive voltage seen by switching network 50 changes, unless additional circuitry is provided.
Alternatively, phase shifting between the switches of the arms may be utilized. In particular, in a phase shifted arrangement, switches of arms are driven with a balanced signal, each exhibiting a near 50% duty cycle, and the relative phase of the drive signals are used to control power. Unfortunately, the prior art requires 4 signals to be transferred over isolation circuitry 110 in order to properly drive switching network 50 with such a phase shifted arrangement.
The above has been explained in some detail in regards to a CCFL arrangement; however those skilled in the art recognize that similar issues are found with LED lighting. LED lighting is similarly driven responsive to an AC mains power signal, which after an appropriate PFC stage exhibits a high voltage DC, typically significantly in excess of the DC required to actually drive an LED string. Thus, the voltage must be converted to a different DC voltage, thus increasing cost and again suggesting the use of a LIPS architecture.
What is needed, and not supplied by the prior art, is a LIPS architecture arrangement which provides for low cost isolation circuitry.
In view of the discussion provided above and other considerations, the present disclosure provides methods and apparatus to overcome some or all of the disadvantages of prior and present LIPS architectures. Other new and useful advantages of the present methods and apparatus will also be described herein and can be appreciated by those skilled in the art.
This is provided in certain embodiments by an arrangement in which an isolation transformer is driven by a drive signal exhibiting a high state, a low state and a high impedance state. Preferably, the drive signal is coupled to the isolation transformer by a capacitor. Advantageously, the drive signal may be coupled to a single end of the primary winding of the isolation transformer, with a second end of the primary winding connected to a common potential point, such as ground.
Additional features and advantages of the invention will become apparent from the following drawings and description.
For a better understanding of the invention and to show how the same may be carried into effect, reference will now be made, purely by way of example, to the accompanying drawings in which like numerals designate corresponding elements or sections throughout.
With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice. In the accompanying drawings:
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is applicable to other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
In one embodiment, in the event that a plurality of CCFL lamps 100 are provided, a balancer is further provided (not shown), arranged to balance the current flowing through the plurality of lamps 100.
Backlight controller 70 exhibits 4 switch driving outputs, denoted respectively AOH, AOL, BOH and BOL, respectively arranged to drive a full bridge network with a dead time between the respective on times of the electronically controlled switches in any one arm of the bridge. The dead time may be set so as to only be sufficient to prevent shoot through, or may be expanded for one arm of the bridge so as to produce a lower output voltage. Backlight controller 70 is similar in all respects to commercially available CCFL backlight controllers arranged to operate with a full bridge switching network, and thus the operation of backlight controller 70 will not be detailed further.
The source of each of first and second PMOSFETs 270 is connected to a voltage source, denoted VDD, and the source of each of first and second NMOSFETs 280 are connected to a low voltage side common potential, such as ground. The drain of first PNMOSFET 270 is connected to the drain of first NMOSFET 280, and to a first end of first capacitor 230, the common node of the drains of first PMOSFET 270 and first NMOSFET 280 denoted AOUT. The gate of first PMOSFET 270 is connected to the AOH output of backlight controller 70 via first inverter 205 and the gate of first NMOSFET 280 is connected to the AOL output of backlight controller 70.
The drain of second PMOSFET 270 is connected to the drain of second NMOSFET 280, and to a first end of second capacitor 230, the common node of the drains of second PMOSFET 270 and second NMOSFET 280 denoted BOUT. The gate of second PMOSFET 270 is connected to the BOH output of backlight controller 70 via second inverter 205 and the gate of second NMOSFET 280 is connected to the BOL output of backlight controller 70.
A second end of first capacitor 230 is connected to a first end of first winding 242 of first isolation transformer 240, and a second end of first winding 242 of first isolation transformer 240 is connected to the low voltage side common potential. A second end of second capacitor 230 is connected to a first end of first winding 242 of second isolation transformer 240, and a second end of first winding 242 of second isolation transformer 240 is connected to the low voltage side common potential.
A first end of second winding 244 of first isolation transformer 240 is connected via a respective resistor to the gate of first electronically controlled switch 250, and a second end of second winding 244 of first isolation transformer 240 is connected to the source of first electronically controlled switch 250, to a first end of a first winding of output transformer 60, to the drain of second electronically controlled switch 250, and via a respective resistor to the gate of first electronically controlled switch 250. The drain of first electronically controlled switch 250 is connected to a high DC voltage, denoted HVDC. In one embodiment, voltage HVDC is received from a PFC stage. A first end of third winding 246 of first isolation transformer 240 is connected via a respective resistor to the gate of second electronically controlled switch 250, to the source of second electronically controlled switch 250 and to a high voltage side common potential. A second end of third winding 246 of first isolation transformer 240 is connected via a respective resistor to the gate of second electronically controlled switch 250.
A first end of second winding 244 of second isolation transformer 240 is connected via a respective resistor to the gate of third electronically controlled switch 250, and a second end of second winding 244 of second isolation transformer 240 is connected to the source of third electronically controlled switch 250, to a second end of the first winding of output transformer 60, to the drain of fourth electronically controlled switch 250, and via a respective resistor to the gate of third electronically controlled switch 250. The drain of third electronically controlled switch 250 is connected to voltage HVDC. A first end of third winding 246 of second isolation transformer 240 is connected via a respective resistor to the gate of fourth electronically controlled switch 250 and to the high voltage side common potential. A second end of third winding 246 of second isolation transformer 240 is connected via a respective resistor to the gate of fourth electronically controlled switch 250.
A first end of the second winding of output transformer 60 is connected to a first power lead of lamp 100. A second end of the second winding of output transformer 60 is connected to the high voltage side common potential. A second power lead of lamp 100 is connected to a first end of sense resistor RS and to an input of backlight controller 70 and a second end of sense resistor RS is connected to the high voltage side common potential.
As indicated above, backlight controller 70 is arranged to directly drive a full bridge network, such as switching network 50, with a dead time between turn on of respective switches of each switching arm. Backlight controller 70 drives switching network 50 responsive to the voltage across sense resistor RS. Backlight controller 70 is illustrated as a separate component from three state driver 210 and inverters 205, however this is not meant to be limiting in any way, and backlight controller 70 may implement three state driver 210 without exceeding the scope. Advantageously, driving arrangement 200 only requires a single drive signal, AOUT and BOUT per transformer 240, thus reducing cost and particular pin count in the event that three state driver 210 is incorporated within an integrated circuit backlight controller.
For clarity, operation will be described in relation to
In operation, three-state driver 210 is arranged to produce a first signal AOUT, responsive to signals AOH and AOL received from backlight controller 70. First capacitor 230 is preferably of a sufficiently large value to pass the changing reflective states of AOUT without substantial impedance. Thus, when AOUT swings to VDD, a current is driven in a first direction through first winding 242 of first isolation transformer 240, and when AOUT swings to the low voltage side common potential the current is driven through first winding 242 of first isolation transformer 240 in a direction opposite the first direction. Preferably signal AOUT exhibits potential VDD for the same amount of time as the low voltage side common potential thus preventing saturation of first isolation transformer 240. When AOUT is in a high impedance state substantially no current flows through first winding 242 of first isolation transformer 240, since no current path exists. Current flow through first winding 242 of first isolation transformer 240 is reflected to each of second winding 242 and third winding 246 of first isolation transformer 240.
In particular, signal AOUT is placed in a high impedance state, as illustrated at areas 500, 540, 600 and 630, responsive to AOH being driven low and AOL being driven low, i.e. during the dead time instructed by backlight controller 70, since when AOH is low first PMOSFET 270 is turned off by first inverter 205 and first NMOSFET 280 is turned off when AOL is low. As indicated above, no current flows through first winding 242 of first isolation transformer 240 when signal AOUT is in a high impedance state, and thus no current flows through second winding 244 and third winding 246 of first isolation transformer 240. Thus, voltage VGS1 is zero as shown in
Signal AOUT is driven to voltage level VDD, as illustrated at areas 510, 520, 530, 610 and 620, responsive to AOH being driven high and AOL being driven low, since when AOH is high first PMOSFET 270 is turned on by first inverter 205 and first NMOSFET 280 is turned off when AOL is low. As described above, current flows through first winding 242 of first isolation transformer 240 in a first direction and is reflected to second winding 244 and third winding 246 of first isolation transformer 240, where the voltage developed responsive to the reflected current flow develops a positive voltage VGS1 turning on first electronically controlled switch 250 and a negative voltage VGS2 turning off second electronically controlled switch 250. The value of voltage V1 is responsive to both AOUT and BOUT, as will be described further below.
Signal AOUT is driven to the low voltage common potential, as illustrated at areas 550, 560, 570, 640 and 650, responsive to AOH being driven low and AOL being driven high, since when AOH is low first PMOSFET 270 is turned off by first inverter 205 and first NMOSFET 280 is turned on when AOL is high. As described above, current flows through first winding 242 of first isolation transformer 240 in a second direction, opposing the first direction, and is reflected to second winding 244 and third winding 246 of first isolation transformer 240, where the voltage developed responsive to the reflected current flow develops a negative voltage VGS1 turning off first electronically controlled switch 250 and a positive voltage VGS2 turning on second electronically controlled switch 250. The value of voltage V1 is responsive to both AOUT and BOUT, as will be described further below.
Thus, signal AOUT selectively exhibits one of two complementary voltage levels and a high impedance state responsive to the outputs of backlight controller 70, and the complementary voltage levels are reflected via first isolation transformer 240 to alternately close first electronically controlled switch 250 while ensuring that second electronically controlled switch 250 is open and close second electronically controlled switch 250 while ensuring that first electronically controlled switch 250 is open. The high impedance state produces a dead time where both first and second electronically controlled switches 250 are open.
Three-state driver 210 is similarly arranged to produce a second signal BOUT, responsive to signals BOH and BOL received from backlight controller 70. Second capacitor 230 is preferably of a sufficiently large value to pass the changing reflective states of BOUT without substantial impedance. Thus, when BOUT swings to VDD, a current is driven in a first direction through first winding 242 of second isolation transformer 240, and when BOUT swings to the low voltage side common potential the current is driven through first winding 242 of second isolation transformer 240 in a direction opposite the first direction. Preferably signal BOUT exhibits potential VDD for the same amount of time as the low voltage side common potential thus preventing saturation of second isolation transformer 240. When BOUT is in a high impedance state substantially no current flows through first winding 242 of second isolation transformer 240, since no current path exists. Current flow through first winding 242 of second isolation transformer 240 is reflected to each of second winding 242 and third winding 246 of second isolation transformer 240.
In particular, signal BOUT is placed in a high impedance state, as illustrated at areas 520, 560, 600, 620, 630 and 650, responsive to BOH being driven low and BOL being driven low, i.e. during the dead time instructed by backlight controller 70, since when BOH is low second PMOSFET 270 is turned off by second inverter 205 and second NMOSFET 280 is turned off when BOL is low. As indicated above, no current flows through first winding 242 of second isolation transformer 240 when signal BOUT is in a high impedance state, and thus no current flows through second winding 244 and third winding 246 of second isolation transformer 240. Thus, voltage VGS3 is zero as shown in
Signal BOUT is driven to voltage level VDD, as illustrated at areas 530, 540, 550, and 640, responsive to BOH being driven high and BOL being driven low, since when BOH is high second PMOSFET 270 is turned on by second inverter 205 and second NMOSFET 280 is turned off when BOL is low. As described above, current flows through first winding 242 of second isolation transformer 240 in a first direction and is reflected to second winding 244 and third winding 246 of second isolation transformer 240, where the voltage developed responsive to the reflected current flow develops a positive voltage VGS3 turning on third electronically controlled switch 250 and a negative voltage VGS4 turning off fourth electronically controlled switch 250. The value of voltage V1 is responsive to both AOUT and BOUT, as will be described further below.
Signal BOUT is driven to the low voltage common potential, as illustrated at areas 500, 510, 570 and 610, responsive to BOH being driven low and BOL being driven high, since when BOH is low second PMOSFET 270 is turned off by second inverter 205 and second NMOSFET 280 is turned on when BOL is high. As described above, current flows through first winding 242 of second isolation transformer 240 in a second direction, opposing the first direction, and is reflected to second winding 244 and third winding 246 of second isolation transformer 240, where the voltage developed responsive to the reflected current flow develops a negative voltage VGS3 turning off third electronically controlled switch 250 and a positive voltage VGS4 turning on fourth electronically controlled switch 250. The value of voltage V1 is responsive to both AOUT and BOUT, as will be described further below.
Thus, signal BOUT selectively exhibits one of two complementary voltage levels and a high impedance state responsive to the outputs of backlight controller 70, and the complementary voltage levels are reflected via second isolation transformer 240 to alternately close third electronically controlled switch 250 while ensuring that fourth electronically controlled switch 250 is open and close fourth electronically controlled switch 250 while ensuring that third electronically controlled switch 250 is open. The high impedance state produces a dead time where both third and fourth electronically controlled switches 250 are open.
Soft switching is preferably still achieved responsive to the inductive current from the first winding of output transformer 60. In particular, in area 610 current flows through the first winding of output transformer 60 through the combination of first electronically controlled switch 250 and fourth electronically controlled switch 250. At the transition to area 620, when fourth electronically controlled switch 250 is turned off, the inductive current from the first winding of output transformer 60 continues to freewheel through the path presented by first electronically controlled switch 250 and the body diode of third electronically controlled switch 250. Since the voltage drop of the freewheel path is low, the inductive current can be sustained until turn on of third electronically controlled switch 250 at area 640, and thus soft switching of third electronically controlled switch 250 is achieved. Similarly, at the transition to area 650, when third electronically controlled switch 250 is turned off, the inductive current from the first winding of output transformer 60 continues to freewheel through the path presented by second electronically controlled switch 250 and the body diode of fourth electronically controlled switch 250. Since the voltage drop of the freewheel path is low, the inductive current can be sustained until turn on of fourth electronically controlled switch 250 during the next cycle at area 610, and thus soft switching of fourth electronically controlled switch 250 is achieved.
Switching network 50 has been described above as being implemented as a full bridge network, however this is not meant to be limiting in any way. In another embodiment, switching network 50 is implemented as a half bridge network.
The operation of driving arrangement 700 is in all respects similar to the operation of driving arrangement 200 and in the interest of brevity will not be further described.
It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable sub-combination.
Unless otherwise defined, all technical and scientific terms used herein have the same meanings as are commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods are described herein.
All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the patent specification, including definitions, will prevail. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather the scope of the present invention is defined by the appended claims and includes both combinations and sub-combinations of the various features described hereinabove as well as variations and modifications thereof which would occur to persons skilled in the art upon reading the foregoing description and which are not in the prior art.
This application claims priority from U.S. Provisional Patent Application Ser. No. 61/354,754 filed Jun. 15, 2010 entitled “LIPS BACKLIGHT CONTROL ARCHITECTURE WITH LOW COST DEAD TIME TRANSFER”, the entire contents of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3979640 | Fischman et al. | Sep 1976 | A |
4020361 | Sulzle et al. | Apr 1977 | A |
4030015 | Herko et al. | Jun 1977 | A |
4176258 | Jackson | Nov 1979 | A |
4278918 | Bachofer | Jul 1981 | A |
4694384 | Steigerwald et al. | Sep 1987 | A |
4758941 | Felton et al. | Jul 1988 | A |
4995054 | Eckersley | Feb 1991 | A |
5109185 | Ball | Apr 1992 | A |
5168182 | Salerno et al. | Dec 1992 | A |
5541827 | Allfather | Jul 1996 | A |
5615093 | Nalbant | Mar 1997 | A |
5757141 | Wood | May 1998 | A |
6107754 | Kim | Aug 2000 | A |
6259615 | Lin | Jul 2001 | B1 |
6396722 | Lin | May 2002 | B2 |
6469454 | Mader et al. | Oct 2002 | B1 |
6862195 | Jitaru | Mar 2005 | B2 |
7158573 | Hershbarger | Jan 2007 | B2 |
7242147 | Jin | Jul 2007 | B2 |
7291987 | Chang et al. | Nov 2007 | B2 |
7508142 | Green | Mar 2009 | B2 |
20020154519 | Nakahara et al. | Oct 2002 | A1 |
20050078103 | Tikhonski et al. | Apr 2005 | A1 |
20050093731 | Skov et al. | May 2005 | A1 |
20050099143 | Kohno | May 2005 | A1 |
20060017406 | Ball | Jan 2006 | A1 |
20060108933 | Chen | May 2006 | A1 |
20060112393 | Benayoun et al. | May 2006 | A1 |
20060218424 | Abramovici et al. | Sep 2006 | A1 |
20060284568 | Chang et al. | Dec 2006 | A1 |
20060284575 | Shen et al. | Dec 2006 | A1 |
20070013321 | Ito et al. | Jan 2007 | A1 |
20070138874 | Kong | Jun 2007 | A1 |
20080018262 | Green | Jan 2008 | A1 |
20080018266 | Yu et al. | Jan 2008 | A1 |
20080164828 | Szczeszynski et al. | Jul 2008 | A1 |
Entry |
---|
International Search Report for PCT/US2011/031489—European Patent Office mailed Jun. 30, 2011. |
Written Opinion for PCT/US2011/031489—European Patent Office mailed Jun. 30, 2011. |
Choi, Kevin; LX1691, LX1691A, LX1691B Enhanced Multi-Mode CCFL Controller—AN-33; Microsemi, Garden Grove, California; 2004. |
Number | Date | Country | |
---|---|---|---|
20110304280 A1 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
61354754 | Jun 2010 | US |