The present disclosure relates to a liquid cartridge storing liquid therein, and a system including the liquid cartridge, and an attachment section to which the liquid cartridge is attachable.
One conventional system known in the art includes an ink cartridge, and an inkjet recording apparatus. The inkjet recording apparatus includes an attachment section, and the ink cartridge can be mounted into and extracted from the attachment section. The attachment section of the inkjet recording apparatus includes contacts.
A circuit board may be provided at an ink cartridge (see Japanese Patent Application Publication No. 2013-049164, for example). Memory is mounted on the circuit board for storing such information as a color and material composition of ink stored in the cartridge, a residual quantity of ink, and the like. Electrodes are also formed on the circuit board. Electrical connections are formed between the electrodes on the ink cartridge and the contacts in the attachment section when the ink cartridge is mounted in the attachment section, enabling the inkjet recording apparatus to read information stored in the memory.
Further, in order to form electrodes and the like and to mount memory and the like on a circuit board, the circuit board must be at least a certain size.
As the functionality of circuit boards continues to improve, the number of components mounted on the circuit boards has increased. For example, components other than memory (batteries, for example) are now being mounted on these circuit boards. Such additions increase the size of the circuit board. In the meantime, walls have been considered as a measure for preventing a user from touching the contacts in the attachment section. The walls are provided in the attachment section on the front and rear sides of the contacts with respect to an insertion direction of the ink cartridge into the attachment section so as to extend downward to a position lower than the contacts. However, the provision of such walls restricts a front-rear dimension of the circuit board.
In view of the foregoing, it is an object of the present disclosure to provide a liquid cartridge including a circuit board (substrate) on which formed are electrodes that can be electrically connected to contacts in an attachment section without requiring the circuit board (substrate) to have smaller dimensions in a case where walls for protecting the contacts are arranged around the periphery of the contacts. It is another object of the present disclosure to provide a system equipped with this liquid cartridge.
In order to attain the above and other objects, according to one aspect, the present disclosure provides a liquid cartridge configured to be inserted into an attachment portion of a printing device in an insertion direction crossing a gravitational direction and attached to the attachment portion in an upright posture. The attachment portion includes: a holder defining an internal space for accommodating the liquid cartridge in the upright posture; a contact provided at the holder; a first wall provided at the holder and having a first lower end positioned forward in the insertion direction and lower in the gravitational direction relative to the contact of the device; and a second wall provided at the holder and having a second lower end positioned rearward in the insertion direction and lower in the gravitational direction relative to the contact of the device. The contact of the device is positioned between the first wall and the second wall in the insertion direction. The liquid cartridge includes a housing, a substrate, a contact and a memory. The housing includes: a liquid chamber storing liquid therein; and a liquid passage extending frontward in the insertion direction from the liquid chamber. The substrate has a length in the insertion direction greater than a distance between the first wall and the second wall in the insertion direction. The substrate in the upright posture defines a sloped surface facing upward and sloping relative to a first imaginary plane extending in the insertion direction and a widthwise direction orthogonal to the insertion direction and the gravitational direction. The contact of the cartridge is formed on the sloped surface of the substrate and is electrically connectable to the contact of the device at a contact point in the upright posture. The memory is mounted on the substrate and is electrically connected to the contact of the cartridge. The sloped surface forms a first acute angle relative to the first imaginary plane. A second imaginary plane forms a second acute angle relative to the first imaginary plane. A third imaginary plane forms a third acute angle relative to the first imaginary plane. The second imaginary plane passes through the contact point and the second lower end of the second wall and extends in the widthwise direction. The third imaginary plane passes through the contact point and the first lower end of the first wall and extends in the widthwise direction. The first acute angle is greater than at least one of the second acute angle and the third acute angle.
According to still another aspect, the present disclosure also provides a liquid cartridge configured to be inserted into an attachment portion of a printing device in an insertion direction crossing a gravitational direction and attached to the attachment portion in an upright posture. The liquid cartridge includes a housing, a substrate, a contact, a memory and an electronic component. The housing includes: a liquid chamber storing liquid therein; and a liquid passage extending frontward in the insertion direction from the liquid chamber. The substrate extends in the insertion direction. The substrate has an upper surface facing upward and sloping relative to the insertion direction in the upright posture. The contact of the cartridge is formed on the upper surface of the substrate. The memory is mounted on the substrate and is electrically connected to the contact of the cartridge. The electronic component is mounted on the substrate and is electrically connected to the memory for supplying power to the memory. The electronic component is positioned lower than the contact of the cartridge in the upright posture.
According to still another aspect, the present disclosure provides a liquid cartridge configured to be inserted into an attachment portion of a printing device in an insertion direction crossing a gravitational direction and attached to the attachment portion in an upright posture. The liquid cartridge includes a housing, a substrate, a contact, a memory and an electronic component. The housing includes: a liquid chamber storing liquid therein; and a liquid passage extending forward in the insertion direction from the liquid chamber. The substrate extends upward in the upright posture. The substrate has a thickness in the insertion direction and a length in the gravitational direction in the upright posture, the length being greater than the thickness. The contact is formed on an upper end face of the substrate and is electrically connectable to a contact of the printing device in the upright posture. The memory is mounted on the substrate and electrically connected to the contact of the cartridge. The electronic component is mounted on the substrate and electrically connected to the memory for supplying power to the memory.
In the drawings:
Hereinafter, an embodiment of the disclosure will be described in detail while referring to accompanying drawings. It would be apparent to those skilled in the art that the embodiment described below is merely an example of the present disclosure and modifications and variations may be made therein without departing from the scope of the disclosure.
<Overview of Printer 10>
As shown in
The ink cartridges 30 are inserted into the cartridge-attachment portion 110 through the opening 112 in order to be attached to the cartridge-attachment portion 110. The ink cartridges 30 are also extracted from the cartridge-attachment portion 110 through the opening 112.
In the following description, as shown in
Further, in the following description, the frontward direction 51 and rearward direction 52 are collectively referred to as a front-rear direction, the upward direction 54 and downward direction 53 are collectively referred to as a vertical direction, and the rightward direction 55 and leftward direction 56 are collectively referred to as a left-right direction.
In the state where the ink cartridge 30 is completely attached to the cartridge-attachment portion 110, the ink cartridge 30 has a height in the up-down direction; a depth in the front-rear direction (i.e., in the insertion direction); and a width in the left-right direction (i.e., widthwise direction).
When the ink cartridge 30 is in its upright posture, the width direction of the ink cartridge 30 corresponds to the left-right direction, the height direction of the ink cartridge 30 corresponds to the vertical direction, and the depth direction of the ink cartridge 30 corresponds to the front-rear direction.
While in its upright posture, the ink cartridge 30 is inserted forward into the cartridge-attachment portion 110 through the opening 112 (see
The ink cartridge 30 stores ink that the printer 10 can use for printing. As shown in
The printer 10 also includes a sheet tray 15, a feed roller 23, a conveying path 24, a pair of conveying rollers 25, a platen 26, a pair of discharge rollers 27, and a discharge tray 16. The feed roller 23 feeds each of the sheets from the sheet tray 15 onto the conveying path 24, and the conveying rollers 25 convey the sheet over the platen 26. The recording head 21 ejects ink onto the sheet as the sheet passes over the platen 26, whereby an image is recorded on the sheet. The discharge rollers 27 receive the sheet that has passed over the platen 26 and discharge the sheet into the discharge tray 16 provided on a downstream end of the conveying path 24.
<Cartridge-Attachment Portion 110>
As shown in
<Cartridge Holder 101>
The cartridge holder 101 shown in
As shown in
The opening 112 is formed in a rear end of the cartridge holder 101 to oppose the end wall 57 in the front-rear direction. The opening 112 is in communication with the interior space 104 of the cartridge holder 101. A user faces the opening 112 when using the printer 10.
The interior space 104 of the cartridge holder 101 is defined by the end wall 57, bottom wall 59, top wall 58, and side walls 60. Partitioning walls (not shown) partition the interior space 104 into four compartments. One each of the tubes 102, tanks 103, optical sensors 113, protruding parts 114, and connector 130 is provided in each compartment of the partitioned interior space 104. Note that the number of compartments in the interior space 104 is not limited to four.
<Tubes 102>
The tube 102 shown in
The tube 102 has an interior space 102A. A valve 115 and a coil spring 116 are accommodated in the interior space 102A. By moving in the front-rear direction, the valve 115 opens and closes an opening 102B formed in the distal end of the tube 102. The coil spring 116 urges the valve 115 rearward. Hence, when an external force is not being applied to the valve 115 (when the ink cartridge 30 is not mounted in the cartridge-attachment portion 110), the valve 115 closes the opening 102B. Further, when an external force is not being applied to the valve 115, a rear end of the valve 115 urged by the coil spring 116 protrudes rearward from the opening 102B.
Notches (not shown) are formed in a peripheral wall of the tube 102 at the distal end thereof, and specifically in a portion of the peripheral wall positioned rearward from a part of the valve 115 that closes the opening 102B, i.e., a front end of the valve 115.
<Shaft 145>
As shown in
<Cover 111>
As shown in
<Tanks 103>
As shown in
Note that the cartridge-attachment portion 110 need not be provided with the tanks 103. In this case, the front ends of the tubes 102 communicate with the recording head 21 via the ink tubes 20 without passing through the tanks 103.
<Optical Sensors 113>
As shown in
The optical sensors 113 is configured to output detection signals to a controller 1 (see
<Cover Sensor 118>
The cover sensor 118 is disposed on the cartridge holder 101 near the top edge of the opening 112. The cover sensor 118 includes a light-emitting part and a light-receiving part. When the cover 111 is in the closed position, a part of the cover 111 is disposed in an optical path of the light traveling from the light-emitting part toward the light-receiving part, blocking the light from reaching the light-receiving part in the cover sensor 118. Accordingly, the cover sensor 118 outputs a low level signal to the controller 1. When the cover 111 is not in the closed position, that is, when the cover 111 is in a position separated from the cover sensor 118, the cover 111 does not interrupt light traveling from the light-emitting part to the light-receiving part, and the cover sensor 118 outputs a high level signal to the controller 1.
<Protruding Parts 114>
As shown in
<Connectors 130>
As shown in
As shown in
As shown in
The case 131 supports the contacts 132 in the corresponding internal spaces formed by the slots 135. The contacts 132 are configured of members that are flexible and electrically conductive. Bottom ends 132A of the contacts 132 protrude farther downward than the bottom surface 131A of the case 131. The bottom ends 132A of the contacts 132 can be elastically deformed upward.
Top ends 132B of the contacts 132 (see
The case 131 also includes a rear wall 136, a front wall 137, a right wall 138, and a left wall 139. The rear wall 136, front wall 137, right wall 138, and left wall 139 protrude downward from the bottom surface 131A of the case 131. Bottom edges of the rear wall 136, front wall 137, right wall 138, and left wall 139 are thus positioned lower than bottom edges of the contacts 132. Note that at least one of the right wall 138 and left wall 139 may be omitted from the case 131.
The rear wall 136 is positioned farther rearward than the bottom ends 132A of the contacts 132. The front wall 137 is positioned farther forward than the bottom ends 132A of the contacts 132. The rear wall 136 and front wall 137 are aligned with each other in the front-rear direction. The right wall 138 is positioned farther rightward than the bottom ends 132A of the contacts 132, and the left wall 139 is positioned farther leftward than the bottom ends 132A of the contacts 132. The right wall 138 and left wall 139 are aligned with each other in the left-right direction. A front edge of the right wall 138 is connected to a right edge of the front wall 137, and a rear edge of the right wall 138 is connected to a right edge of the rear wall 136. A front edge of the left wall 139 is connected to a left edge of the front wall 137, and a rear edge of the left wall 139 is connected to a left edge of the rear wall 136.
<Ink Cartridge 30>
The ink cartridge 30 shown in
As shown in
<Housing 31>
The housing 31 is configured of a front wall 40, a rear wall 41, a top wall 39, a bottom wall 42, and a pair of side walls 37 and 38. The front wall 40 and rear wall 41 are separated from each other in the front-rear direction. The top wall 39 is arranged between the front wall 40 and rear wall 41 and extends from a top edge of the front wall 40 to a top edge of the rear wall 41. The bottom wall 42 is arranged between the front wall 40 and rear wall 41 and extends from a bottom edge of the front wall 40 to a bottom edge of the rear wall 41. The top wall 39 and bottom wall 42 are separated from each other in the direction of gravity. The side wall 37 and side wall 38 are separated from each other in the left-right direction. Peripheral edges of the side walls 37 and 38 are connected to the front wall 40, rear wall 41, top wall 39, and bottom wall 42.
In a state where the ink cartridge 30 is in its upright posture, a direction from the rear wall 41 to the front wall 40 is equivalent to the frontward direction 51, a direction from the front wall 40 to the rear wall 41 is equivalent to the rearward direction 52, a direction from the top wall 39 to the bottom wall 42 is equivalent to the downward direction 53, a direction from the bottom wall 42 to the top wall 39 is equivalent to the upward direction 54, a direction from the side wall 38 to the side wall 37 is equivalent to the rightward direction 55, and a direction from the side wall 37 to the side wall 38 is equivalent to the leftward direction 56. Also in this upright posture, a front surface 40A of the front wall 40 faces forward, a rear surface 41A of the rear wall 41 faces rearward, a bottom surface 42A of the bottom wall 42 faces downward, a top surface 39A of the top wall 39 faces upward, a right surface 37A of the side wall 37 faces rightward, and a left surface 38A of the side wall 38 faces leftward.
The front wall 40 is configured of a front wall 40B, and a front wall 40C positioned farther rearward than the front wall 40B. That is, a front surface of the front wall 40B and a front surface of the front wall 40C constitute the front surface 40A of the front wall 40.
The bottom wall 42 is configured of a bottom wall 42B, and a bottom wall 42C positioned higher than the bottom wall 42B. A bottom surface of the bottom wall 42B and a bottom surface of the bottom wall 42C constitute the bottom surface 42A of the bottom wall 42. The bottom wall 42C extends continuously rearward from a bottom edge of the front wall 40B. The bottom wall 42B and bottom wall 42C are joined through the front wall 40C. The bottom surface of the bottom wall 42B is a sloped surface that slopes relative to the front-rear direction so that its front edge is lower than its rear edge.
The rear wall 41 is configured of an upper portion 41U, and a lower portion 41L. The upper portion 41U is positioned above the lower portion 41L. The lower portion 41L is positioned farther forward than the upper portion 41U. Both the upper portion 41U and lower portion 41L are flat surfaces. The upper portion 41U and lower portion 41L extend in directions that intersect but are not orthogonal to each other. The lower portion 41L slopes relative to the vertical direction, and specifically slopes forward from top to bottom.
Unless otherwise specified, it will be assumed that the ink cartridge 30 is in its upright posture in the following description. In other words, the vertical, front-rear, and left-right directions for the ink cartridge 30 are defined based on the ink cartridge 30 being in the upright posture.
The ink cartridge 30 has an overall flattened shape in which a left-right dimension thereof (width) is smaller than a front-rear dimension thereof (depth), and the vertical and front-rear dimensions (height and depth) are larger than the left-right dimension (width).
The ink cartridge 30 is mounted in the cartridge holder 101 by inserting the ink cartridge 30 forward through the opening 112 formed in the cartridge holder 101 of the cartridge-attachment portion 110 and is removed from the cartridge holder 101 by pulling the ink cartridge 30 rearward through the opening 112.
As shown in
In the housing 31, at least the rear wall 41 has a light-transmission capability so that a level of ink stored in the storage chamber 32 is visible from the outside.
The housing 31 includes the cylinder 75 that protrudes forward from the front surface of the front wall 40C. The cylinder 75 is elongated in the front-rear direction. A passage 75A extending in the front-rear direction is formed inside the cylinder 75. That is, the direction in which the cylinder 75 and passage 75A extend (front-rear direction) is aligned with the insertion direction of the ink cartridge 30. An opening 75B is formed in a front end of the cylinder 75 and in communication with the passage 75A. The passage 75A has a rear end in communication with the storage chamber 32. That is, the passage 75A is open at its rear end on the front surface of the front wall 40C. In other words, the passage 75A is open frontward at the front wall 40. Hence, the passage 75A penetrates the front wall 40.
The passage 75A accommodates a valve 79, and a coil spring 80. The valve 79 opens and closes the opening 75B by moving in the front-rear direction. The coil spring 80 urges the valve 79 rearward. Therefore, when an external force is not applied to the valve 79, the valve 79 firmly contacts the sealing member 76 fitted in the opening 75B. However, when an external force is applied to the valve 79, the valve 79 separates from the sealing member 76, allowing ink stored in the storage chamber 32 to be supplied through the passage 75A and out through the opening 75B in the cylinder 75. Note that a structure for switching opening and closing of the opening 75B is not limited to the structure configured of the valve 79. For example, the opening 75B may be closed by a seal adhered to the cylinder 75.
An air communication port 140 is formed in the top wall 39 of the housing 31. A seal 141 seals the air communication port 140 prior to the ink cartridge 30 being inserted into the cartridge-attachment portion 110. The seal 141 can be peeled off the air communication port 140. By peeling the seal 141 off the air communication port 140 before inserting the ink cartridge 30 into the cartridge-attachment portion 110, the storage chamber 32 is able to communicate with the external air via the air communication port 140. Note that communication between the storage chamber 32 and external air may be achieved through means not involving peeling off the seal 141. For example, a valve may be provided in the air communication port 140, and the valve may be used to switch communication between the storage chamber 32 and the outside air on and off.
The front wall 40, rear wall 41, top wall 39, bottom wall 42, and side walls 37 and 38 may be configured of a plurality of walls in the same manner as the front wall 40 in the embodiment, or may be configured of single walls in the manner of the rear wall 41.
Further, the surfaces of the ink cartridge 30 including the front surface 40A of the front wall 40, rear surface 41A of the rear wall 41, top surface 39A of the top wall 39, bottom surface 42A of the bottom wall 42, right surface 37A of the side wall 37, and left surface 38A of the side wall 38 need not be formed as single flat surfaces.
The front surface 40A of the front wall 40 is a surface of the housing 31 that is visible when viewing the ink cartridge 30 in its upright posture from the front side. According to a concept of the present disclosure, a front surface includes: a surface of the housing 31 positioned farthest forward (the front surface 40A); and a surface positioned forward of a halfway point in the front-rear direction between the forwardmost surface and a rearmost surface of the housing 31 (the rear surface 41A).
The rear surface 41A of the rear wall 41 is a surface of the housing 31 that is visible when viewing the ink cartridge 30 in its upright posture from the rear side. The concept of a rear surface in the present disclosure includes: a surface of the housing 31 positioned farthest rearward (the rear surface 41A); and a surface positioned rearward of the halfway point in the front-rear direction between the rearmost surface and the forwardmost surface of the housing 31 (front surface 40A).
The top surface 39A of the top wall 39 is a surface of the housing 31 that is visible when viewing the ink cartridge 30 in its upright posture from above. The concept of the top surface in the present disclosure includes: a topmost surface of the housing 31 (the top surface 39A); and a surface above a vertical halfway point between this topmost surface and a bottommost surface of the housing 31 (the bottom surface 42A).
The bottom surface 42A of the bottom wall 42 is a surface of the housing 31 that is visible when viewing the ink cartridge 30 in its upright posture from below. The concept of the bottom surface in the present disclosure includes: the bottommost surface of the housing 31 (the bottom surface 42A); and a surface below the vertical halfway point between this bottommost surface and the topmost surface of the housing 31 (the top surface 39A).
The right surface 37A of the side wall 37 is a surface of the housing 31 that is visible when viewing the ink cartridge 30 in its upright posture from the right side.
The left surface 38A of the side wall 38 is a surface of the housing 31 that is visible when viewing the ink cartridge 30 in its upright posture from the left side.
<Sealing Member 76>
The sealing member 76 shown in
The sealing member 76 is prevented from coming out of the cylinder 75 by well-known means. For example, the sealing member 76 may be fixed in the cylinder 75 by interposing the sealing member 76 between the cylinder 75 and a cap (not shown) placed over the cylinder 75, or may be fixed in the cylinder 75 by adhesive.
<Protruding Part 43>
As shown in
The protruding part 43 also includes a horizontal surface 154 that extends continuously forward from the lock surface 151. The horizontal surface 154 expands in both the left-right and front-rear directions. The protruding part 43 also includes a sloped surface 155 that is forward of and continuous with the horizontal surface 154. The sloped surface 155 slopes relative to the front-rear direction, and specifically slopes downward toward the front.
The protruding part 43 also includes a positioning surface 89. The positioning surface 89 is formed frontward of the sloped surface 155. The positioning surface 89 faces upward.
<Operating Part 90>
As shown in
<Projection 67>
As shown in
Light emitted by the optical sensor 113 of the cartridge-attachment portion 110 (see
<Protruding Part 88>
As shown in
Although the protruding part 88 (as an example of a substrate retaining part) is formed integrally with the top wall 39 in the embodiment, the substrate retaining part may be a separate member instead. For example, the substrate retaining part may be an adapter that is attached to the top wall 39.
<Circuit Board 64>
As shown in
The circuit board 64 includes the substrate 63, a memory 66, a battery 68, and electrodes 65. The circuit board 64 is positioned rearward of the projection 67 and forward of the protruding part 43. The circuit board 64 is also positioned farther rearward than the sealing member 76 in the front-rear direction. More specifically, the circuit board 64 is positioned farther rearward than the through-hole 76A formed in the sealing member 76. The circuit board 64 is also positioned below the virtual plane X described above in the vertical direction. The storage chamber 32 is vertically interposed between the circuit board 64 and the bottom surface 42A of the bottom wall 42.
The substrate 63 of the circuit board 64 is a rigid substrate formed of a glass epoxy or the like. The circuit board 64 is configured by mounting the memory 66 and battery 68 on the substrate 63 and forming four electrodes 65 on the substrate 63 (see
Note that the number of electrodes 65 is determined based on the number of the contacts 132 in the cartridge-attachment portion 110 (see
The substrate 63 has a length in the front-rear direction that is greater than a width thereof in the left-right direction. Preferably, the front-rear dimension of the substrate 63 is at least two times greater than the left-right dimension, and more preferably at least three times greater than the left-right dimension. Note that the front-rear dimension of the substrate 63 may be less than two times the left-right direction or even less than or equal to the left-right dimension.
Specifically, the substrate 63 has a front end face 63A and a rear end face 63B opposite each other in the front-rear direction. In the present embodiment, the front end face 63A also constitutes an upper end face of the substrate 63, whereas the rear end face 63B also constitutes a lower end face of the substrate 63. As illustrated in
As illustrated in
The substrate 63 is bonded to the top surface 88A of the protruding part 88 (i.e., to the top surface 39A of the top wall 39) with a photopolymer. However, the circuit board 64 may be bonded to the top surface 88A with an adhesive other than a photopolymer. Still alternatively, the substrate 63 may be mounted on the top surface 88A by means other than adhesives, such as thermal caulking. Note that when thermal caulking is used to mount the circuit board 64 on the top surface 88A, each of the four corners of the circuit board 64 is preferably fixed to the top surface 88A; that is, each of the right-front corner, left-front corner, right-rear corner, and left-rear corner in a plan view. However, it should be obvious that the positions subjected to the thermal caulking need not be limited to these four corners.
Since the top surface 88A of the protruding part 88 slopes relative to the virtual plane PL1 such that the top surface 88A slopes upward toward the front in the front-rear direction, the first surface 61 and second surface 62 of the substrate 63 mounted on the top surface 88A also slope upward toward the front relative to the virtual plane PL1. That is, the substrate 63 is inclined relative to the virtual plane PL1 such that the first surface 61 faces diagonally upward and rearward. Thus, a front edge of the first surface 61 also constitutes an upper edge 61U of the first surface 61, while a rear edge of the first surface 61 serves as a lower edge 61L thereof. In other words, the upper edge 61U is positioned frontward relative to the lower edge 61L. Through this configuration, the protruding part 88 maintains the first surface 61 on the substrate 63 at a desired angle of inclination relative to the virtual plane PL1.
Specifically, referring to
A plurality of electrodes (not shown) is formed on the second surface 62 of the substrate 63. The memory 66 is positioned on some of these electrodes. The battery 68 is positioned on the electrodes that the memory 66 is not mounted. Hence, the memory 66 and battery 68 are mounted on the second surface 62 of the substrate 63.
Here, a depression 84 is formed in the top surface 88A of the protruding part 88 in an area corresponding to the region in which the memory 66 and battery 68 are mounted. In other words, the memory 66 and battery 68 mounted on the second surface 62 are positioned in the depression 84.
Here, referring to
The memory 66 stores information related to the ink cartridge 30 that can be read by the controller 1 of the printer 10. The information related to the ink cartridge 30 is data specifying a lot number, a manufactured date, an ink color, and the like. The memory 66 may be a semiconductor memory, such as a Static RAM (SRAM). Note that an integrated circuit (IC) providing function(s) other than a memory may also be mounted on the substrate 63, if necessary.
The electrodes on which the battery 68 is mounted are connected to the electrodes on which the memory 66 is mounted. Hence, the battery 68 is electrically connected to the memory 66, whereby the battery 68 can supply electricity to the memory 66.
As shown in
A shortest distance between the upper edge 61U of the first surface 61 and the electrodes 65 is shorter than a shortest distance between the lower edge 61L of the first surface 61 and the electrodes 65. In other words, the electrodes 65 are formed on the first surface 61 at a position closer to the upper edge 61U (front end face 63A) than to the lower edge 61L (rear end face 63B). The electrodes 65 are also formed in a position diagonally upward and forward relative to the memory 66 and battery 68.
The battery 68 is a button-shaped battery (button cell) in the present embodiment. The battery 68 is electrically connected to the memory 66 and is configured to supply power to the memory 66. Upon receipt of the power supply from the battery 68, the memory 66 (SRAM) can store various data.
Note that, an electronic component other than the battery 68 may be mounted on the substrate 63 for supplying power to the memory 66. For example, a capacitor in a charged state can be employed as another example of the electronic component for supplying power to the memory 66.
<Operations for Attaching the Ink Cartridge 30 to the Cartridge-Attachment Portion 110>
Next, operations for mounting the ink cartridge 30 in the cartridge holder 101 of the cartridge-attachment portion 110 will be described.
In a state where the ink cartridge 30 is not attached to the cartridge-attachment portion 110, no member is positioned between the light-emitting part and light-receiving part of the optical sensor 113, enabling light to travel from the light-emitting part to the light-receiving part. At this time, the optical sensor 113 outputs a high level detection signal to the controller 1 (see
In order to attach the ink cartridge 30 to the cartridge-attachment portion 110, the ink cartridge 30 is inserted forward into the cartridge holder 101 through the opening 112 of the cartridge-attachment portion 110 (see
As the ink cartridge 30 is inserted forward into the cartridge holder 101, as illustrated in
The tube 102 inserted into the passage 75A also contacts and pushes the valve 79 rearward. Through this action, the valve 79 is separated from the sealing member 76 against a forward urging force of the coil spring 80.
Further, when the distal end of the tube 102 contacts the valve 79, the valve 79 contacts the valve 115 from the rear side thereof and pushes the valve 115 forward. Consequently, the valve 115 moves forward against the urging force of the coil spring 116. This action allows the interior space 102A of the tube 102 to communicate with the exterior of the tube 102 through the opening 102B.
As a result, ink stored in the storage chamber 32 can flow into the tank 103 and recording head 21 via the interior space 102A of the tube 102. At this time (in the state shown in
Also, when the ink cartridge 30 is being inserted forward into the cartridge holder 101, as illustrated in
Forming the bottom wall 42 of the housing 31 as a sloped surface that slopes relative to the front-rear direction provides a space between the bottom wall 42 and an inner top surface of the bottom wall 59 of the cartridge holder 101 needed for this pivotal movement (clockwise pivot).
As the ink cartridge 30 is inserted farther forward from the state shown in
Further, in the state depicted in
As the user continues to push forward on the upper portion 41U of the rear wall 41, torque is applied to the ink cartridge 30 in the counterclockwise direction of
Next, states of components in the ink cartridge 30 and cartridge-attachment portion 110 while the ink cartridge 30 is in the attached state shown in
As shown in
By pivoting the ink cartridge 30 shown in
Further, by pivoting the ink cartridge 30 depicted in
As shown in
Further, as a result of the pivoting of the ink cartridge 30 counterclockwise from the state shown in
When the ink cartridge 30 is in the attached state shown in
Further, a portion of the first surface 61 on the substrate 63 to the front side of the rear wall 136 (i.e., a front portion of the first surface 61) is higher than the bottom edge of the rear wall 136, while a portion of the first surface 61 rearward of the rear wall 136 (i.e., a rear portion of the first surface 61) is lower than the rear wall 136. As described above, the acute angle α formed between the first surface 61 and the virtual plane PL1 is greater than the acute angle β formed between the virtual plane PL2 and the virtual plane PL1 (see
As shown in
To extract the ink cartridge 30 from the cartridge holder 101 of the cartridge-attachment portion 110, the user pushes the operating surface 92 downward. As shown in
<Detecting Attachment of the Ink Cartridge 30 to the Cartridge-Attachment Portion 110>
Next, operations for detecting when an ink cartridge 30 is inserted into the cartridge-attachment portion 110 will be described with reference to flowcharts shown in
The flowcharts of
As shown in
In a case where the cover 111 is not in the closed position (S10: NO), the controller 1 repeats the determination in S10 until the cover 111 is determined to be closed, i.e., until the signal outputted from the cover sensor 118 changes from high level to low level.
When the cover 111 is determined to be in the closed position (S10: YES), in S20 the controller 1 determines whether the memory 66 on the circuit board 64 of the ink cartridge 30 is accessible, i.e., whether the controller 1 can read from or write to the memory 66. When the contacts 132 are in contact with and electrically connected to the electrodes 65 on the circuit board 64, the controller 1 is able to access the memory 66 on the circuit board 64. When the contacts 132 are not in contact with the electrodes 65 on the circuit board 64, the controller 1 cannot access the memory 66.
If the controller 1 cannot access the memory 66 (S20: NO), in S30 the controller 1 determines that an ink cartridge 30 is not mounted in the cartridge-attachment portion 110. In this case, the controller 1 notifies the user that an ink cartridge 30 is not mounted by displaying a message on a display panel (not shown) provided on a housing of the printer 10 and/or emitting a beep or other sound from a speaker (not shown).
However, when the controller 1 can access the circuit board 64 (S20: YES), in S40 the controller 1 determines whether the signal outputted from the optical sensor 113 to the controller 1 is high level or low level. When the projection 67 is positioned between the light-emitting part and light-receiving part of the optical sensor 113, the optical sensor 113 outputs a low level signal to the controller 1. When the projection 67 is not positioned between the light-emitting part and light-receiving part of the optical sensor 113, the optical sensor 113 outputs a high level signal to the controller 1.
When the signal outputted from the optical sensor 113 to the controller 1 is high level (S40: HIGH), in S50 the controller 1 determines that an abnormal ink cartridge 30 is attached to the cartridge-attachment portion 110. In this case, the controller 1 notifies the user that an abnormal ink cartridge 30 is mounted by displaying a message on the display panel (not shown) provided on the housing of the printer 10 and/or playing a beep or other sound from the speaker (not shown).
On the other hand, if the signal outputted by the optical sensor 113 is low level (S40: LOW), in S60 the controller 1 determines that a normal ink cartridge 30 is attached to the cartridge-attachment portion 110.
In the flowchart of
However, the controller 1 may be configured to determine whether an ink cartridge 30 is mounted in the cartridge-attachment portion 110 based on the level of the signal outputted from the optical sensor 113 and to determine whether the ink cartridge 30 mounted in the cartridge-attachment portion 110 is normal based on whether the circuit board 64 is accessible. Steps in this variation will be described next with reference to the flowchart in
Referring to
When the controller 1 determines in S110 that the cover 111 is in the closed position (S110: YES), in S120 the controller 1 determines whether the signal outputted from the optical sensor 113 to the controller 1 is high level or low level.
If the signal outputted by the optical sensor 113 is high level (S120: HIGH), in S130 the controller 1 determines that an ink cartridge 30 is not mounted in the cartridge-attachment portion 110. In this case, as in S30 of
However, if the signal outputted by the optical sensor 113 is low level (S120: LOW), in S140 the controller 1 determines whether the circuit board 64 of the ink cartridge 30 is accessible.
If the controller 1 cannot access the circuit board 64 (S140: NO), in S150 the controller 1 determines that an abnormal ink cartridge 30 is mounted in the cartridge-attachment portion 110. In this case, as in S50 of
On the other hand, if the controller 1 can access the circuit board 64 (S140: YES), in S160 the controller 1 determines that a normal ink cartridge 30 is mounted in the cartridge-attachment portion 110.
According to the described embodiment, the substrate 63 has the first surface 61 that slopes relative to the virtual plane PL1 to form the acute angle α therebetween that is greater than the acute angle β formed between the virtual plane PL2 and virtual plane PL1. Therefore, even when the front wall 137 and rear wall 136 are provided around the contacts 132 in the cartridge-attachment portion 110, the electrodes 65 can be brought into contact with the contacts 132 without the substrate 63 contacting the front wall 137 or rear wall 136.
Further, providing the substrate 63 with the first surface 61 that is sloped relative to the virtual plane PL1 can prevent the substrate 63 from contacting the front wall 137 and rear wall 136, even when the front-rear dimension of the substrate 63 is longer than the gap between the front wall 137 and rear wall 136 in the front-rear direction, as in the embodiment described above.
Since the front-rear dimension of the substrate 63 can be longer than the gap between the front wall 137 and rear wall 136 in the front-rear direction, i.e., since the dimensions of the substrate 63 can be increased, sufficient space can be allocated on the substrate 63 for forming the electrodes 65 and mounting the memory 66.
Further, since the substrate 63 includes the first surface 61 that slopes relative to the virtual plane PL1, foreign matter deposited on the first surface 61 is more likely to fall off the substrate 63.
Further, the electrodes 65 in the embodiment are formed at positions on the first surface 61 closer to the upper edge 61U (front end face 63A) than the lower edge 61L (rear end face 63B). Hence, the electrodes 65 are better positioned to contact the contacts 132.
The memory 66 is also positioned on the second surface 62 at a position lower than the electrodes 65 in the depicted embodiment. Hence, the memory 66 is unlikely to collide with the contacts 132. Further, even if a portion on the first surface 61 lower than the electrodes 65 may collide with the contacts 132 during the insertion of the ink cartridge 30 into the cartridge-attachment section 110, the memory 66 is less likely to be affected by impact of the collision.
When the electrodes 65 are in contact with the contacts 132, an upper portion of the substrate 63 (i.e., a portion closer to the front end face 63A than to the rear end face 63B) is positioned between the front wall 137 and rear wall 136 in the front-rear direction. Consequently, there is not enough room for mounting the battery 68 in the upper portion of the substrate 63. Hence, the battery 68 in the embodiment is mounted on a lower portion of the substrate 63 (i.e., a portion closer to the rear end face 63B than to the front end face 63A) where sufficient space can be allocated.
In the depicted embodiment, the battery 68 is positioned lower than the memory 66. This configuration can reduce the likelihood of the battery 68 colliding with the contacts 132 and causing deterioration in the functionality of the memory 66. Further, by arranging the electrodes 65, memory 66, and battery 68 as described in the embodiment, wiring for electrically connecting the electrodes 65 to the memory 66 and wiring for electrically connecting the battery 68 to the memory 66 can be run without interference more easily.
In the embodiment, the first surface 61 faces rearward, while the passage 75A in the cylinder 75 is open frontward. This arrangement can reduce a possibility that ink leaking out of the passage 75A could become deposited on the first surface 61.
In the embodiment, the left-right dimension of the substrate 63 is shorter than the gap between the right wall 138 and left wall 139 in the left-right direction. Accordingly, the electrodes 65 can be brought into contact with the contacts 132 positioned between the right wall 138 and left wall 139.
Since the electrodes 65 are formed to be aligned with each other at intervals in the left-right direction in the embodiment, a range over which the electrodes 65 are formed in the front-rear direction can be reduced. Further, elongating the electrodes 65 in the front-rear direction can reduce a potential that the electrodes 65 may lose contact with the contacts 132, even if the front-rear position of the ink cartridge 30 in the cartridge-attachment portion 110 varies when the ink cartridge 30 is mounted in the cartridge-attachment portion 110.
Since the memory 66 is mounted on the second surface 62 in the embodiment, collisions between the ink cartridge 30 and components in the cartridge-attachment portion 110 that may occur during the insertion of the ink cartridge 30 into the cartridge-attachment portion 110 can be prevented from directly impacting the memory 66.
In the depicted embodiment, the ink cartridge 30 is pivoted during the process of inserting the ink cartridge 30 into the cartridge holder 101. Accordingly, without adding a complex structure to the ink cartridge 30 and/or cartridge holder 101, the electrodes 65 can be moved to a position for contacting the contacts 132 while not coming into contact with the rear wall 136 during the process of inserting the ink cartridge 30 into the cartridge holder 101.
In the depicted embodiment, the cartridge-attachment portion 110 (precisely, the tube 102) contacts the rubber sealing member 76 prior to contacting the circuit board 64 during the process of attaching the ink cartridge 30 to the cartridge-attachment portion 110. This contact reduces a speed at which the ink cartridge 30 is inserted and can soften the force of impact with the circuit board 64.
<First Modification>
As illustrated in
For example, as depicted in
Still alternatively, at least one of the memory 66 and battery 68 may be mounted farther forward than rear edges of the electrodes 65 on the second surface 62.
<Second Modification>
In the embodiment described above, the front edge of the first surface 61 also constitutes the upper edge 61U of the first surface 61. However, the rear edge of the first surface 61 may be configured as the upper edge.
The circuit board 264 includes a substrate 263 that is supported from below by the top surface 287A of the protruding part 287.
As in the embodiment, the substrate 263 is bonded to the top surface 287A of the protruding part 287 with a photopolymer. Of course, as described in the embodiment, the substrate 263 may be mounted on the top surface 287A through means other than bonding with a photopolymer.
Since the top surface 287A of the protruding part 287 slopes upward toward the rear relative to the virtual plane PL1, both of a first surface 261 and a second surface 262 of the substrate 263 bonded to the top surface 287A slope upward toward the rear relative to the virtual plane PL1. Hence, the rear edge of the first surface 261 is an upper edge 261U of the first surface 261, while the front edge of the first surface 261 is a lower edge 261L of the first surface 261. In other words, the upper edge 261U is positioned rearward relative to the lower edge 261L. Through this configuration, the protruding part 287 maintains the first surface 261 of the substrate 263 at the desired angle of inclination, i.e., the acute angle α, relative to the virtual plane PL1.
The acute angle α formed by the first surface 261 and the virtual plane PL1 is greater than an acute angle γ formed by a virtual plane PL3 and the virtual plane PL1. The virtual plane PL3 is a plane that extends in the left-right direction and passes through the portions 132C of the contacts 132 and the bottom edge of the front wall 137.
The memory 66 and battery 68 are mounted on the second surface 262 of the substrate 263. A depression 285 is formed in the top surface 287A of the protruding part 287 at an area corresponding to the region in which the memory 66 and battery 68 are mounted. In other words, the memory 66 and battery 68 mounted on the second surface 262 are accommodated in the depression 285.
The electrodes 65 are formed on the first surface 261 at positions closer to the upper edge 261U thereof than the lower edge 261L. The memory 66 and battery 68 are mounted on the second surface 262 at positions closer to a lower end face 263B of the substrate 263 than a top end face 263A of the substrate 263. Further, the memory 66 and battery 68 are mounted diagonally downward and forward from the electrodes 65, and the battery 68 is mounted diagonally downward and forward from the memory 66. Note that the memory 66 and battery 68 may be mounted in various other positions, as described in the first modification.
The motion of the circuit board 264 when the ink cartridge 230 is inserted into the cartridge holder 101 is identical to that described in the embodiment. That is, when the user inserts the ink cartridge 230 forward into the interior space 104 of the cartridge holder 101 while pivoting the ink cartridge 230, the circuit board 264 moves forward while passing beneath the rear wall 136 of the connector 130 until arriving at a position directly beneath the contacts 132. Subsequently, as the ink cartridge 230 is pivoted in the opposite direction from the above pivotal movement, the electrodes 65 of the circuit board 264 contact the contacts 132 from below.
When the ink cartridge 230 is in its attached state, the rear wall 136 of the connector 130 is positioned farther rearward than the electrodes 65 of the circuit board 264 and the contacts 132 in the cartridge-attachment portion 110, and the front wall 137 of the connector 130 is positioned farther forward than the electrodes 65 and contacts 132. In addition, the bottom edges of the front wall 137 and rear wall 136 are lower than the electrodes 65.
A portion of the first surface 261 on the substrate 263 to the rear of the front wall 137 (a rear portion) is positioned higher than the bottom edge of the front wall 137. A portion of the first surface 261 that is forward of the front wall 137 is positioned lower than the front wall 137. As described above, the acute angle α formed by the first surface 261 and the virtual plane PL1 is greater than the acute angle γ formed by the virtual plane PL3 and the virtual plane PL1. Accordingly, when the ink cartridge 230 is in its attached state (when the electrodes 65 are in contact with the contacts 132), the portion of the first surface 261 on the substrate 263 that vertically overlaps the front wall 137 is positioned lower than the bottom edge of the front wall 137 and is not in contact with the front wall 137. In other words, when the ink cartridge 230 is in its attached state, the first surface 261 of the substrate 263 vertically opposes the front wall 137 with a gap formed therebetween.
Also when the ink cartridge 230 is in its attached state, the right wall 138 and left wall 139 of the connector 130 enclose the electrodes 65 and contacts 132 from right and left sides, as in the embodiment described above.
Note that, in this structure of the second modification, the acute angle α may not necessarily be greater than the acute angle β formed by the virtual plane PL2 and virtual plane PL1, provided that the acute angle α formed by the first surface 261 and the virtual plane PL1 is greater than the acute angle γ formed by the virtual plane PL3 and the virtual plane PL1.
According to the second modification, the rear edge of the first surface 261 serves as the upper edge 261U. This configuration can reduce the potential for collision between the portion of the first surface 61 positioned forward of the rear edge and the contacts 132.
<Third Modification>
The substrate 63 is supported on the protruding part 88 in the embodiment, and the substrate 263 is supported on the protruding part 287 in the second modification. However, the means for supporting the substrate 63, 263 is not limited to a single sloped surface on a support portion (such as the protruding part 88, 287), provided that the substrate is supported such that a first surface thereof (upper surface) slopes relative to the virtual plane PL1 with the acute angle α formed therebetween.
For example,
The electrodes 65 are formed on the first surface 361 of the substrate 363 at positions closer to an upper edge 361U of the first surface 361 than to the lower edge 361L of the first surface 361, as in the embodiment. The memory 66 and battery 68 are mounted on a second surface 362 (lower surface) of the substrate 363. The memory 66 and battery 68 mounted on the second surface 362 are accommodated in the gap 384 in a state where the substrate 363 is supported by the protruding parts 381 and 382. Hence, the memory 66 and battery 68 are lower than the electrodes 65, as in the embodiment.
<Fourth Modification>
The electrodes 65 are formed on the first surface 461 at a position closer to an upper edge 461U of the first surface 461 than to a lower edge 461L of the first surface 461. The memory 66 and battery 68 are mounted on a second surface 462 of the substrate 463 that is fixed above the top surface 439A.
<Fifth Modification>
In the embodiment, the top surface 88A of the protruding part 88 slopes relative to the virtual plane PL1, whereby the first surface 61 and second surface 62 of the substrate 63 supported by the top surface 88A also slope relative to the virtual plane PL1. However, as long as the first surface 61 slopes relative to the virtual plane PL1, it is not absolutely necessary for the second surface 62 to slope relative to the virtual plane PL1.
The substrate 563 is supported directly by a top wall 539 of the housing 531 with the second surface 562 bonded to a top surface 539A of the top wall 539. That is, the top wall 539 does not include the support portion for supporting the substrate 563 in order to maintain the inclination of the first surface 561 relative to the virtual plane PL1.
The electrodes 65 are formed on the sloped first surface 561 at positions closer to the upper edge 561U thereof than to the lower edge 561L thereof. The memory 66 and electrodes 65 are mounted on the horizontal second surface 562. A depression 584 is formed on the top surface 539A of the top wall 539 in an area corresponding to the region in which the memory 66 and battery 68 are mounted. That is, the memory 66 and battery 68 mounted on the second surface 562 of the substrate 563 are accommodated in the depression 584.
<Sixth Modification>
The substrate 663 has a first surface 661 and a second surface 662. The first surface 661 is sloped relative to the virtual plane PL1 to form the acute angle α therebetween, as in the embodiment. A protruding part 688 is formed on a top surface 639A of the top wall 639 to support the substrate 663. The protruding part 688 has a sloped top surface 688A for supporting the second surface 662 of the substrate 663.
Specifically, the substrate 663 is supported on the top surface 639A of the top wall 639 such that: a front end portion of the second surface 662 is fixed to the sloped top surface 688A of the protruding part 688; and a rear edge of the second surface 662 is in contact with the top surface 639A of the top wall 639. With this structure, the inclination of the first surface 661 relative to the virtual plane PL1 can be maintained.
In the circuit board 664, the electrodes 65 are formed on the first surface 661 at positions closer to an upper edge 661U thereof than to a lower edge 661L thereof, as in the depicted embodiment. The memory 66 and battery 68 are mounted on the second surface 662. The memory 66 is positioned closer to the protruding part 688 than the battery 68 is to the protruding part 688 in the front-rear direction. Hence, due to the inclination of the second surface 662 relative to the virtual plane PL1 (i.e., relative to the top surface 639A), the memory 66 mounted on the second surface 662 is positioned above the top surface 639A of the top wall 639. Further, a depression 684 is formed in the top wall 639 so that the battery 68 mounted on the second surface 662 can be received in the depression 684.
Note that the battery 68 may not be mounted on the second surface 862. In this case, the depression 684 is not necessary to be formed in the top surface 639A of the top wall 639.
Still alternatively, in a case that the protruding part 688 is shaped such that the top surface 688A supports an entirety of the second surface 662 as in the embodiment, the depression 684 may be formed in the top surface 688A to accommodate both of the memory 66 and battery 68, just as the depression 84 of the embodiment.
<Seventh Modification>
The substrate 63 of the depicted embodiment is a rigid substrate. However, the substrate 63 may be a flexible substrate formed of a plastic film or the like.
A protruding part 788 is formed on a top surface 739A of a top wall 739 of the housing 731. The protruding part 788 has atop surface 788A that is curved upward to form a generally convex shape in a vertical cross-sectional view. The flexible substrate 763 is fixed to the curved top surface 788A to extend therealong, so that the substrate 763 has a curved first surface 761 and a second surface 762. That is, the second surface 762 of the substrate 763 is bonded to the top surface 788A of the protruding part 788.
The electrodes 65 are formed on the first surface 761 at positions closer to an upper edge 761U thereof, in order to allow the electrodes 65 to contact the contacts 132 of the connector 130 while the ink cartridge 730 is attached to the cartridge holder 101 of the cartridge-attachment section 110. The memory 66 and battery 68 are mounted on the curved second surface 762 of the substrate 763. A depression 784 is formed on the curved top surface 788A in an area corresponding to the region in which the memory 66 and battery 68 are mounted. That is, the memory 66 and battery 68 mounted on the second surface 762 of the substrate 763 are accommodated in the depression 784.
<Other Variations>
In the embodiment and the modifications described above, communication between the passage 75A and the outside of the cylinder 75 is switched on and off with the valve 79. However, the opening 75B may be sealed with a seal rather than the valve 79. Specifically, the seal is affixed to the front surface of the cylinder 75 before the ink cartridge 30 is inserted into the cartridge-attachment portion 110, thereby sealing off the through-hole 76A from the outside. Hence, ink in the storage chamber 32 does not flow through the passage 75A and out of the ink cartridge 30 through the through-hole 76A. When the ink cartridge 30 is inserted into the cartridge-attachment portion 110, the tube 102 punctures the seal, breaking the hermetic seal.
In the embodiment described above, the ink cartridge 30 is pivoted inside the cartridge holder 101 while being inserted therein. However, the ink cartridge 30 need not be pivoted or tilted inside the cartridge holder 101 during the insertion process. For example, the ink cartridge 30 may be inserted into the cartridge holder 101 in a direction diagonally frontward and upward, without being pivoted.
Further, in the embodiment described above, the ink cartridge 30 is fixed in position in the front-rear direction by the lock surface 151 contacting the shaft 145 from the front side thereof. However, the positioning means for the ink cartridge 30 is not limited to this contact between the lock surface 151 and shaft 145. For example, the ink cartridge 30 may be fixed in the front-rear direction through sliding resistance between the positioning surface 89 of the ink cartridge 30 and the bottom surface on the protruding part 114 of the cartridge-attachment portion 110, and sliding resistance between the bottom surface 42A of the ink cartridge 30 and the inner top surface on the bottom wall 59 of the cartridge-attachment portion 110. Alternatively, the ink cartridge 30 may be fixed in the front-rear direction through sliding resistance between the sealing member 76 of the ink cartridge 30 and the tube 102 of the cartridge-attachment portion 110, for example.
The structure of the ink cartridge 30 is not limited to those shown in
In the structure of
With the structure shown in
Other variations are further conceivable.
For example, in the circuit board 64 of the embodiment, the electrodes 65 are formed on the first surface 61 (upper surface) of the substrate 63. However, the electrodes 65 may be formed on the front end face 63A rather than the first surface 61.
As an example.
The circuit board 964 includes a substrate 963 received in a support portion 988 that is recessed downward and frontward relative to a top surface 939A of the top wall 939. The electrodes 65 are formed on an upper end surface 963A of the substrate 963. In the upright posture, the upper end surface 963A defines a thickness of the substrate 963 in the front-rear direction between a first surface 961 and a second surface 962 of the substrate 963. As in the embodiment, the substrate 963 of this variation is arranged to be inclined relative to the virtual plane PL1 such that the first surface 961 is sloped relative to the virtual plane PL1 to form the angle α therebetween in the upright posture. The second surface 962 is also sloped relative to the virtual plane PL1 in this variation. The memory 66 and battery 68 are mounted on the second surface 962 of the substrate 963. The battery 68 is positioned lower than the memory 66. The memory 66 and battery 68 mounted on the second surface 962 of the substrate 963 are accommodated in the support portion 988 formed in the top wall 939.
In the attached state of the liquid cartridge 930, the electrodes 65 formed on the upper end surface 963A are positioned between the rear wall 136 and front wall 137 in the front-rear direction. In the attached state, the electrodes 65 are in contact with the contacts 132 of the connector 130 and the first surface 961 is separated from the rear wall 136, as in the embodiment.
With this structure of
Still alternatively, the substrate may be arranged vertically, rather than inclined, relative to the virtual plane PL1. As an example,
Specifically, the ink cartridge 1030 includes a housing 1031 defining a storage chamber 1032 therein, and a circuit board 1064 supported by a top wall 1039 of the housing 1031. The circuit board 1064 includes the substrate 1063 that extends vertically in the upright posture. In other words, each of a second surface 1062 and a first surface 1061 of the substrate 1063 forms an angle of 90 degrees relative to the virtual plane PL1. Hence, an upper end face 1063A of the substrate 1063 faces vertically upward, i.e., extends horizontally. In the upright posture, the substrate 1063 defines a length in the vertical direction that is greater than the thickness thereof in the front-rear direction. The electrodes 65 are formed on the upper end face 1063A of the substrate 1063. The memory 66 and battery 68 are mounted on the second surface 1062 of the substrate 1063. The substrate 1063 (circuit board 1064) is received in a support portion 1088 formed in the top wall 1039 of the housing 1031. The support portion 1088 is recessed vertically downward relative to a top surface 1039A of the top wall 1039.
In this variation, the electrodes 65 formed on the upper end face 1063A of the substrate 1063 faces vertically upward in the upright posture. The substrate 1063 supporting the electrodes 65 is positioned rearward of the front wall 137 and frontward of the rear wall 136 in the front-rear direction in the attached state of the ink cartridge 1030. That is, the electrodes 65 of the liquid cartridge 1030 in the attached state are positioned between the rear wall 136 and front wall 137 in the front-rear direction.
With this structure of
Further, the housing of the liquid cartridge of the present disclosure may not necessarily be configured as a single member, but may be configured of a plurality of members assembled to each other. Likewise, the top wall of the housing may not necessarily be configured of a single member but may be configured of a plurality of members assembled to each other. That is, the substrate of the present disclosure may be supported by an upper wall configured of more than one member.
Still further, in the depicted embodiment and various modifications thereto, the substrate is bonded to the top surface of the top wall of the housing, i.e., directly supported by the top wall of the housing. Alternatively, the substrate of the present disclosure may be supported indirectly by the top wall of the housing, through a separate member or even through a plurality of members.
In the depicted embodiment, ink is described as an example of liquid, but the liquid cartridge may store a liquid other than ink, such as a pretreatment liquid that is ejected onto sheets or the like prior to ink during a printing operation, or water for cleaning the recording head 21.
It should be apparent to those who skilled in the art that the embodiment, various modifications thereto and variations described above may be combined with one another as appropriate.
The ink cartridges 30, 230, 330, 430, 530, 630, and 830 are an example of a liquid cartridge. The cartridge-attachment portion 110 is an example of an attachment portion. The printer 10 is an example of a printing device. The housings 31, 231, 331, 431, 531, 631 and 831 are an example of a housing. The storage chamber 32 is an example of a liquid chamber. The passages 75A and 875A are an example of a liquid passage. The substrates 63, 263, 363, 463, 563, 663863 are an example of a substrate. The electrodes 65 are an example of a contact of the cartridge. The memory 66 is an example of a memory. The battery 68 is an example of an electronic component. The first surfaces 61, 261, 361, 461, 561, 661 and 861 are an example of a sloped surface. The virtual plane PL1 is an example of a first imaginary plane. The virtual plane PL2 is an example of a second imaginary plane. The virtual plane PL3 is an example of a third imaginary plane. The angle α is an example of a first acute angle. The angle β is an example of a second acute angle. The angle γ is an example of a third acute angle. The lock surface 151 is an example of an engagement surface. The cartridge holder 101 is an example of a holder. The contacts 132 are an example of a contact of the device. The front wall 137 is an example of a first wall. The rear wall 136 is an example of a second wall. The right wall 138 is an example of a third wall, and the left wall 139 is an example of a fourth wall.
Number | Date | Country | Kind |
---|---|---|---|
JP2018-064182 | Mar 2018 | JP | national |
This application is a continuation of U.S. patent application Ser. No. 16/118,666, filed Aug. 31, 2018, now U.S. Pat. No. 10,730,309, which claims priority from Japanese Patent Application No. 2018-064182 filed Mar. 29, 2018. The entire content of the aforementioned applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6547363 | Shinada et al. | Apr 2003 | B1 |
6648445 | Ishizawa et al. | Nov 2003 | B2 |
8678573 | Nakamura et al. | Mar 2014 | B2 |
10730309 | Miyao | Aug 2020 | B2 |
20020085075 | Shinada et al. | Jul 2002 | A1 |
20060250446 | Wanibe et al. | Nov 2006 | A1 |
20160288513 | Wang et al. | Oct 2016 | A1 |
20170021634 | Tsukahara et al. | Jan 2017 | A1 |
20180272727 | Nagashima | Sep 2018 | A1 |
Number | Date | Country |
---|---|---|
204605193 | Sep 2015 | CN |
20 2009 003 839 | Jun 2009 | DE |
2 653 313 | Oct 2013 | EP |
3 300 901 | Apr 2018 | EP |
2013-49164 | Mar 2013 | JP |
2017-56686 | Mar 2017 | JP |
Entry |
---|
Extended European Search Report issued in corresponding European Patent Application No. 20180499.4, dated Sep. 11, 2020. |
Extended European Search Report issued in related European Patent Application No. 18192092.7, dated Jan. 25, 2019. |
Number | Date | Country | |
---|---|---|---|
20200398577 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16118666 | Aug 2018 | US |
Child | 16926904 | US |