This application discloses an invention which is related, generally and in various embodiments, to a container for supplying a liquid anesthetic to a vaporizer, an anesthetic delivery system, and a method for transferring a liquid anesthetic from a container to a vaporizer.
Liquid anesthetics are often packaged in glass bottles and shipped to a location where they may be used to anesthetize a patient undergoing a medical or dental procedure. Such anesthetics may also be used to induce analgesia or sedation in a patient who is undergoing a medical or dental procedure. In order to administer the anesthetic, the contents of the glass bottle are placed in a vaporizer. The vaporizer may be used to vaporize the anesthetic, and provide the vaporized anesthetic in a desired amount to the patient.
Inhalable anesthetics are typically volatile substances with relatively low boiling points and high vapor pressures. Preferably, the anesthetic should be used in a way which will ensure that there is little or no release to the atmosphere at all stages of handling. In order to transfer the liquid anesthetic to the vaporizer, the bottle must be opened. Since it is unwise to expose medical personnel performing the procedure to the anesthetic, and since anesthetics are expensive, devices have been developed to minimize or eliminate the release of the anesthetic from the bottle to the environment surrounding the vaporizer.
In one general respect, this application discloses a container for supplying a liquid anesthetic to a vaporizer. According to various embodiments, the container includes a reservoir, a membrane, a cap support, and a cap. The reservoir is adapted for holding the liquid anesthetic. The membrane covers an open end of the reservoir. The cap support is connected to the reservoir. The cap is removably connected to the cap support.
In another general respect, this application discloses an anesthetic delivery system. According to various embodiments, the system includes a container for supplying a liquid anesthetic, and a vaporizer configured to receive the container. The container includes a reservoir, a membrane, a cap support, and a cap. The reservoir is adapted for holding a liquid anesthetic. The membrane covers an opening of the reservoir. The cap support is connected to the reservoir. The cap is removably connected to the cap support. The vaporizer includes a slotted tube. The slotted tube is configured to pierce the membrane.
In yet another general respect, this application discloses a method for transferring a liquid anesthetic from a container to a vaporizer. According to various embodiments, the method includes connecting a container which holds a liquid anesthetic to a vaporizer, and piercing a membrane of the container with a slotted needle of the vaporizer.
The accompanying drawings are intended to provide further understanding of the invention and are incorporated in and constitute a part of the description of the invention. The drawings illustrate an embodiment of the invention and together with the description illustrate principles of the invention.
The drawings should not be taken as implying any necessary limitation on the essential scope of invention.
The drawings are given by way of non-limitative example to explain the nature of the invention.
For a more complete understanding of the instant invention reference is now made to the following description taken in conjunction with accompanying drawings.
The various features of novelty which characterize the invention are pointed out specifically in the claims which are a part of this description. For a better understanding of the invention, reference should be made to the drawings and descriptive matter in which there are illustrated and described preferred embodiments of invention.
Referring now to the drawings, wherein like numerals designate identical or corresponding parts throughout the referred views, in
In order to protect the membrane 16, a cap 19 and a cap support 22 may be placed on the reservoir 13 so as to cover the membrane 16. The cap 19 may be made of a durable material that is difficult to puncture. The cap support 22 may have a connection surface 25 that may be used (1) to hold the cap 19 relative to the membrane 16, or (2) to hold the reservoir 13 relative to the vaporizer 15, and may also be used to form a seal between the reservoir 13 and the vaporizer, or (3) may be used to accomplish item (1) and then to accomplish item (2). It should be noted that the connecting surface 25 need not be on the cap support 22. For example, the connecting surface 25 may be part of the reservoir 13 and also may be internally or externally threaded.
A threaded connection surface 25 is shown in the embodiment of
In the embodiment of
Referring again to the embodiment of
To puncture the membrane 16, the vaporizer may be equipped with a side slotted needle or tube 28, the details of which are illustrated in
The side slotted tube 28 may be a cylindrical tube with one or more longitudinally extending slots 31 in the wall of the tube 28. The slot 31 may be positioned so that when the tube 28 extends through the membrane 16, the slot 31 extends from one side of the membrane 16 to the other side of the membrane 16. In this fashion, liquid anesthetic may enter the tube 28 through an end portion of the tube 28 and/or through the slot 31. When the level of liquid anesthetic in the reservoir 13 drops below the end of the tube 28, the liquid anesthetic will enter the tube 28 only through the slot 31. Since the slot 31 extends from one side of the membrane 16 to the other, all of the anesthetic in the reservoir 13 is allowed to drain from the reservoir 13 to the vaporizer.
The side slotted tube 28 includes a piercing end 34 for puncturing the membrane 16 and a base end 37 opposite thereto. The side slotted tube 28 further includes a radially extending flange 40 disposed at its base end 37. Flange 40 includes a plurality of radially spaced through holes 43 extending from one side of flange 40 to the other. Through holes 43 allow drainage in both directions of fluid and vapor.
When it is desired to remove the reservoir 13 from the vaporizer 15, the tube 28 is removed from the membrane 16. If the membrane 16 is made from EPDM rubber, the hole through which the tube 28 extends may be re-sealed by the material's “self-curing” property. In this manner, the reservoir 13 may be re-sealed after the liquid anesthetic agent is transferred to the vaporizer.
Various embodiments provide for an anesthetic agent to be sealed and stored in a container under controlled conditions. The agent is then able to remain in the container, and not be exposed to the atmosphere prior to administration to a patient.
It is to be understood that the invention may assume various alternative orientations and step sequences, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in this specification are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.
Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described, and accordingly all suitable modifications and equivalents may be regarded as falling within the scope of the invention as defined by the claims that follow.
This application claims the benefit under 35 U.S.C. § 119(e) of the earlier filing date of U.S. Provisional Application Ser. No. 61/037,606 filed on Mar. 18, 2008, the entire disclosure of which is hereby incorporated by reference herein as if being set forth in its entirety.
| Number | Date | Country | |
|---|---|---|---|
| 61037606 | Mar 2008 | US |