Fields of Disclosure
The disclosure relates generally to the field of fluid separation. More specifically, the disclosure relates to the cryogenic separation of contaminants, such as acid gas, from a hydrocarbon.
Description of Related Art
This section is intended to introduce various aspects of the art, which may be associated with the present disclosure. This discussion is intended to provide a framework to facilitate a better understanding of particular aspects of the present disclosure. Accordingly, it should be understood that this section should be read in this light, and not necessarily as admissions of prior art.
The production of natural gas hydrocarbons, such as methane and ethane, from a reservoir oftentimes carries with it the incidental production of non-hydrocarbon gases. Such gases include contaminants, such as at least one of carbon dioxide (“CO2”), hydrogen sulfide (“H2S”), carbonyl sulfide, carbon disulfide and various mercaptans. When a feed stream being produced from a reservoir includes these contaminants mixed with hydrocarbons, the stream is oftentimes referred to as “sour gas.”
Many natural gas reservoirs have relatively low percentages of hydrocarbons and relatively high percentages of contaminants. Contaminants may act as a diluent and lower the heat content of hydrocarbons. Some contaminants, like sulfur-bearing compounds, are noxious and may even be lethal. Additionally, in the presence of water some contaminants can become quite corrosive.
It is desirable to remove contaminants from a stream containing hydrocarbons to produce sweet and concentrated hydrocarbons. Specifications for pipeline quality natural gas typically call for a maximum of 2-4% CO2 and ¼ grain H2S per 100 scf (4 ppmv) or 5 mg/Nm3 H2S. Specifications for lower temperature processes such as natural gas liquefaction plants or nitrogen rejection units typically require less than 50 ppm CO2.
The separation of contaminants from hydrocarbons is difficult and consequently significant work has been applied to the development of hydrocarbon/contaminant separation methods. These methods can be placed into three general classes: absorption by solvents (physical, chemical and hybrids), adsorption by solids, and distillation.
Separation by distillation of some mixtures can be relatively simple and, as such, is widely used in the natural gas industry. However, distillation of mixtures of natural gas hydrocarbons, primarily methane, and one of the most common contaminants in natural gas, carbon dioxide, can present significant difficulties. Conventional distillation principles and conventional distillation equipment are predicated on the presence of only vapor and liquid phases throughout the distillation tower. The separation of CO2 from methane by distillation involves temperature and pressure conditions that result in solidification of CO2 if a pipeline or better quality hydrocarbon product is desired. The required temperatures are cold temperatures typically referred to as cryogenic temperatures.
Certain cryogenic distillations can overcome the above mentioned difficulties. These cryogenic distillations provide the appropriate mechanism to handle the formation and subsequent melting of solids during the separation of solid-forming contaminants from hydrocarbons. The formation of solid contaminants in equilibrium with vapor-liquid mixtures of hydrocarbons and contaminants at particular conditions of temperature and pressure takes place in a controlled freeze zone section.
Some cryogenic distillation methods include a process to collect a liquid stream in a tray, heat the liquid stream to form a vapor, and re-introduce the vapor into the distillation process.
Conventional design practice limits the chimney tray 4 to accommodate either one or two outlet nozzles 7 through which the collected liquid passes out of the column and into the downcomer piping. If two outlet nozzles 7 are used, the outlet nozzles almost always are oriented at 180 degrees from each other, as shown in
A need exists for improved technology that permits more than two outlet nozzles to be employed in a chimney tray assembly.
A need also exists for improved technology that reduces or eliminates the constriction or reduced diameter for fluid and/or vapor flow in a fractionation column due to a sump.
The present disclosure provides an improved chimney tray assembly for use in a fractionation column.
In one aspect, an apparatus is disclosed for maintaining constant fluid pressure and equalized fluid flow among a plurality of downcomer lines through which liquid from a substantially cylindrical tower is directed. A substantially annular fluid distribution belt is disposed at the circumference of the tower. The fluid distribution belt collects liquid from the tower. At least two outlets direct liquid from the fluid distribution belt out of the tower and into a corresponding number of downcomer lines disposed external to the tower.
In another aspect, a method is disclosed for maintaining constant fluid pressure and equalized fluid flow among a plurality of downcomer lines through which liquid from a substantially cylindrical tower is directed. A substantially annular fluid distribution belt is disposed at the circumference of the tower. Liquid from the tower is collected in the fluid distribution belt. The liquid is directed from the fluid distribution belt out of the tower and into a corresponding number of downcomer lines disposed external to the tower.
In another aspect, a method of producing hydrocarbons is disclosed. Constant fluid pressure and equalized fluid flow is maintained among a plurality of downcomer lines through which liquid from a substantially cylindrical tower is directed. A substantially annular fluid distribution belt is disposed at the circumference of the tower. Liquid from the tower is collected in the fluid distribution belt. Liquid is directed from the fluid distribution belt out of the tower and into a corresponding number of downcomer lines disposed external to the tower. Hydrocarbons from the tower are produced.
The foregoing has broadly outlined the features of the present disclosure so that the detailed description that follows may be better understood. Additional features will also be described herein.
These and other features, aspects and advantages of the disclosure will become apparent from the following description, appending claims and the accompanying drawings, which are briefly described below.
It should be noted that the figures are merely examples and no limitations on the scope of the present disclosure are intended thereby. Further, the figures are generally not drawn to scale, but are drafted for purposes of convenience and clarity in illustrating various aspects of the disclosure.
For the purpose of promoting an understanding of the principles of the disclosure, reference will now be made to the features illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the disclosure is thereby intended. Any alterations and further modifications, and any further applications of the principles of the disclosure as described herein are contemplated as would normally occur to one skilled in the art to which the disclosure relates. It will be apparent to those skilled in the relevant art that some features that are not relevant to the present disclosure may not be shown in the drawings for the sake of clarity.
As referenced in this application, the terms “stream,” “gas stream,” “vapor stream,” and “liquid stream” refer to different stages of a feed stream as the feed stream is processed in a distillation tower that separates methane, the primary hydrocarbon in natural gas, from contaminants. Although the phrases “gas stream,” “vapor stream,” and “liquid stream,” refer to situations where a gas, vapor, and liquid is mainly present in the stream, respectively, there may be other phases also present within the stream. For example, a gas may also be present in a “liquid stream.” In some instances, the terms “gas stream” and “vapor stream” may be used interchangeably.
The disclosure relates to a system and method for maintaining constant fluid pressure and equalized fluid flow among a plurality of downcomer lines through which liquid from a substantially cylindrical tower is directed.
The system and method may separate a feed stream having methane and contaminants. The system may comprise a distillation tower 104, 204 (
The distillation tower 104, 204 may be separated into three functional sections: a lower section 106, a middle controlled freeze zone section 108 and an upper section 110. The distillation tower 104, 204 may incorporate three functional sections when the upper section 110 is needed and/or desired.
The distillation tower 104, 204 may incorporate only two functional sections when the upper section 110 is not needed and/or desired. When the distillation tower does not include an upper section 110, a portion of vapor leaving the middle controlled freeze zone section 108 may be condensed in a condenser 122 and returned as a liquid stream via a spray assembly 129. Moreover, lines 18 and 20 may be eliminated, elements 124 and 126 may be one and the same, and elements 150 and 128 may be one and the same. The stream in line 14, now taking the vapors leaving the middle controlled freeze section 108, directs these vapors to the condenser 122.
The lower section 106 may also be referred to as a stripper section. The middle controlled freeze zone section 108 may also be referred to as a controlled freeze zone section. The upper section 110 may also be referred to as a rectifier section.
The sections of the distillation tower 104 may be housed within a single vessel (
The sections of the distillation tower 204 may be housed within a plurality of vessels to form a split-tower configuration (
The split-tower configuration may be beneficial in situations where the height of the distillation tower, motion considerations, and/or transportation issues, such as for remote locations, need to be considered. This split-tower configuration allows for the independent operation of one or more sections. For example, when the upper section is housed within a single vessel and the lower and middle controlled freeze zone sections are housed within a single vessel, independent generation of reflux liquids using a substantially contaminant-free, largely hydrocarbon stream from a packed gas pipeline or an adjacent hydrocarbon line, may occur in the upper section. And the reflux may be used to cool the upper section, establish an appropriate temperature profile in the upper section, and/or build up liquid inventory at the bottom of the upper section to serve as an initial source of spray liquids for the middle controlled freeze zone section. Moreover, the middle controlled freeze zone and lower sections may be independently prepared by chilling the feed stream, feeding it to the optimal location be that in the lower section or in the middle controlled freeze zone section, generating liquids for the lower and the middle controlled freeze zone sections, and disposing the vapors off the middle controlled freeze zone section while they are off specification with too high a contaminant content. Also, liquid from the upper section may be intermittently or continuously sprayed, building up liquid level in the bottom of the middle controlled freeze zone section and bringing the contaminant content in the middle controlled freeze zone section down and near steady state level so that the two vessels may be connected to send the vapor stream from the middle controlled freeze zone section to the upper section, continuously spraying liquid from the bottom of the upper section into the middle controlled freeze zone section and stabilizing operations into steady state conditions. The split tower configuration may utilize a sump of the upper section as a liquid receiver for the pump 128, therefore obviating the need for a liquid receiver 126 in
The system may also include a heat exchanger 100 (
The system may include an expander device 102 (
The system may include a feed separator 103 (
The system may include a dehydration unit 261 (
The system may include a filtering unit (not shown). The feed stream 10 may enter the filtering unit before entering the distillation tower 104, 204. The filtering unit may remove undesirable contaminants from the feed stream before the feed stream enters the distillation tower 104, 204. Depending on what contaminants are to be removed, the filtering unit may be before or after the dehydration unit 261 and/or before or after the heat exchanger 100.
The systems may include a line 12 (
If the system includes the feed separator 103 (
The lower section 106 is constructed and arranged to separate the feed stream 10 into an enriched contaminant bottom liquid stream (i.e., liquid stream) and a freezing zone vapor stream (i.e., vapor stream). The lower section 106 separates the feed stream at a temperature and pressure at which no solids form. The liquid stream may comprise a greater quantity of contaminants than of methane. The vapor stream may comprise a greater quantity of methane than of contaminants. In any case, the vapor stream is lighter than the liquid stream. As a result, the vapor stream rises from the lower section 106 and the liquid stream falls to the bottom of the lower section 106.
The lower section 106 may include and/or connect to equipment that separates the feed stream. The equipment may comprise any suitable equipment for separating methane from contaminants, such as one or more packed sections 181, or one or more distillation trays with perforations, downcomers, and weirs (
The equipment may include components that apply heat to the stream to form the vapor stream and the liquid stream. For example, the equipment may comprise a first reboiler 112 that applies heat to the stream. The first reboiler 112 may be located outside of the distillation tower 104, 204. The equipment may also comprise a second reboiler 172 that applies heat to the stream. The second reboiler 172 may be located outside of the distillation tower 104, 204. Line 117 may lead from the distillation tower to the second reboiler 172. Line 17 may lead from the second reboiler 172 to the distillation tower. Additional reboilers, set up similarly to the second reboiler described above, may also be used.
The first reboiler 112 may apply heat to the liquid stream that exits the lower section 106 through a liquid outlet 160 of the lower section 106. The liquid stream may travel from the liquid outlet 160 through line 28 to reach the first reboiler 112 (
The first reboiler 112 may also apply heat to the stream within the distillation tower 104, 204. Specifically, the heat applied by the first reboiler 112 warms up the lower section 106. This heat travels up the lower section 106 and supplies heat to warm solids entering a melt tray assembly 139 (
The second reboiler 172 applies heat to the stream within the lower section 106. This heat is applied closer to the middle controlled freeze zone section 108 than the heat applied by the first reboiler 112. As a result, the heat applied by the second reboiler 172 reaches the middle controlled freeze zone section 108 faster than the heat applied by the first reboiler 112. The second reboiler 172 also helps with energy integration.
The equipment may include one or more chimney assemblies 135 (
Each chimney assembly 135 includes a chimney tray 131 that collects the liquid stream within the lower section 106. The liquid stream that collects on the chimney tray 131 may be fed to the second reboiler 172. After the liquid stream is heated in the second reboiler 172, the stream may return to the middle controlled freeze zone section 108 to supply heat to the middle controlled freeze zone section 108 and/or the melt tray assembly 139. Unvaporized stream exiting the second reboiler 172 may be fed back to the distillation tower 104, 204 below the chimney tray 131. Vapor stream exiting the second reboiler 172 may be routed under or above the chimney tray 131 when the vapor stream enters the distillation tower 104, 204.
The chimney tray 131 may include one or more chimneys 137. The chimney 137 serves as a channel that the vapor stream in the lower section 106 traverses. The vapor stream travels through an opening in the chimney tray 131 at the bottom of the chimney 137 to the top of the chimney 137. The opening is closer to the bottom of the lower section 106 than it is to the bottom of the middle controlled freeze zone section 108. The top is closer to the bottom of the middle controlled freeze zone section 108 than it is to the bottom of the lower section 106.
Each chimney 137 has attached to it a chimney cap 133. The chimney cap 133 covers a chimney top opening 138 of the chimney 137. The chimney cap 133 prevents the liquid stream from entering the chimney 137. The vapor stream exits the chimney assembly 135 via the chimney top opening 138.
The locations of the outlet nozzles 314 around the fluid distribution belt 310 are chosen to distribute liquid flow evenly between the outlet nozzles. Furthermore, the locations of the outlet nozzles 314 around the fluid distribution belt 310 preferably do not coincide with the locations of the holes or openings 313 that permit fluid to flow from the sump 308 into the fluid distribution belt 310. Additionally, the centerline 318 of the fluid distribution belt 310 may coincide with the center axis 320 of the outlet nozzles 314.
Optimal operability of downstream equipment requires equal distribution of the liquid flowing into the multiple, independent downcomer lines. The design of the systems disclosed herein must assure this equal distribution as it transfers liquid from the chimney tray 131 to the downcomer lines 316. According to aspects disclosed herein, means are provided to achieve and maintain equal distribution of liquid among the downcomer lines 316.
Returning to the description of
After exiting through the liquid outlet 160, the feed stream may travel via line 28 to the first reboiler 112. The feed stream may be heated by the first reboiler 112 and vapor may then re-enter the lower section 106 through line 30. Unvaporized liquid may continue out of the distillation process via line 24.
The system may include an expander device 114 (
The system may include a heat exchanger 116 (
The vapor stream in the lower section 106 rises from the lower section 106 to the middle controlled freeze zone section 108. The middle controlled freeze zone section 108 is maintained to receive a freezing zone liquid stream to form the solid and the vapor stream (i.e., hydrocarbon-enriched vapor stream) in the middle controlled freeze zone section 108. The middle controlled freeze zone section 108 is constructed and arranged to separate the feed stream 10 introduced into the middle controlled freeze zone section into a solid and a vapor stream. The solid and the vapor stream are formed in the middle controlled freeze zone section 108 when the freezing zone liquid stream is injected into the middle controlled freeze zone section 108 at a temperature and pressure at which the solid and vapor stream form. The solid may be comprised more of contaminants than of methane. The vapor stream may comprise more methane than contaminants.
The middle controlled freeze zone section 108 includes a lower section 40 and an upper section 39 (
The middle controlled freeze zone section 108 may comprise a melt tray assembly 139 that is maintained in the middle controlled freeze zone section 108 (
The melt tray assembly 139 is constructed and arranged to melt a solid formed in the middle controlled freeze zone section 108. When the warm vapor stream rises from the lower section 106 to the middle controlled freeze zone section 108, the vapor stream immediately encounters the melt tray assembly 139 and supplies heat to melt the solid. The melt tray assembly 139 may comprise at least one of a melt tray 118, a bubble cap 132, a liquid 130 and heat mechanism(s) 134.
The melt tray 118 may collect a liquid and/or slurry mix. The melt tray 118 divides at least a portion of the middle controlled freeze zone section 108 from the lower section 106. The melt tray 118 is at the bottom 45 of the middle controlled freeze zone section 108.
One or more bubble caps 132 may act as a channel for the vapor stream rising from the lower section 106 to the middle controlled freeze zone section 108. The bubble cap 132 may provide a path for the vapor stream that forces the vapor stream up the riser 140 and then down and around the riser 140 to the melt tray 118. The riser 140 is covered by a cap 141. The cap 141 prevents the liquid 130 from travelling into the riser 140. The cap 141 helps prevent solids from travelling into the riser 140. The vapor stream's traversal through the bubble cap 132 allows the vapor stream to transfer heat to the liquid 130 within the melt tray assembly 139.
One or more heat mechanisms 134 may further heat up the liquid 130 to facilitate melting of the solids into a liquid and/or slurry mix. The heat mechanism(s) 134 may be located anywhere within the melt tray assembly 139. For example, as shown in
The liquid 130 in the melt tray assembly is heated by the vapor stream. The liquid 130 may also be heated by the one or more heat mechanisms 134. The liquid 130 helps melt the solids formed in the middle controlled freeze zone section 108 into a liquid and/or slurry mix. Specifically, the heat transferred by the vapor stream heats up the liquid, thereby enabling the heat to melt the solids. The liquid 130 is at a level sufficient to melt the solids.
The middle controlled freeze zone section 108 may also comprise a spray assembly 129. The spray assembly 129 cools the vapor stream that rises from the lower section 40. The spray assembly 129 sprays liquid, which is cooler than the vapor stream, on the vapor stream to cool the vapor stream. The spray assembly 129 is within the upper section 39. The spray assembly 129 is not within the lower section 40. The spray assembly 129 is above the melt tray assembly 139. In other words, the melt tray assembly 139 is below the spray assembly 129.
The temperature in the middle controlled freeze zone section 108 cools down as the vapor stream travels from the bottom of the middle controlled freeze zone section 108 to the top of the middle controlled freeze zone section 108. The methane in the vapor stream rises from the middle controlled freeze zone section 108 to the upper section 110. Some contaminants may remain in the methane and also rise. The contaminants in the vapor stream tend to condense or solidify with the colder temperatures and fall to the bottom of the middle controlled freeze zone section 108.
The solids form the liquid and/or slurry mix when in the liquid 130. The liquid and/or slurry mix flows from the middle controlled freeze zone section 108 to the lower distillation section 106. The liquid and/or slurry mix flows from the bottom of the middle controlled freeze zone section 108 to the top of the lower section 106 via a line 22 (
The vapor stream that rises in the middle controlled freeze zone section 108 and does not form solids or otherwise fall to the bottom of the middle controlled freeze zone section 108, rises to the upper section 110. The upper section 110 operates at a temperature and pressure and contaminant concentration at which no solid forms. The upper section 110 is constructed and arranged to cool the vapor stream to separate the methane from the contaminants Reflux in the upper section 110 cools the vapor stream. The reflux is introduced into the upper section 110 via line 18. Line 18 may extend to the upper section 110. Line 18 may extend from an outer surface of the distillation tower 104, 204.
After contacting the reflux in the upper section 110, the feed stream forms a vapor stream and a liquid stream. The vapor stream mainly comprises methane. The liquid stream comprises relatively more contaminants. The vapor stream rises in the upper section 110 and the liquid falls to a bottom of the upper section 110.
To facilitate separation of the methane from the contaminants when the stream contacts the reflux, the upper section 110 may include one or more mass transfer devices 176. Each mass transfer device 176 helps separate the methane from the contaminants. Each mass transfer device 176 may comprise any suitable separation device, such as a tray with perforations, or a section of random or structured packing to facilitate contact of the vapor and liquid phases.
After rising, the vapor stream may exit the distillation tower 104, 204 through line 14. The line 14 may emanate from an upper part of the upper section 110. The line 14 may extend from an outer surface of the upper section 110.
From line 14, the vapor stream may enter a condenser 122. The condenser 122 cools the vapor stream to form a cooled stream. The condenser 122 at least partially condenses the stream.
After exiting the condenser 122, the cooled stream may enter a separator 124. The separator 124 separates the vapor stream into liquid and vapor streams. The separator may be any suitable separator that can separate a stream into liquid and vapor streams, such as a reflux drum.
Once separated, the vapor stream may exit the separator 124 as sales product. The sales product may travel through line 16 for subsequent sale to a pipeline and/or condensation to be liquefied natural gas.
Once separated, the liquid stream may return to the upper section 110 through line 18 as the reflux. The reflux may travel to the upper section 110 via any suitable mechanism, such as a reflux pump 150 (
The liquid stream (e.g., the freezing zone liquid stream) that falls to the bottom of the upper section 110 collects at the bottom of the upper section 110. The liquid may collect on tray 183 (
The line 20 and/or outlet 260 connect to a line 41. The line 41 leads to the spray assembly 129 in the middle controlled freeze zone section 108. The line 41 emanates from the holding vessel 126. The line 41 may extend to an outer surface of the middle controlled freeze zone section 108.
The line 20 and/or outlet 260 may directly or indirectly (
The steps depicted in
Disclosed aspects may be used in hydrocarbon management activities. As used herein, “hydrocarbon management” or “managing hydrocarbons” includes hydrocarbon extraction, hydrocarbon production, hydrocarbon exploration, identifying potential hydrocarbon resources, identifying well locations, determining well injection and/or extraction rates, identifying reservoir connectivity, acquiring, disposing of and/ or abandoning hydrocarbon resources, reviewing prior hydrocarbon management decisions, and any other hydrocarbon-related acts or activities. The term “hydrocarbon management” is also used for the injection or storage of hydrocarbons or CO2, for example the sequestration of CO2, such as reservoir evaluation, development planning, and reservoir management. The disclosed methodologies and techniques may be used in extracting hydrocarbons from a subsurface region and processing the hydrocarbons. Hydrocarbons and contaminants may be extracted from a reservoir and processed. The hydrocarbons and contaminants may be processed, for example, in the distillation tower previously described. After the hydrocarbons and contaminants are processed, the hydrocarbons may be extracted from the processor, such as the distillation tower, and produced. The contaminants may be discharged into the Earth, etc. For example, as shown in
As utilized herein , the terms “approximately,” “about,” “substantially,” and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of certain features described and claimed without restricting the scope of these features to the precise numeral ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and are considered to be within the scope of the disclosure. Furthermore, the articles “the,” “a” and “an” are not necessarily limited to mean only one, but rather are inclusive and open ended so as to include, optionally, multiple such elements.
It should be understood that the numerous changes, modifications, and alternatives to the preceding disclosure can be made without departing from the scope of the disclosure. The preceding description, therefore, is not meant to limit the scope of the disclosure.
Rather, the scope of the disclosure is to be determined only by the appended claims and their equivalents. It is also contemplated that structures and features in the present examples can be altered, rearranged, substituted, deleted, duplicated, combined, or added to each other.
This application claims the benefit of U.S. Provisional Patent Application 62/080,452, filed Nov. 17, 2014, entitled LIQUID COLLECTION SYSTEM, the entirety of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1782862 | Wagner | Nov 1930 | A |
2384714 | Villiger | Feb 1944 | A |
2651512 | Voleau | Sep 1953 | A |
3066732 | McEver | Dec 1962 | A |
3338566 | Kittel | Aug 1967 | A |
3412016 | Graven | Nov 1968 | A |
3438203 | Lamb et al. | Apr 1969 | A |
3768726 | Hale et al. | Oct 1973 | A |
3807501 | Kurtis et al. | Apr 1974 | A |
4016930 | Arnold | Apr 1977 | A |
4129626 | Mellbom | Dec 1978 | A |
4187088 | Hodgson | Feb 1980 | A |
4230533 | Giroux | Oct 1980 | A |
4365978 | Scott | Dec 1982 | A |
4661127 | Huntley | Apr 1987 | A |
4669530 | Warner | Jun 1987 | A |
4691524 | Holscher | Sep 1987 | A |
4699211 | Geary et al. | Oct 1987 | A |
4719008 | Sparks et al. | Jan 1988 | A |
4737531 | Rogers | Apr 1988 | A |
5092038 | Geppelt et al. | Mar 1992 | A |
5129759 | Bishop | Jul 1992 | A |
5302294 | Schubert et al. | Apr 1994 | A |
5394943 | Harrington | Mar 1995 | A |
5407605 | Resetarits et al. | Apr 1995 | A |
5451349 | Kingsley | Sep 1995 | A |
5752538 | Billingham et al. | May 1998 | A |
5803161 | Wahle et al. | Sep 1998 | A |
5857519 | Bowlin et al. | Jan 1999 | A |
5984282 | Armstrong et al. | Nov 1999 | A |
6053484 | Fan et al. | Apr 2000 | A |
6086055 | Armstrong et al. | Jul 2000 | A |
6092377 | Tso | Jul 2000 | A |
6149136 | Armstrong et al. | Nov 2000 | A |
6190543 | Christiansen | Feb 2001 | B1 |
6197095 | Ditria et al. | Mar 2001 | B1 |
6245955 | Smith | Jun 2001 | B1 |
6260619 | Svedeman et al. | Jul 2001 | B1 |
6367547 | Towers et al. | Apr 2002 | B1 |
6397630 | Fraysse et al. | Jun 2002 | B1 |
6564865 | Brady et al. | May 2003 | B1 |
6755158 | Knecht et al. | Jun 2004 | B2 |
6820696 | Bergman et al. | Nov 2004 | B2 |
6827138 | Master et al. | Dec 2004 | B1 |
6984292 | Kresnyak et al. | Jan 2006 | B2 |
7051540 | TeGrotenhuis et al. | May 2006 | B2 |
7140441 | Hauge et al. | Nov 2006 | B2 |
7156579 | Castle et al. | Jan 2007 | B2 |
7322387 | Landry et al. | Jan 2008 | B2 |
7363982 | Hopper | Apr 2008 | B2 |
7490671 | Gramme et al. | Feb 2009 | B2 |
7516794 | Gramme et al. | Apr 2009 | B2 |
7540902 | Esparza et al. | Jun 2009 | B2 |
7554223 | Kay | Jun 2009 | B1 |
7611635 | Chieng et al. | Nov 2009 | B2 |
7730942 | Gramme et al. | Jun 2010 | B2 |
7823628 | Harrison | Nov 2010 | B2 |
7854849 | Wang et al. | Dec 2010 | B2 |
7918283 | Balkanyi et al. | Apr 2011 | B2 |
7985333 | Duyvesteyn | Jul 2011 | B2 |
8025341 | Bjornson et al. | Sep 2011 | B2 |
8136799 | Griepsma | Mar 2012 | B2 |
8220551 | Fenton | Jul 2012 | B2 |
8225852 | Wu et al. | Jul 2012 | B2 |
8273151 | Miotto et al. | Sep 2012 | B2 |
8282711 | Grenstad et al. | Oct 2012 | B2 |
8454843 | Brown et al. | Jun 2013 | B2 |
8470097 | Chun et al. | Jun 2013 | B2 |
8500105 | Nieuwoudt | Aug 2013 | B2 |
8613308 | Daly et al. | Dec 2013 | B2 |
8657897 | Kayat et al. | Feb 2014 | B2 |
8657940 | Aarebrot et al. | Feb 2014 | B2 |
8778159 | Liverud et al. | Jul 2014 | B2 |
20040020238 | Kalbassi et al. | Feb 2004 | A1 |
20040109538 | McCarthy, Jr. | Jun 2004 | A1 |
20040195707 | Ender et al. | Oct 2004 | A1 |
20050006086 | Gramme | Jan 2005 | A1 |
20080017594 | Sarshar et al. | Jan 2008 | A1 |
20080272059 | Chieng et al. | Nov 2008 | A1 |
20090013697 | Landry et al. | Jan 2009 | A1 |
20090049864 | Kovak | Feb 2009 | A1 |
20090139938 | Larnholm et al. | Jun 2009 | A1 |
20090151914 | Mostofi-Ashtiani | Jun 2009 | A1 |
20090242490 | Hopper | Oct 2009 | A1 |
20090301699 | Karrs et al. | Dec 2009 | A1 |
20090309408 | Bishop | Dec 2009 | A1 |
20090314483 | Kalbacher | Dec 2009 | A1 |
20100012325 | Friedemann | Jan 2010 | A1 |
20100032164 | Bakke | Feb 2010 | A1 |
20100180769 | Grenstad et al. | Jul 2010 | A1 |
20100243208 | Kar et al. | Sep 2010 | A1 |
20100252227 | Sten-Halvorsen et al. | Oct 2010 | A1 |
20100276821 | Lee et al. | Nov 2010 | A1 |
20100326922 | Varanasi et al. | Dec 2010 | A1 |
20110067742 | Bell et al. | Mar 2011 | A1 |
20110072975 | Aarebrot et al. | Mar 2011 | A1 |
20110100589 | Van Der Rest | May 2011 | A1 |
20110167865 | Morimoto et al. | Jul 2011 | A1 |
20110209446 | Kayat et al. | Sep 2011 | A1 |
20120091711 | Badger | Apr 2012 | A1 |
20120145653 | Van Der Merwe et al. | Jun 2012 | A1 |
20120160103 | Suppiah et al. | Jun 2012 | A1 |
20130001136 | Adeyinka et al. | Jan 2013 | A1 |
20130092633 | Abrand et al. | Apr 2013 | A1 |
20130206364 | Fehrenbach et al. | Aug 2013 | A1 |
20130206405 | Kift et al. | Aug 2013 | A1 |
20130220891 | Newman et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
1169002 | Jun 1984 | CA |
0525287 | Feb 1993 | EP |
2 826 532 | Jan 2015 | EP |
1010403 | Nov 1965 | GB |
2451251 | May 2012 | RU |
WO2000036270 | Jun 2000 | WO |
WO2003091133 | Nov 2003 | WO |
WO2004007908 | Jan 2004 | WO |
WO2006010765 | Feb 2006 | WO |
WO2010110676 | Sep 2010 | WO |
WO2010117265 | Oct 2010 | WO |
WO 2010151392 | Dec 2010 | WO |
WO2013043354 | Mar 2013 | WO |
WO2013103448 | Jul 2013 | WO |
WO 2014015418 | Jan 2014 | WO |
WO2014018148 | Jan 2014 | WO |
WO2014058480 | Apr 2014 | WO |
WO2014070352 | May 2014 | WO |
Entry |
---|
Chuang, K. T. et al. (2000) “Tray Columns: Design,” Academic Press, pp. 1135-1140. http://razifar.com/cariboost_files/Tray_20Columns_20Design.pdf. |
Eriksen, H. (2010) “Development of Calculation Model for Heat Exchangers in Subsea Systems,” Norwegian Univ. of Sci. and Tech., 124 pgs. |
Hannisdal, A. et al. (2012) “Compact Separation Technologies and their Applicability for Subsea Development in Deep Water,” OTC Paper 23223, Apr. 30-May 3, 2012, 12 pgs. http://asme-ipti.org/files/1841/. |
Sinker, A. et al. (1997) “Applying the Compact Separation Methodology to Heavy Oil Separation,” Krebs Petroleum Tech. Ltd., Sep. 29-30, 1997, Aberdeen, UK, 17 pgs. |
Sparks, B.D. et al. (1992), “The effect of asphaltene content on solvent selection for bitumen extraction by the SESA process,” Fuel 71, pp. 1349-1353. |
Number | Date | Country | |
---|---|---|---|
20160138864 A1 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
62080452 | Nov 2014 | US |