The present invention relates to a liquid tank, and to regulator apparatus including such a tank for regulating the liquid phase of a cooling circuit for cooling an internal combustion engine.
It relates more particularly to a liquid tank, in particular for a motor vehicle, said tank comprising:
Numerous liquid tanks are present in a vehicle. In particular, in the cooling circuit for cooling the engine, a tank is generally provided that provides the functions of acting as a degassing chamber, as means for compensating for any losses by micro-leakage from the cooling circuit, and as means for filling and for topping up the circuit with liquid coolant. Such a tank may be compartmented so that one of its compartments is used for the above-mentioned functions, while the other compartment is used for an auxiliary circuit. Generally, the fluids circulating in the two compartments are at different temperatures. It is therefore necessary for the two compartments not to communicate with each other while the vehicle is running.
Currently, such a two-compartment tank is equipped with two filler openings, each of which is suitable for enabling a respective compartment to be filled. It is therefore also necessary to have two stoppers. In addition, the filling times are unavoidably long because it is necessary to unscrew the two stoppers and to screw them back on.
An object of the present invention is to propose a liquid tank of the above-mentioned type having a design that makes it possible to simplify the architecture and to reduce the filling time for filling said tank without adversely affecting operation of said tank.
To this end, the invention provides a liquid tank, in particular for a motor vehicle, said tank comprising:
said liquid tank being characterized in that the filler opening of the tank is a preferably single opening, common to both of the compartments, and in that said closure member is in the closed position in which said communication zone is closed when the stopper of the filler opening is in the closed position.
The fact that the filler opening of the tank is an opening that is common to the compartments so as to allow both of the compartments to be filled via the same filler opening saves time.
The fact that the tank includes at least one closure member for closing the communication zone between compartments, which member is suitable for going from the open position to the closed position under the action of said stopper while the stopper is going from the open position to the closed position, and, conversely, from the closed position to the open position while the stopper is going from the closed position to the open position, guarantees that the overall assembly operates properly and that there is no communication between compartments at said zone when the stopper is closed.
Preferably, in a first preferred embodiment of the invention, the closure member and the stopper are made in the form of two distinct parts. In this embodiment, the closure member is equipped with return means for urging it to return to the open position, and the stopper acts as an active pusher by applying thrust to said closure member, in opposition to the return means, while said stopper is going from the open position to the closed position.
In another embodiment of the invention, the closure member and the stopper form a one-piece unit
Preferably, the filler opening is extended into the tank by a dip tube provided with two “communication” openings that are mutually offset axially, the tube opening out into one of the compartments via one of said communication openings and the tube opening out into the other compartment via the other of said communication openings.
In co-operation with said openings, the tube forms the communication zone providing communication between compartments.
This communication zone is formed by the zone inside the dip tube that separates said openings and that forms a link zone between said openings. Each tank is provided with a maximum filling level and said communication zone is preferably disposed above the maximum level of each compartment.
Preferably, the closure member is in the form of a dip element provided with a sealing gasket positioned inside the dip tube, this sealing gasket being disposed at the zone of the dip tube that is disposed between said openings of said tube when the stopper of the filler opening is in the closed position.
This sealing gasket of the dip element co-operates with the end-wall of the dip tube that is formed by the free end of the dip tube, i.e. the end of the tube that is opposite from the end that extends the filler opening, to form the closable communication zone between said compartments.
Preferably, the communication openings of the dip tube are provided in the vicinity of the free end of the dip tube.
Preferably, the stopper of the filler opening is thus in the form of a screw cap that is screwed onto the threaded neck of the filler opening of the tank when said stopper is in the closed position.
Since the stopper is a screw stopper and the filler opening is provided with a threaded neck, the stopper is held securely on the neck of the filler opening.
Preferably, the stopper of the filler opening is provided with a valve having a valve member and in which the valve member is mounted to move between an open position and a closed position, said valve member being suitable for going from the closed position to the open position beyond a predetermined “calibration” pressure inside the tank, at the filler opening of said tank.
Preferably, each compartment is provided with an air escape opening.
Preferably, the air escape opening of one of the compartments is provided with a valve having a valve member and in which the valve member is mounted to move between a closed position and an open position, said valve member being suitable for going from the closed position to the open position beyond a predetermined “calibration” pressure inside the tank compartment equipped with said valve. By means of this valve, the internal pressure in each compartment may be different from one compartment to the other.
Preferably, the calibration pressure of the valve member of the valve equipping the air escape opening of one of the compartments is greater than the calibration pressure of the valve member of the valve equipping the closure stopper.
Preferably, the valve of the air escape opening of one of the compartments is mounted to be constrained to move with the closure member of the communication zone.
Preferably, the air escape openings of the compartments open out into the dip tube.
Preferably, the tank is made up of two half-shells assembled together via a gasket plane.
The tank is preferably a molded piece of synthetic material.
The invention also provides regulator apparatus for regulating the liquid phase of a cooling circuit of an internal combustion engine, said regulator apparatus comprising a tank having two compartments, one of which is connected to the cooling circuit of said engine, and the other of which is connected to an auxiliary circuit, said regulator apparatus being characterized in that the tank is of the above-mentioned type.
The invention can be well understood on reading the following description of embodiments given with reference to the accompanying drawings, in which:
As mentioned above, the liquid tank 1 of the invention is a multi-compartment tank. In particular, this tank comprises two compartments 2; 3, each of which is equipped with a fluid inlet 21; 31 and with a fluid outlet 22; 32. The inlet 21 and the outlet 22 of the compartment shown at 2 in the figures are connectable to a fluid flow circuit 13, while the inlet 31 and the outlet 32 of the compartment shown at 3 in the figures are connectable to a fluid flow circuit 14. The fluid inlets 21; 31 are positioned in the top portion of the tank and the fluid outlets 22; 32 are positioned in the bottom portion of said tank.
In the example, shown said tank is installed in the cooling circuit 13 for cooling an internal combustion engine 10. Naturally, this liquid tank is suitable for containing any other type of liquid rather than a liquid coolant, and the invention applies to any tank having at least two compartments. Thus, the compartment shown at 2 in the Figures is fed via its inlet 21 with cooling fluid coming from the radiator 11 of the engine 10 via a circuit shown at 13, this fluid being removed via the outlet 22 of the compartment 2 that is provided in the bottom portion of the compartment 2 so as to return to a circulation pump provided in the cooling circuit of the engine and so as to serve to provide head for the cooling circuit. The compartment shown at 3 is fed at its inlet 31 via a circuit, shown at 14 in
The fluid feeding the compartment 3 via the inlet 31 is removed from the compartment 3 via an outlet 32 provided in the bottom portion of the compartment, by pumping means disposed in the circuit connecting said outlet to the auxiliary element 15. Naturally, the integration of the tank as it is described above is merely one embodiment.
The tank, as described above, also has a closable communication zone 4 providing communication between said compartments 2; 3, which zone is suitable for allowing at least the liquid contents of one of the compartments to pass through into the other compartment, a filler opening 5 for filling said tank, and a stopper 6 for closing said filler opening 5.
In a manner characteristic of the invention, the filler opening 5 is common to both of the compartments so that it is possible, from said filler opening 5, to fill both compartments of the tank. In this example, the filler opening 5 is provided with a threaded neck and extends into the tank 1 via a dip tube 8, provided with two openings 81, 82 that are offset axially, the tube 8 opening out into compartment 2 via the opening 81, and opening out into compartment 3 via the opening 82.
In the example shown in
The stopper 6 of the filler opening 5 is thus in the form of a screw cap that is screwed onto the threaded neck of the filler opening 5 of the tank when said stopper is in the closed position. The cap is formed by an end wall 61 surrounded by a tapped cylindrical peripheral wall 62.
The stopper 6 of the filler opening 5 is provided with a valve 63 having a valve member and in which the valve member is mounted to move between an open position and a closed position, said valve member being suitable for going from the closed position to the open position beyond a predetermined “calibration” pressure inside the tank 1, at the filler opening 5 of said tank 1.
The tank 1 also has a closure member 7 mounted to move between an open position in which said closable communication zone 4 between the compartments is open and a closed position in which said zone 4 is closed. This closure member 7 is in the closed position in which said communication zone 4 is closed when the stopper 6 of the filler opening 5 is in the closed position.
This closure member 7 is in the form of a dip element 71 provided with a sealing gasket 72 positioned inside the dip tube 8, this sealing gasket 72 being disposed at the zone of the dip tube 8 that is disposed between said openings 81, 82 of said tube when the stopper 6 of the filler opening is in the closed position.
In the example shown in
In the example shown in
In these two embodiments, the stopper and the closure member are made in the form of two distinct parts. In particular, the closure member 7 is equipped with return means 73 for urging it to return to the open position, and the stopper 6 acts as an active pusher by applying thrust to said closure member 7, in opposition to the return means 73, while said stopper 6 is going from the open position to the closed position.
In the example shown in
Thus, the compartments are filled via said axial opening and then the transfer from one compartment to the other takes place via the radial openings. When the stopper 6 is closed, it acts, via the inside of its cap, which is, for example, provided with an internal bulge at the end-wall of the cap, to bear on the top end of the rod so as to cause the rod to slide inside the dip tube to a position in which the sealing gasket is positioned at the zone of the dip tube 8 that is disposed between the openings 81, 82 of said tube and obstructs said tube 8 when the stopper 6 of the filler opening is in the closed state. Thus, any communication between the compartments via this zone is prevented.
In the example shown in
Independently of the embodiment chosen for the closure member 7, each compartment 2; 3 is provided with an air escape opening 84; 85. The air escape openings 84, 85 of the compartments 2, 3 open out into the dip tube 8.
In the example shown in
In the example shown in
By means of the tank as described above, the architecture is simplified, and the filling time is reduced without adversely affecting overall operation.
Number | Date | Country | Kind |
---|---|---|---|
13 50324 | Jan 2013 | FR | national |
14 50003 | Jan 2014 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2014/050001 | 1/2/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/111640 | 7/24/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5123436 | Koechlein | Jun 1992 | A |
5680833 | Smith | Oct 1997 | A |
6056139 | Gericke | May 2000 | A |
6718916 | Hewkin | Apr 2004 | B2 |
7216610 | Dunkle | May 2007 | B2 |
8074819 | Dexter | Dec 2011 | B2 |
20060118067 | Hewkin | Jun 2006 | A1 |
20100206882 | Wessels | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
2854178 | Jun 1980 | DE |
19948226 | Apr 2001 | DE |
1260685 | Nov 2002 | EP |
2221462 | Aug 2010 | EP |
9910636 | Mar 1999 | WO |
Entry |
---|
International Search Report, dated Mar. 21, 2014, from corresponding PCT application, PCT/FR2014/05001. |
Number | Date | Country | |
---|---|---|---|
20150345368 A1 | Dec 2015 | US |