1. Field of the Invention
The present invention relates to a liquid container equipped with a piezoelectric apparatus therein which detects the consumption state of liquid inside a liquid container which houses the liquid. More particularly, the present invention relates to the liquid container equipped with a piezoelectric apparatus that detects liquid consumption status in a liquid container which provides liquid to a recording head of an ink-jet recording apparatus.
2. Description of the Related Art
An ink cartridge mounted on an ink-jet type recording apparatus is taken as an example of a liquid container and is described below. In general, an ink-jet recording apparatus comprises: a carriage equipped with an ink-jet type recording head comprised of a pressure generating means which compresses a pressure generating chamber and a nozzle opening which discharges the compressed ink from a nozzle opening in the form of ink droplets; and an ink tank which houses ink supplied to the recording head through a passage, and is structured such that the printing operation can be performed continuously. In general, the ink tank is structured as a cartridge that can be detached from the recording apparatus, so that a user can easily replace it at the time when the ink is used up.
Conventionally, as a method of controlling the ink consumption of the ink cartridge, a method is known of controlling the ink consumption by means of a calculation in which the counted number of ink droplets discharged by the recording head and the amount of ink sucked in a maintenance process of the printing head are integrated by software, and another method of controlling the ink consumption in which the time at which the ink is actually consumed is detected by directly mounting to the ink cartridge two electrodes for use in detecting the liquid surface, and so forth.
However, in the calculation-based method of controlling the ink consumption by integrating the discharged number of ink droplets and the amount of ink or the like by the software, the pressure inside the ink cartridge and the viscosity of the ink change depending on usage environment such as ambient temperature and humidity, elapsed time after an ink cartridge has been opened for use, and usage frequency at a user side. Thus, a problem is caused where a considerable error occurs between the calculated ink consumption and the actual ink consumption. Moreover, another problem is caused in which the actual amount of ink remaining is not known because once the same cartridge is removed and then mounted again, the integrated counted value is reset.
On the other hand, in the method of controlling by electrodes the time at which the ink is consumed, the remaining amount of ink can be controlled with high reliability since the actual ink consumption can be detected at one point. However, in order that the liquid surface of the ink can be detected, the ink need be conductive, so suitable types of ink for use are very limited. Moreover, a problem is caused in that a fluid-tight structure between the electrodes and the cartridge might be complicated. Moreover, since precious metal is usually used as the electrode material, which is highly conductive and erosive, manufacturing costs of the ink cartridge increases thereby. Moreover, since it is necessary to attach the two electrodes to two separate positions of the ink cartridge, the manufacturing process increases, thus causing a problem which increases the manufacturing costs.
Moreover, when managing the ink consumption status by mounting a piezoelectric device on the ink cartridge, ink inside the ink cartridge may roll or bubble by the scanning of the ink cartridge during the printing operation. By the waving or bubbling of ink nearby the piezoelectric device, ink or bubble of ink attaches to the piezoelectric device. Then, there is a cases arises that the piezoelectric device cannot detect the ink consumption quantity by the ink or bubble of ink attached to the piezoelectric device. In other words, even there is only small amount of ink inside the ink cartridge, if the ink attaches to the piezoelectric device mistakenly by the waving of ink, there is a danger that the piezoelectric device detects mistakenly that there is still enough ink inside the ink cartridge. Moreover, if the bubble attaches to the piezoelectric device, there is danger that the piezoelectric device detects mistakenly that there is no ink inside the ink cartridge even if the ink cartridge 180 is filled by ink.
Furthermore, there is problem that the position of mounting the piezoelectric device on the ink cartridge is limited for detecting the ink end status inside the ink cartridge. For example, if mounting the piezoelectric device on the wall at the lower side of the ink surface, the piezoelectric device can detect the ink end. On the other hand, if mounting the piezoelectric device on the wall at the upper side of the ink surface, the piezoelectric device cannot detect the ink end.
Therefore, it is an object of the present invention to provide a liquid container capable of reliably detecting a liquid consumption status and dispensing with a complicated sealing structure.
Moreover, it is another object of the present invention to prevent the waving or bubbling of liquid around the piezoelectric device inside the liquid container.
Furthermore, it is still another object of the present invention to provide a liquid container, the piezoelectric device of which can reliably detect a liquid consumption status by detecting the liquid surface even in the case that liquid inside the liquid container rolls and bubbles.
Furthermore, it is still another object of the present invention to provide a liquid container, the piezoelectric device of which can reliably detect a liquid consumption status even in the case that the liquid container tilts or fell down because the gas does not contacts with the piezoelectric device.
Furthermore, it is still another object of the present invention to provide a liquid container capable of reliably detecting a liquid consumption status in the liquid container even if the piezoelectric device is mounted on the upper side of the liquid surface in the liquid container.
Furthermore, it is still another object of the present invention to provide a liquid container which does not need to be mounted on the accurate position, in other words, the mounting position of the piezoelectric device on the liquid container can be freely designed.
These objects are achieved by combinations described in the independent claims. The dependent claims define further advantageous and exemplary combinations of the present invention.
According to an aspect of the present invention, there is provided a liquid container which may comprise: a housing containing therein liquid; a liquid supply opening formed in the housing for withdrawing the liquid from the housing; a liquid sensor mounted on the housing for detecting a level of the liquid which is variable in accordance with a consumption of the liquid; and a first partition wall extending in an interior of the housing and defining the interior of the housing into at least two liquid accommodating chambers which communicate with each other, the liquid accommodating chambers comprising: an air-communication side liquid accommodating chamber which communicates with ambient air; and a detection side liquid accommodating chamber in which the liquid sensor is disposed at an upper portion thereof.
The liquid container may further comprises a porous member accommodated within the detection side liquid accommodating chamber. The liquid supply opening may be formed in the air-communication side liquid accommodating chamber. The liquid supply opening may be formed in the detection side liquid accommodating chamber. A volume of the air-communication side liquid accommodating chamber may be different from that of the detection side liquid accommodating chamber. The volumes of the at least two liquid accommodating chambers may decrease from one side wall of the housing to the other opposite wall.
The liquid container may further comprising a second partition wall extending in the detection side liquid accommodating chamber and defining at least two small detection chambers. The second partition wall may be formed with a liquid communication opening at a lower part thereof. The second partition wall may be formed with a liquid communication opening at an upper part thereof. The detection sensor may be disposed on each of the small detection chambers. The volumes of the small detection chambers may be different from each other. The volumes of the at least two small detection chambers may decrease from one side wall of the housing to the other opposite wall.
The detection side liquid accommodating chamber may generate no capillary force for holding the liquid. The small detection chamber may generate no capillary force for holding the liquid. The detection side liquid accommodating chamber may comprise a recessed part formed at a top wall thereof. The liquid sensor may comprise a cavity which opens toward an interior of the housing for holding the liquid. The liquid sensor may comprise a piezoelectric device having a vibrating section, the vibrating section generates a counter electromotive force in accordance with a residual vibration of the vibrating section.
The liquid sensor may detect at least an acoustic impedance of the liquid and detects a liquid consumption status in accordance with the acoustic impedance. The liquid container may be mounted on an ink-jet printing apparatus having a printhead which ejects ink droplets, and the liquid container supplies the liquid contained therein to the printhead through the liquid supply opening. The volume of the detection side liquid accommodating chamber may be equal to or less than half the volume of the air-communication side liquid accommodating chamber. The volumes of the liquid accommodating chambers may decrease from one side wall of the housing to the other opposite wall.
The porous member may comprise a first porous material disposed close to the liquid sensor and a second porous material disposed far from the liquid sensor compared with the first porous material, and the second porous material has a higher liquid-philic characteristics than the first porous material. The liquid sensor may comprise a piezoelectric device having a vibrating section, the vibrating section generates a counter electromotive force in accordance with a residual vibration of the vibrating section. The liquid sensor may detect at least an acoustic impedance of the liquid and detects a liquid consumption status in accordance with the acoustic impedance. The liquid container may be mounted on an ink-jet printing apparatus having a printhead which-ejects ink droplets, and the liquid container supplies the liquid contained therein to the printhead through the liquid supply opening.
According to another aspect of the present invention, there is provided a liquid container which may comprise: a housing containing therein liquid; a liquid supply opening supplying liquid to an exterior of the housing; a detection device mounted on the housing, the detection device comprising a piezoelectric element for detecting a liquid consumption status; and a wave absorbing wall extending in an interior of the housing disposed at a place facing the detection device. A gap may be defined between the detection device and the wave absorbing wall. The gap may not generate a capillary force for holding the liquid.
The gap may generate a capillary force which is smaller than a force for holding the liquid. The detection device may comprise a cavity for receiving and holding liquid, the cavity being formed to open toward the interior of the housing. The wave absorbing wall may be secured to and extends from an interior wall of the housing. The detection device may be attached to a first wall of the housing which extends in a vertical direction of the liquid level, and the wave absorbing wall may extend in parallel with the first wall of the housing.
The detection device may be attached to a bottom wall of the housing, and the wave absorbing wall may extend in parallel with the liquid level. The wave absorbing wall may extend in an inclined direction with respect to the liquid level. The wave absorbing wall may extend from a side wall of the housing which is perpendicular to the liquid level. The a capillary force may be generated between at least a part of the internal wall and an inner wall of the housing. The wave absorbing wall may comprise a bending section which is formed by bending at least a part of an edge of the wave absorbing wall toward a wall on which the detection device is mounted, and a gap defined by the bending section and the detection device generates a capillary force while a gap defined by the wave absorbing wall and the detection device does not generate a capillary force.
The wave absorbing wall may comprise a plurality of wave absorbing wall pieces, and at least one of the plurality of wave absorbing wall pieces may extend from a side wall of the housing which is perpendicular to the liquid level. The detection device may comprise a vibrating section which generates a counter electromotive force in accordance with a residual vibration of the vibrating section. The liquid container may be mounted on an ink-jet printing apparatus having a printhead which ejects ink droplets, and the liquid container may supply the liquid contained therein to the printhead through the liquid supply opening.
According to the other aspect of the present invention, there is provided a liquid container may comprise: a housing containing therein liquid; a liquid supply opening formed in a wall of the housing for withdrawing the liquid to an exterior; a detection device mounted on the housing, the detection device comprising a piezoelectric element for detecting a liquid consumption status; and a porous member disposed within the housing in the vicinity of the detection device. The detection device may contact the porous member. A gap may be defined between the porous member and the detection device.
The detection device may comprise a cavity and a vibrating section which contacts the liquid through the cavity, and the porous member is disposed in the cavity. A capillary force of the porous member may be smaller than a force which holds the liquid. The detection device may comprise a base plate, a vibrating portion and a through hole formed in the base plate, and the porous member covers at least a part of the through hole. The detection device may further comprise a groove connecting with the through hole, and the porous member is disposed on the groove. The detection device and the porous member may be disposed on a plane where the liquid supply opening is formed.
The detection device may comprise a vibrating section which generates a counter electromotive force in accordance with a residual vibration of the vibrating section, and the detection device detects the liquid consumption status in accordance with the counter electromotive force. The detection device may comprise a piezoelectric element and a mounting structure unitarily formed with the piezoelectric element, and the mounting structure is attached to the housing. The liquid container may be mounted on an ink-jet printing apparatus having a printhead which ejects ink droplets, and the liquid container supplies the liquid contained therein to the printhead through the liquid supply opening.
This summary of the invention does not necessarily describe all necessary features of the present invention. The present invention may also be a sub-combination of the above described features. The above and other features and advantages of the present invention will become more apparent from the following description of embodiments taken in conjunction with the accompanying drawings.
The invention will now be described based on the preferred embodiments, which do not intend to limit the scope of the present invention, but exemplify the invention. All of the features and the combinations thereof described in the embodiment are not necessarily essential to the invention.
The basic concept of the present invention is to detect a state of the liquid inside a liquid container by utilizing vibration phenomena. The state of the liquid includes whether or not the liquid in the liquid container is empty, amount of the liquid, level of the liquid, types of the liquid and combination of liquids. Several specific methods realizing for detection of the state of the liquid inside the liquid container utilizing vibration phenomena are considered. For example, a method is considered in which the medium and the change of its state inside the liquid container are detected in such a manner that an elastic wave generating device generates an elastic wave inside the liquid container, and then the reflected wave which is thus reflected by the liquid surface or a wall disposed counter thereto is captured. There is another method in which a change of acoustic impedance is detected by vibrating characteristics of a vibrating object.
As a method utilizing the change of the acoustic impedance, a vibrating portion of a piezoelectric device or an actuator having a piezoelectric element therein is vibrated. Thereafter, a resonant frequency or an amplitude of the back electromotive force waveform is detected by measuring the back electromotive force which is caused by residual vibration which remains in the vibrating portion, so as to detect the change of the acoustic impedance. As another method utilizing the change of the acoustic impedance, the impedance characteristic or admittance characteristic of the liquid is measured by a measuring apparatus such as an impedance analyzer and a transmission circuit, so that the change of a current value or a voltage value, or the change of the current value or voltage value due to the frequency caused by the vibration given to the liquid is measured.
In the present embodiment, the medium in the liquid container and the change of the status of the medium in the liquid container is detected using the piezoelectric device or actuator to detect the residual vibration remained in the vibrating section of the piezoelectric device and the actuator.
A packing ring 4 and a valve body 6 are provided in the ink supply port 2. Referring to
A gap is provided between the actuator 106 and the wave preventing wall 1192a. If ink is filled in the ink cartridge, ink is filled in the gap between the actuator 106 and the wave preventing wall 1192a. On the other hand, the gap is designed such that ink is not held in the gap between the actuator 106 and the wave preventing wall 1192a if ink in the ink cartridge is used up. In other words, no capillary force for holding ink arises between the actuator 106 and the wave preventing wall 1192a.
Because the through hole 1c is provided on the container 1, ink remains in the through hole 1c even the ink inside the container 1 is consumed. Therefore, even when the ink cartridge vibrates by such as scanning operation during the printing process and thus ink nearby the ink supply port 2 rolls, ink does not mistakenly attach to the actuator 106 because ink previously remains in the through hole 1c. Thus, there is only little possibility for the actuator 106 to mistakenly detect the existence of ink.
The wave preventing wall is provided to face to the actuator 106 in the ink cartridge according to the present embodiment. Therefore, even ink nearby the ink supply port 2 rolls, the wave preventing wall prevents the rolled ink to be contact with the actuator 106. Therefore, Thus, there is only little possibility for the actuator 106 to mistakenly detect the existence of ink.
Furthermore, bubbles may be generated by the waving of ink, which is caused by the vibration of ink cartridge generated by such as the scanning operation during the printing process. Then, there is danger that the actuator 106 may detect mistakenly that there is no ink if the bubble attaches to the actuator 106 even if the ink is filled in the container 1. However, according to the configuration of the present embodiment, the wave preventing wall prevents the waving of ink around the piezoelectric device even when the ink cartridge vibrates by such as the scanning operation during the printing process. By preventing the waving of ink around the piezoelectric device, the wave preventing wall prevents the generation of the bubbles. Furthermore, even the bubbles generate, the wave preventing wall prevents the bubbles to move close to the actuator 106 and contact with the actuator 106 because the wave preventing wall is provided such that the wave preventing wall faces to the actuator 106.
There is no limitation of the size, shape, flexibility, and material for the wave preventing wall. Therefore, the size of the wave preventing wall can be made further larger or can be made further smaller. The thickness of the wave preventing wall can be made further thicker or can be made further thinner. Furthermore, the shape of the wave preventing wall can be square, rectangular, polygon, or an ellipse. Furthermore, the wave preventing wall can be made from the hard material or flexible material. Furthermore, the wave preventing wall can be made from the air-tight or liquid-tight material. Conversely, the wave preventing wall can be made from the breathability material or material which can pas through liquid. As an example of the air-tight or liquid-tight material, there are plastic, tefron, nylon, polypropylene, or PET. On the other hand, as an example of the breath ability material or a material which pass through liquid, there are porous material constituted by such as nylon or a material having a mesh structure. Furthermore, the porous material used for the wave preventing wall can be negative pressure generating member.
Preferably, the container 1 and the wave preventing wall is formed by a same material such that both of the container 1 and the wave preventing wall can be formed as one body. Then, the manufacturing process of the ink cartridge can be reduced.
Because ink cannot be supplied from the ink supply port 2 to the recording head if the pressure inside the ink cartridge becomes extremely negative with the ink consumption, airhole, not shown in figure, is provided on a part of the container so that the pressure inside the ink cartridge does not become extreme negative.
The wave preventing wall 1192b of the ink cartridge of the present embodiment extends longer than the wave preventing wall 1192a of the embodiment shown in
In
The wave preventing wall 1192e is provided on the position where directly faces to the actuator 106. The wave preventing wall 1192e extends from the bottom face 1a. Furthermore, a gap is provided between the top wall 1040 and the top of wave preventing wall 1192e.
Furthermore, the length of the wave preventing wall 1192e from the bottom face 1a can be changed according to the height of the actuator 106 to the level of the ink surface and the probability of the generation of ink wave which is influenced by the viscosity of ink. Furthermore, interval of the gap between the wave preventing wall 1192e and the side wall 1020 can be changed according to the position of the actuator 106 on the width direction of the ink cartridge, the magnitude of the vibrating region of the actuator 106, or the characteristic of ink.
In
Because the cross section viewed from the front of the ink cartridge of the present invention is similar to
In
Because the cross section viewed from the front of the ink cartridge of the present invention is similar to
In
Because the cross section viewed from the front of the ink cartridge of the present invention is similar to
In
Because the ink cartridge according the present embodiment mounting the actuator 106 on the boundary of the wall of the container 1, the positioning of the actuator 106 on the container 1 during the manufacturing of the ink cartridge becomes easy. Moreover, because the length or the width of the wave preventing wall 1192m can be shorten, the quantity of the material used for manufacturing the wave preventing wall 1192m is reduced. Furthermore, even in the case of manufacturing the wave preventing wall 1192m as a independent material with the container 1, it is relatively easy to positioning the wave preventing wall 1192m on the boundary of the wall of the container 1. Therefore, the manufacturing of the ink cartridge 180 becomes easy.
In
Furthermore, the wave preventing wall 1192n can be formed as a part of the hollow cylindrical shape.
In
Each of three different wave preventing walls, not shown in the figure, is provided on the position of each of inside of the ink container 9, 10 and 11 such that the each of the wave preventing walls faces to the each of actuators 15, 16, and 17.
Each of the wave preventing walls, not shown in the figure, is provided inside the each of the ink chamber 9, 10, and 11 such that each of the wave preventing walls faces to the actuators 15, 16, and 17 and extends to the vertical direction to the ink surface.
Each of the wave preventing walls, not shown in the figure, is provided inside the each of the ink chamber 9, 10, and 11 such that each of the wave preventing walls faces to the actuators 15, 16, and 17 as shown in
Each of the wave preventing walls, not shown in the figure, is provided inside the each of the ink chamber 9, 10, and 11 as shown in
Furthermore, the actuators 15, 16, and 17 can be provided on the boundary of the walls that adjoin each other in the container 8. In this case, each of the wave preventing walls is provided inside the each of the ink chambers 9, 10, and 11 as shown in
Furthermore, the actuator 106 can be mounted on the side wall 1050 which extends to vertical direction to the ink surface among the wall of the subtank unit 33. The actuator 106 is mounted on the side wall 1050 so that the actuator 106 can contacts with ink inside the ink chamber 34 through the through hole 1001c which is provided on the side wall 1050. The wave preventing wall 1192q extends from the filter 37 to the upward direction to the ink surface so that the wave preventing wall 1192q faces to the actuator 106. A gap is provided between the top wall 1060, which locates upward the ink surface, and the wave preventing wall 1192q.
A gap is provided between the actuator 106 and the wave preventing wall 1192q. If ink is filled in the ink cartridge, ink is filled in the gap between the actuator 106 and the wave preventing wall 1192q. On the other hand, if the ink inside the ink cartridge is consumed, ink is not held in the gap between the actuator 106 and the wave preventing wall 1192q. That is, the capillary force, which holds ink, does not works between the actuator 106 and the wave preventing wall 1192q.
The cross section of the subtank unit 33 viewed from the direction of the side wall 1050 is similar to the cross section of the ink cartridge shown in
Furthermore, the length of the wave preventing wall 1192q from the filter 37 can be changed according to the position of the actuator 106 to the level of the ink surface and the probability of the generation of ink wave which is influenced by the viscosity of ink. Furthermore, interval of the gap between the wave preventing wall 1192q and the side wall 1020 can be changed according to the position of the actuator 106 on the subtank unit 33, the magnitude of the vibrating region of the actuator 106, or the characteristic of ink.
Referring to
When the ink is consumed in the recording head 31 by the recording operation, a pressure in the downstream of the flexible valve 36 decreases. Then, the flexible valve 36 is positioned away from a valve body 38 so as to become opened as shown in
Moreover, the actuator 106 and the wave preventing wall are provided at least one of the ink cartridge and the subtank unit. However, the actuator 106 and the wave preventing wall can be provided both of the ink cartridge and the subtank unit.
By providing the actuator 106 and the wave preventing wall on both of the ink cartridge and the subtank unit, the ink end status of the ink cartridge and the subtank unit can be accurately detected. For example, the recording apparatus can be set to stop the recording operation when one of the cases arises such that the number of the droplets discharged from the recording head reach to the predetermined number of droplets during the measuring of the number of droplets after the actuator 106, which is mounted on the ink cartridge, detects the ink end or that the actuator 106 mounted on the subtank unit 33 detects the ink end.
Furthermore, the recording apparatus can be set to stop the recording operation when both of the cases arises such that the number of the droplets discharged from the recording head reach to the predetermined number of droplets after the actuator 106, which is mounted on the ink cartridge, detects the ink end and that the actuator 106 mounted on the subtank unit 33 detects the ink end.
While the recording apparatus is operating, a drive signal is supplied to the actuator 106 at a period which is set in advance.
Because a gap is provided between the wave preventing wall 1192r and the side wall adjacent to the side wall 1050, the level of the ink surface around the actuator 106 is always equal to the level of the ink surface of the other region of the container 34. Therefore, the actuator 106 detects the ink end status by detecting the ink surface at the mounting position of the actuator 106.
Furthermore, a gap is provided between the wave preventing wall 1192s and the side wall adjacent to the side wall 1050. Therefore, the level of the ink surface around the actuator 106 is always equal to the level of the ink surface of the other region of the container 34.
The actuator 106 includes abase plate 178, a vibrating plate 176, a piezoelectric layer 160, an upper electrode 164 and a lower electrode 166, an upper electrode terminal 168, a lower electrode terminal 170, and a supplementary electrode 172. The base plate 178 has a circular shape opening 161 on approximately its center. The vibrating plate 176 is provided on one of the face, which is called as “right side” in following, of the base plate 178 such as to cover the opening 161. The piezoelectric layer 160 is disposed on right side of the surface of the vibrating plate 176. The upper electrode 164 and the lower electrode 166 sandwich the piezoelectric layer 160 from both sides. The upper electrode terminal 168 connects to the upper electrode 164 electrically. The lower electrode terminal 170 connects to the lower electrode 166 electrically. The supplementary electrode 172 is disposed between the upper electrode 164 and the upper electrode terminal 168 and connects both of the upper electrode 164 and the upper electrode terminal 168. Each of the piezoelectric layer 160, upper electrode 164, and the lower electrode 166 has a circular portion as its main portion. Each of the circular portion of the piezoelectric layer 160, the upper electrode 164, and the lower electrode 166 form a piezoelectric element.
The vibrating plate 176 is formed on the right side of the surface of the base plate 178 to cover the opening 161. The cavity 162 is formed by the portion of the vibrating plate 176, which faces the opening 161, and the opening 161 of the on the surface of the base plate 178. The face of the base plate 178 which is opposite side of the piezoelectric element, called as “back side” in following, is faced with the liquid container side. The cavity 162 is constructed such that the cavity 162 contacts with liquid. The vibrating plate 176 is mounted on the base plate 178 such that the liquid does not leak to the right side of the surface of the base plate 178 even if the liquid enters inside the cavity 162.
The lower electrode 166 is located on the right side of the vibrating plate 176, that is, opposite side against the liquid container. The lower electrode 166 is provided on the vibrating plate 176 such that the center of the circular portion of the lower electrode 166, which is a main portion of the lower electrode 166, and the center of the opening 161 substantially matches. The area of the circular portion of the lower electrode 166 is set to be smaller than the area of the opening 161. The piezoelectric layer 160 is formed on the right side of the surface of the lower electrode 166 such that the center of the circular portion and the center of the opening 161 substantially match. The area of the circular portion of the piezoelectric layer 160 is set to be smaller than the area of the opening 161 and larger than the area of the circular portion of the lower electrode 166.
The upper electrode 164 is formed on the right side of the surface of the piezoelectric layer 160 such that the center of the circular portion, which is a piezoelectric layer 160, and the center of the opening 161 substantially match. The area of the circular portion of the upper electrode 164 is set to be smaller than the area of the circular portion of the opening 161 and the piezoelectric layer 160 and larger than the area of the circular portion of the lower electrode 166.
Therefore, the main portion of the piezoelectric layer 160 has a structure to be sandwiched by the main portion of the upper electrode 164 and the main portion of the lower electrode each from right side face and back side face, and thus the main portion of the piezoelectric layer 160 can effectively drive and deform the piezoelectric layer 160. The circular portion, which is a main portion of each of the piezoelectric layer 160, the upper electrode 164, and the lower electrode 166, forms the piezoelectric element in the actuator 106. As explained above, the electric element contacts with the vibrating plate. Within the circular portion of the upper electrode 164, circular portion of the piezoelectric layer 160, the circular portion of the lower electrode, and the opening 161, the opening 161 has the largest area. By this structure, the vibrating region which actually vibrates within the vibrating plate is determined by the opening 161. Furthermore, each of the circular portion of the upper electrode 164 and the circular portion of the piezoelectric layer 160 and the circular portion of the lower electrode has smaller area than the area of the opening 161. The vibrating plate becomes easily vibrate. Within the circular portion of the lower electrode 166 and the circular portion of the upper electrode 164 which connects to the piezoelectric layer 160 electrically, the circular portion of the lower electrode 166 is smaller than the circular portion of the upper electrode 164. Therefore, the circular portion of the lower electrode 166 determines the portion which generates the piezoelectric effect within the piezoelectric layer 160.
The center of the circular portion of the piezoelectric layer 160, the upper electrode 164, and the lower electrode 166, which form the piezoelectric element, substantially match to the center of the opening 161. Moreover, the center of the circular shape opening 161, which determines the vibrating section of the vibrating plate 176, is provided on the approximately center of the actuator 106. Therefore, the center of the vibrating section of the actuator 106 matches to the center of the actuator 106. Because the main portion of the piezoelectric element and the vibrating section of the vibrating plate 176 have a circular shape, the vibrating section of the actuator 106 is symmetrical about a center of the actuator 106.
Because the vibrating section is symmetrical about a center of the actuator 106, the excitation of the unnecessary vibration occurred owing to the asymmetric structure can be prevented. Therefore, the accuracy of detecting the resonant frequency increases. Furthermore, because the vibrating section is symmetric about the center of the actuator 106, the actuator 106 is easy to manufacture, and thus the unevenness of the shape for each of the piezoelectric element can be decreased. Therefore, the unevenness of the resonant frequency for each of the piezoelectric element 174 decreases. Furthermore, because the vibrating section has an isotropic shape, the vibrating section is difficult to be influenced by the unevenness of the fixing during the bonding process. That is, the vibrating section is bonded to the liquid container uniformly. Therefore, the actuator 106 is easy to assemble to the liquid container.
Furthermore, because the vibrating section of the vibrating plate 176 has a circular shape, the lower resonant mode, for example, the primary resonant mode dominates on the resonant mode of the residual vibration of the piezoelectric layer 160, and thus the single peak appears on the resonant mode. Therefore, the peak and the noise can be distinguished clearly so that the resonant frequency can be clearly detected. Furthermore, the accuracy of the detection of the resonant frequency can be further increased by enlarge the area of the vibrating section of the circular shape vibrating plate 176 because the difference of the amplitude of the counter electromotive force and the difference of the amplitude of the resonant frequency occurred by whether the liquid exists inside the liquid container increase.
The displacement generated by the vibration of the vibrating plate 176 is larger than the displacement generated by the vibration of the base plate 178. The actuator 106 has a two layers structure that is constituted by the base plate 178 having a small compliance which means it is difficult to be displaced by the vibration, and the vibrating plate 176 having a large compliance which means it is easy to be displaced by the vibration. By this two layers structure, the actuator 106 can be reliably fixed to the liquid container by the base plate 178 and at the same time the displacement of the vibrating plate 176 by the vibration can be increased. Therefore, the difference of the amplitude of the counter electromotive force and the difference of the amplitude of the resonant frequency depended on whether the liquid exists inside the liquid container increases, and thus the accuracy of the detection of the resonant frequency increases. Furthermore, because the compliance of the vibrating plate 176 is large, the attenuation of the vibration decreases so that the accuracy of the detection of the resonant frequency increases. The node of the vibration of the actuator 106 locates on the periphery of the cavity 162, that is, around the margin of the opening 161.
The upper electrode terminal 168 is formed on the right side of the surface of the vibrating plate 176 to be electrically connected to the upper electrode 164 through the supplementary electrode 172. The lower electrode terminal 170 is formed on the right side of the surface of the vibrating plate 176 to be electrically connected to the lower electrode 166. Because the upper electrode 164 is formed on the right side of the piezoelectric layer 160, there is a difference in depth that is equal to the sum of the thickness of the piezoelectric layer 160 and the thickness of the lower electrode 166 between the upper electrode 164 and the upper electrode terminal 168. It is difficult to fill this difference in depth only by the upper electrode 164, and even it is possible to fill the difference in depth by the upper electrode 164, the connection between the upper electrode 164 and the upper electrode terminal 168 becomes weak so that the upper electrode 164 will be cut off. Therefore, this embodiment uses the supplementary electrode 172 as a supporting member to connects the upper electrode 164 and the upper electrode terminal 168. By this supplementary electrode 172, both of the piezoelectric layer 160 and the upper electrode 164 are supported by the supplementary electrode 172, and thus the upper electrode 164 can have desired mechanical strength, and also the upper electrode 164 and the upper electrode terminal 168 can be firmly connected.
The piezoelectric element and the vibrating section which faces to the piezoelectric element within the vibrating plate 176 constitute the vibrating section which actually vibrates in the actuator 106. Moreover, it is preferable to form the actuator 106 in one body by firing together the member included in the actuator 106. By forming the actuator 106 as one body, the actuator 106 becomes easy to be handled. Further, the vibration characteristic increases by increasing the strength of the base plate 178. That is, by increasing the strength of the base plate 178, only the vibrating section of the actuator 106, vibrates, and the portion other than the vibrating section of the actuator 106 does not vibrates. Furthermore, the prevention of the vibration of the portion other than the vibrating section of the actuator 106 can be achieved by increasing the strength of the base plate 178 and at the same time forming the actuator 106 as thinner and smaller as possible and forming the vibrating plate 176 as thinner as possible.
It is preferable to use lead zirconate titanate (PZT), lead lanthanum zirconate titanate (PLZT), or piezoelectric membrane without using lead as a material for the piezoelectric layer 160. It is preferable to use zirconia or alumina as a material of the base plate 178. Furthermore, it is preferable to use same material as base plate 178 for a material of vibrating plate 176. The metal such as gold, silver, copper, platina, aluminum, and nickel having a electrical conductivity can be used for the material of the upper electrode 164, the lower electrode 166, the upper electrode terminal 168, and the lower electrode terminal 170.
The actuator 106 constructed as explained above can be applied to the container which contains liquid. For example, the actuator 106 can be mounted on an ink cartridge used for the ink jet recording apparatus, an ink tank, or a container which contains washing liquid to wash the recording head.
The actuator 106 shown in the
The principle of the detection of the liquid level by the actuator will be explained.
To detect the acoustic impedance of a medium, an impedance characteristic or an admittance characteristic is measured. To measure the impedance characteristic or the admittance characteristic, for example, transmission circuit can be used. The transmission circuit applies a constant voltage on the medium and measure a current flow through the medium with changing a frequency. The transmission circuit provides a constant current to the medium and measures a voltage applied on the medium with changing a frequency. The change in current value and the voltage value measured at the transmission circuit shows the change in acoustic impedance. Furthermore, the change in a frequency fm, which is a frequency when the current value or the voltage value becomes maximum or minimum, also shows the change in acoustic impedance.
Other than method shown above, the actuator can detects the change in the acoustic impedance of the liquid using the change only in the resonant frequency. The piezoelectric element, for example, can be used in a case of using the method of detecting the resonant frequency by measuring the counter electromotive force generated by the residual vibration, which is remained in the vibrating section after the vibration of the vibrating section of the actuator, as a method of using the change in the acoustic impedance of the liquid. The piezoelectric element is element which generates the counter electromotive force by residual vibration remained in the vibrating section of the actuator. The magnitude of the counter electromotive force changes with the amplitude of the vibrating section of the actuator. Therefore, the larger the amplitude of the vibrating section of the actuator, the easier to detect the resonant frequency. Moreover, depends on the frequency of the residual vibration at the vibrating section of the actuator, the period, on which the magnitude of the counter electromotive force changes, changes. Therefore, the frequency of the vibrating section of the actuator corresponds to the frequency of the counter electromotive force. Here, the resonant frequency means the frequency when the vibrating section of the actuator and the medium, which contacts to the vibrating section, are in a resonant condition.
To obtain the resonant frequency fs, the waveform obtained by measuring the counter electromotive force when the vibrating section and the medium are in resonant condition is Fourier transformed. Because the vibration of the actuator is not a displacement for only one direction, but the vibration involves the deformation such as deflection and extension, the vibration has various kinds of frequency including the resonant frequency fs. Therefore, the resonant frequency fs is judged by Fourier transforming the waveform of the counter electromotive force when the piezoelectric element and the medium are in the resonant condition and then specifying the most dominating frequency components.
The frequency fm is a frequency when the admittance of the medium is maximum or the impedance is minimum. The frequency fm is different from the resonant frequency fs with little value because of the dielectric loss and the mechanical loss. However, the frequency fm is generally used as substitution for resonant frequency because it needs time for deriving the resonant frequency fs from the frequency fm which is actually measured. By inputting output of the actuator 106 to the transmission circuit, the actuator 106 can at least detect the acoustic impedance.
It is proved by the experiment that there is almost no differences with the resonant frequency obtained by the method, which measures the frequency fm by measuring the impedance characteristic and admittance characteristic of the medium, and the method, which measures the resonant frequency fs by measuring the counter electromotive force generated by the residual vibration at the vibrating section of the actuator.
The vibrating region of the actuator 106 is a portion which constitutes the cavity 162 that is determined by the opening 161 within the vibrating plate 176. When liquid is sufficiently filled in the liquid container, liquid is filled in the cavity 162, and the vibrating region contacts with liquid inside the liquid container. When liquid does not exists in the liquid container sufficiently, the vibrating region contacts with the liquid which is remained in the cavity inside the liquid container, or the vibrating region does not contacts with the liquid but contacts with the gas or vacuum.
The cavity 162 is provided on the actuator 106 of the present invention, and it can be designed that the liquid inside the liquid container remains in the vibrating region of the actuator 106 by the cavity 162. The reason will be explained as follows.
Depends on the mounting position and mounting angle of the actuator 106 on the liquid container, there is a case in which the liquid attaches to the vibrating region of the actuator even the liquid level in the liquid container is lower than the mounting position of the actuator. When the actuator detects the existence of the liquid only from the existence of the liquid on the vibrating region, the liquid attached to the vibrating region of the actuator prevents the accurate detection of the existence of the liquid. For example, If the liquid level is lower than the mounting position of the actuator, and the drop of the liquid attaches to the vibrating region by the waving of the liquid caused by the shaking of the liquid container caused by the movement of the carriage, the actuator 106 will misjudges that there is enough liquid in the liquid container. In this way, the malfunction can be prevented by using the actuator having cavity.
Furthermore, as shown in
The operation and the principle of detecting the liquid condition of the liquid container from the resonant frequency of the medium and the vibrating section of the actuator 106 obtained by measuring the counter electromotive force will be explained reference to
The residual vibration is a free oscillation of the vibrating section of the actuator 106 and the medium. Therefore, the resonant condition between the vibrating section and the medium can be easily obtained by applying the voltage of a pulse wave or a rectangular wave on the piezoelectric layer 160. Because the residual vibration vibrates the vibrating section of the actuator 106, the residual vibration also deforms the piezoelectric layer 160. Therefore, the piezoelectric layer 160 generates the counter electromotive force. This counter electromotive force is detected through the upper electrode 164, the lower electrode 166, the upper electrode terminal 168, and the lower electrode terminal 170. Because the resonant frequency can be specified by this detected counter electromotive force, the liquid consumption status in the liquid container can be detected.
Generally, the resonant frequency fs can be expressed as following.
fs=1/(2*π*(M*Cact)1/2 (1)
where M denotes the sum of an inertance of the vibrating section Mact and an additional inertance M′; Cact denotes a compliance of the vibrating section.
The Mact is obtained by dividing the product of the thickness of the vibrating section and the density of the vibrating section by the area of the vibrating section. Furthermore, as shown in the
Mact=Mpzt+Melectrodel+Melectrode2+Mvib (2)
Here, Mpzt is obtained by dividing the product of the thickness of the piezoelectric layer 160 in the vibrating section and the density of the piezoelectric layer 160 by the area of the piezoelectric layer 160. Melectrode1 is obtained by dividing the product of the thickness of the upper electrode 164 in the vibrating section and the density of the upper electrode 164 by the area of the upper electrode 164. Melectrode2 is obtained by dividing the product of the thickness of the lower electrode 166 in the vibrating section and the density of the lower electrode 166 by the area of the lower electrode 166. Mvib is obtained by dividing the product of the thickness of the vibrating plate 176 in the vibrating section and the density of the vibrating plate 176 by the area of the vibrating region of the vibrating plate 176. However each of the size of the area of the vibrating region of the piezoelectric layer 160, the upper electrode 164, the lower electrode 166, and vibrating plate 176 have a relationship as shown above, the difference among each of the area of the vibrating region is prefer to be microscopic to enable the calculation of the Mact from the thickness, density, and area as whole of the vibrating section. Moreover, it is preferable that the portion other than the circular portion which is a main portion of each of the piezoelectric layer 160, the upper electrode 164, and the lower electrode 166 is microscopic so that it can be ignored compared to the main portion. Therefore, Mact is sum of the inertance of the each of the vibrating region of the upper electrode 164, the lower electrode 166, the piezoelectric layer 160, and the vibrating plate 176 in the actuator 106. Moreover, the compliance Cact is a compliance of the portion formed by the each of the vibrating region of the upper electrode 164, the lower electrode 166, the piezoelectric layer 160, and the vibrating plate 176.
1/Cact=(1/Cpzt)+(1/Celectrode1)+(1/Celectrode2)+(1/Cvib) (3)
From the equation (2) and (3),
The compliance Cact shows the volume which can accept the medium by the deformation generated by the application of the pressure on the unit area of the vibrating section. In other words, the compliance Cact shows the easiness to be deformed.
M′max=(π*ρ/(2*k3))*(2*(2*k*a)3/(3*π))/(π*a2)2 (4)
where a denotes the radius of the vibrating section; ρ denotes the density of the medium; and k denotes the wave number. The equation (4) applies when the vibrating region of the actuator 106 is circular shape having the radius of “a”. The additional inertance M′ shows the quantity that the mass of the vibrating section is increased virtually by the effect of the medium which exists around the vibrating section.
As shown in equation (4), the M′max can changes significantly by the radius of the vibrating section “a” and the density of the medium ρ.
The wave number k can be expressed by following equation.
k=2*π*fact/c (5)
where fact denotes the resonant frequency of the vibrating section when the liquid does not contact with the vibrating section; and c denotes the speed of the sound propagate through the medium.
M′=ρ*t/S (6)
where t denotes the thickness of the medium related to the vibration; S denotes the area of the vibrating region of the actuator 106. If this vibrating region is circular shape having a radius of “a”, the S can be shown as S=π*a2. Therefore, the additional inertance M′ follows the equation (4) when the liquid is sufficiently filled in the liquid container, and the periphery of the vibrating region of the actuator 106 is filled with the liquid. The additional inertance M′ follows the equation (6) when the liquid in the liquid container is consumed, and there is no liquid exits around the vibrating region of the actuator 106, and the liquid is remained in the cavity 162.
Here, as shown in
Here, the parameters related to the status of the medium are density of the medium ρ and the thickness of the medium t in equation (6). When the liquid is sufficiently filled in the liquid container, the liquid contacts with the vibrating section of the actuator 106. When the liquid is insufficiently filled in the liquid container, the liquid is remained in the cavity, or the gas or vacuum contacts with the vibrating section of the actuator 106. If let the additional inertance during the process of the shifting from the M′max of
M′cav=ρ*d/S (7)
Moreover, if the medium are different types of liquid with each other, the additional inertance M′ changes and resonant frequency fs also changes because the density ρ is different according to the difference of the composition. Therefore, the types of the liquid can be detected by specifying the resonant frequency fs. Moreover, when only one of the ink or air contacts with the vibrating section of the actuator 106, and the ink and air is not existing together, the difference in M′ can be detected by calculating the equation (4).
When ink is sufficiently filled in the ink container, and ink is filled around the vibrating region of the actuator 106, the maximum additional inertance M′max becomes the value shown in the equation (4). When the ink is consumed, and there is no ink around the vibrating region of the actuator 106, and the ink remains in the cavity 162, the additional inertance M′var is calculated by the equation (6) based on the thickness of the medium t. Because the “t” used in the equation (6) is the thickness of the medium related to the vibration, the process during which the ink is consumed gradually can be detected by forming the “d” (refer to
Furthermore, by enlarge or lengthen the vibrating section of the actuator 106 and arrange the actuator 106 along a lengthwise direction, the “S” in the equation (6) changes according to the change of ink level with ink consumption. Therefore, the actuator 106 can detect the process while the ink is gradually consumed. For example, the actuator 106 is mounted on the side wall of the ink cartridge perpendicularly to the ink surface. When the ink is consumed and the ink level reaches to the vibrating region of the actuator 106, because the additional inertance M′ decreases with the decreasing of the ink level, the resonant frequency fs gradually increases according to the equation (1). Therefore, unless the ink level is within the range of the radius 2a of the cavity 162 (refer to FIG. 23(C)), the actuator 106 can gradually detect the ink consumption status.
The curve X in
In detail, the case when the actuator 106 can detect the process of the gradual consumption of the ink is the case when the liquid and gas having different density with each other are existed together and also involved with vibration. According to the gradual consumption of the ink, the liquid decreases with increasing of the gas in the medium involved with the vibration around the vibrating region of the actuator 106. For example, the case when the actuator 106 is mounted on the ink cartridge horizontally to the ink surface, and t-ink is smaller than the t-ink-max, the medium involved with the vibration of the actuator 106 includes both of the ink and the gas. Therefore, the following equation (8) can be obtained if let the area of the vibrating region of the actuator 106 as S and express the status when the additional inertance is below M′max in the equation (4) by additional mass of the ink and the gas.
M′=M′air+M′ink=ρair*t-air/S+ρink*t-ink/S (8)
where M′max is an inertance of an air; M′ink is an inertance of an ink; ρ air is a density of an air; ρ ink is a density of an ink; t-air is the thickness of the air involved with the vibration; and t-ink is the thickness of the ink involved with the vibration. In case when the actuator 106 is mounted on the ink cartridge approximately horizontally to the ink surface, the t-air increases and the t-ink decreases with the increase of the gas and the decrease of the ink within the medium involved with the vibration around the vibrating region of the actuator 106. The additional inertance M′ gradually decreases, and the resonant frequency gradually increases by above changes of the t-air and the t-ink. Therefore, the ink quantity remained inside the ink tank or the ink consumption quantity can be detected. The equation (7) depends only on the density of the liquid because of the assumption that the density of the air is small compare to the density of the liquid so that the density of the air can be ignored.
When the actuator 106 is provided on the ink cartridge substantially perpendicular to the ink surface, the status can be expressed as the equivalent circuit, not shown in the figure, on which the region, where the medium involved with the vibration of the actuator 106 is ink only, and the region, where the medium involved with the vibration of the actuator 106 is gas, can be expressed as parallel circuit. If let the area of the region where the medium involved with the vibration of the actuator 106 is ink only as Sink, and let the area of the region where the medium involved with the vibration of the actuator 106 is gas only as Sair, the following equation (9) can be obtained.
1/M′=1/M′air+1/M′ink=Sair/(ρ air * t-air)+Sink/(ρ ink * t-ink) (9)
The equation (9) can be applied when the ink is not held in the cavity of the actuator 106. The case when the ink is held in the cavity can be calculated using the equation (7), (8), and (9).
In the case when the thickness of the base plate 178 is thick, that is, the depth of the cavity 162 is deep and d is comparatively close to the thickness of the medium t-ink-max, or in the case when using actuator having a very small vibrating region compared to height of the liquid container, the actuator does not detect the process of the gradual decrease of the ink but actually detects whether the ink level is higher or lower than the mounting position of the actuator. In other words, the actuator detects the existence of the ink at the vibrating region of the actuator. For example, the curve Y in
The method of using the actuator 106 for detecting the existence of the liquid is more accurate than the method which calculates the quantity of ink consumption by the software because the actuator 106 detects the existence of the ink by directly contacting with the liquid. Furthermore, the method using an electrode to detects the existence of the ink by conductivity is influenced by the mounting position to the liquid container and the ink type, but the method using the actuator 106 to detects the existence of the liquid does not influenced by the mounting position to the liquid container and the ink type. Moreover, because both of the oscillation and detection of the existence of the liquid can be done by the single actuator 106, the number of the sensor mounted on the liquid container can be reduced compare to the method using separate sensor for oscillation and the detection of the existence of the liquid. Therefore, the liquid container can be manufactured at a low price. Furthermore, the sound generated by the actuator 106 during the operation of the actuator 106 can be reduced by setting the vibrating frequency of the piezoelectric layer 160 out of the audio frequency.
Therefore, the actuator 106 can distinguish the ink tank which contains the different type of the ink.
The condition when the actuator 106 can accurately detects the status of the liquid will be explained in detail in following. The case is assumed that the size and the shape of the cavity is designed so that the liquid can be remained in the cavity 162 of the actuator 106 even when the liquid inside the liquid container is empty. The actuator 106 can detect the status of the liquid even when the liquid is not filled in the cavity 162 if the actuator 106 can detect the status of the liquid when the liquid is filled in the cavity 162.
The resonant frequency fs is a function of the inertance M. The inertance M is a sum of the inertance of the vibrating section Mact and the additional inertanceM′. Here, the additional inertance M′ has the relationship with the status of the liquid. The additional inertance M′ is a quantity of a virtual increase of a mass of the vibrating section by the effect of the medium existed around the vibrating section. In other words, the additional inertance M′ is the amount of increase of the mass of the vibrating section which is increased by the vibration of the vibrating section that virtually absorbs the medium.
Therefore, when the M′cav is larger than the M′max in the equation (4), all the medium which is virtually absorbed is the liquid remained in the cavity 162. Therefore, the status when the M′cav is larger than the M′max is same with the status that the liquid container is fill with liquid. The resonant frequency fs does not change because the MI does not change in this case. Therefore, the actuator 106 cannot detect the status of the liquid in the liquid container.
On the other hand, if the M′cav is smaller than the M′max in the equation (4), the medium which is virtually absorbed is the liquid remained in the cavity 162 and the gas or vacuum in the liquid container. In this case, because the M′ changes, which is different with the case when the liquid is filled in the liquid container, the resonant frequency fs changes. Therefore, the actuator 106 can detect the status of the liquid in the liquid container.
The condition whether the actuator 106 can accurately detect the status of the liquid is that the M′cav is smaller than the M′max when the liquid is remained in the cavity 162 of the actuator 106, and the liquid container is empty. The condition M′max>M′cav, on which the actuator 106 can accurately detect the status of the liquid, does not depend on the shape of the cavity 162.
Here, the M′cav is the mass of the liquid of the volume which is substantially equal to the volume of the cavity 162. Therefore, the condition, which can detect the status of the liquid accurately, can be expressed as the condition of the volume of the cavity 162 from the inequality M′max>M′cav. For example, if let the radius of the opening 161 of the circular shaped cavity 162 as “a” and the thickness of the cavity 162 as “d”, then the following inequality can be obtained.
M′max>ρ*d/πa2 (10)
By expanding the inequality (10), the following condition can be obtained.
a/d>3*π/8 (11)
The inequality (10) and (11) are valid only when the shape of the cavity 162 is circular. By using the equation when the M′max is not circular and substituting the area π a2 with its area, the relationship between the dimension of the cavity such as a width and a length of the cavity and the depth can be derived.
Therefore, if the actuator 106 has the cavity 162 which has the radius of the opening 161 “a” and the depth of the cavity “d” that satisfy the condition shown in inequality (11), the actuator 106 can detect the liquid status without malfunction even when the liquid container is empty and the liquid is remained in the cavity 162.
Because the additional inertance influences the acoustic impedance characteristic, it can be said that the method of measuring the counter electromotive force generated in actuator 106 by residual vibration measures at least the change of the acoustic impedance.
Furthermore, according to the present embodiment, the actuator 106 generates the vibration, and the actuator 106 itself measures the counter electromotive force in actuator 106 which is generated by the residual vibration remained after the vibration of the actuator 106. However, it is not necessary for the vibrating section of the actuator 106 to provide the vibration to the liquid by the vibration of the actuator 106 itself which is generated by the driving voltage. Even the vibrating section itself does not oscillates, the piezoelectric layer 160 deflects and deforms by vibrates together with the liquid, which contacts with the vibrating section with some range. This residual vibration generates the counter electromotive force voltage in the piezoelectric layer 160 and transfer this counter electromotive force voltage to the upper electrode 164 and the lower electrode 166. The status of the liquid can be detected using this phenomenon. For example, in case of the ink jet recording apparatus, the status of the ink tank or the ink contained inside the ink tank can be detected using the vibration around the vibrating section of the actuator which is generated by the vibration generated by the reciprocating motion of the carriage to scanning the print head during the printing operation.
In the example sown in
In detail, after the actuator 106 oscillates, the number of the times when the analog signal get across the predetermined reference voltage form the low voltage side to the high voltage side. The digital signal is set to be high while the analog signal becomes fourth counts to the eighth counts, and the time during fourth counts to the eighth counts is measured by predetermined clock pulse.
The signals from the fourth counts to the eighth counts are detected, and the time from the fourth counts to the eighth counts is measured by the predetermined clock pulse. By this measurement, the resonant frequency can be obtained. The clock pulse is prefer to be a pulse having a same clock with the clock for controlling such as the semiconductor memory device which is mounted on the ink cartridge. It does not necessary to measure the time until the eighth counts, but the time until the desired counts can be measured. In
For example, when the ink quality is stable and the fluctuation of the amplitude of the peak is small, the resonant frequency can be detected by detecting the time from the fourth counts to the sixth counts to increase the speed of detection. Moreover, when the ink quality is unstable and the fluctuation of the amplitude of the pulse is large, the time from the fourth counts to the twelfth counts can be detected to detect the residual vibration accurately.
Furthermore, as other embodiments, the wave number of the voltage waveform of the counter electromotive force during the predetermined period can be counted. More specifically, after the actuator 106 oscillates, the digital signal is set to be high during the predetermined period, and the number of the times when the analog signal is get across the predetermined reference voltage from the low voltage side to the high voltage side is counted. By measuring the count number, the existence of the ink can be detected.
Furthermore, it can be known by comparing
The actuator 106 has a thin plate or a vibrating plate 176, a base plate 178, an elastic wave generating device or piezoelectric element 174, a terminal forming member or an upper electrode terminal 168, and a terminal forming member or a lower electrode terminal 170. The piezoelectric element 174 includes a piezoelectric vibrating plate or a piezoelectric layer 160, an upper electrode 164, and a lower electrode 166. The vibrating plate 176 is formed on the top surface of the base plate 178, and the lower electrode 166 is formed on the top surface of the vibrating plate 176. The piezoelectric layer 160 is formed on the top surface of the lower electrode 166, and the upper electrode 164 is formed on the top surface of the piezoelectric layer 160. Therefore, the main portion of the piezoelectric layer 160 is formed by sandwiching the main portion of the piezoelectric layer 160 by the main portion of the upper electrode 164 and the main portion of the lower electrode 166 from top side and from bottom side.
A plurality of the piezoelectric element 174, four numbers in the case of
Next, the green sheet 940, the green sheet 941, the conductive layer 942, the piezoelectric layer 160, and the conductive layer 944 are dried and burned. The spacer member 947 and 948 are provided on the green sheet 941 to raising the height of the upper electrode terminal 168 and the lower electrode terminal 170 to be higher than the piezoelectric element. The spacer member 947 and 948 is formed by printing the same material with the green sheet 940 and 941 or by laminating the green sheet on the green sheet 941. By this spacer member 947 and 948, the quantity of the material of the upper electrode terminal 168 and the lower electrode terminal 170, which is a noble metal, can be reduced. Moreover, because the thickness of the upper electrode terminal 168 and the lower electrode terminal 170 can be reduced, the upper electrode terminal 168 and the lower electrode terminal 170 can be accurately printed to be a stable height.
If a connection part 944′, which is connected with the conductive layer 944, and the spacer member 947 and 948 are formed at the same time when the conductive layer 942 is formed, the upper electrode terminal 168 and the lower electrode terminal 170 can be easily formed and firmly fixed. Finally, the upper electrode terminal 168 and the lower electrode terminal 170 are formed on the end region of the conductive layer 942 and the conductive layer 944. During the forming of the upper electrode terminal 168 and the lower electrode terminal 170, the upper electrode terminal 168 and the lower electrode terminal 170 are formed to be connected with the piezoelectric layer 160 electrically.
The ink absorbing member 74 is designed such that the hole diameter of the porous part 74b around the ink supply port 2 is smaller than the hole diameter of the porous part 74a around the actuator 70. Furthermore, the ink absorbing member 74 is designed such that the capillary force of the porous part 74b around the ink supply port 2 is smaller than the capillary force in a degree which holds ink.
Thereby, if the ink absorbing member 74 exposes from ink by consuming of ink inside the container 1, ink in the ink absorbing member 74 flows out from the ink absorbing member 74 by its own weight to the ink supply port 2. If all the ink inside the container 1 consumed up, the ink absorbing member 74 absorbs the ink remained in the through hole 1c by the capillary force. Therefore, ink is drained from the concave part of the through hole 1c. Therefore, because the residual vibration of the actuator 70 changes at the ink end status, the timing of the ink end can be further reliably detected.
Therefore, the ink absorbing member 74 can protect the actuator 70 from the wave of ink and also absorbs the ink remained in the through hole 1c to improve the accuracy of the ink end detection of the actuator 106.
A wave preventing wall, not shown in the figure, is provided in the container 1 such that the wave preventing wall faces to the actuator 650.
According to the shape of the through hole 1c shown in
Furthermore, also in the present embodiment, the wave preventing wall, not shown in the figure, can be provided nearby the packing 76 such that the wave preventing wall faces to the actuator 670 as shown in
The plate 110 is circular shape, and the opening 114 of the base mount 102 is formed in cylindrical shape. The actuator 106 and the film 108 are formed in rectangular shape. The lead wire 104, the actuator 106, the film 108, and the plate 110 can be attached to and removed from the base mount 102. Each of the base mount 102, the lead wire 104, the actuator 106, the film 108, and the plate 110 is arranged symmetric with respect to the central axis of the module 100. Furthermore, each of the centers of the base mount 102, the actuator 106, the film 108, and the plate 110 is arranged substantially on the central axis of the module 100.
The opening 114 of the base mount 102 is formed such that the area of the opening 114 is larger than the area of the vibrating region of the actuator 106. The through hole 112 is formed on the center of the plate 110 where the vibrating section of the actuator 106 faces. As shown in
According to the present embodiment, the plate 410 is rectangular shape, and the opening 414 provided on the board shaped element 406 is formed in rectangular shape. The lead wire 404a and 404b, the actuator 106, the film 408, and the plate 410 can be attached to and removed from the base mount 402. Each of the actuator 106, the film 408, and the plate 410 is arranged symmetric with respect to the central axis which is extended to perpendicular direction to the plan of opening 414 and also pass through the center of opening 414. Furthermore, each of the centers of the actuator 106, the film 408, and the plate 410 is arranged substantially on the central axis of the opening 414.
The through hole 412 provided on the center of the plate 410 is formed such that the area of the through hole 412 is larger than the area of the opening of the cavity 162 of the actuator 106. The cavity 162 of the actuator 106 and the through hole 412 together forms ink storing part. The thickness of the plate 410 is preferably smaller than diameter of the through hole 412. For example, the thickness of the plate 410 is smaller than one third of the diameter of the through hole 412. The shape of the through hole 412 is substantially true circle and symmetric with respect to the central axis of the module 400. The shape of the cross-section of the periphery of the through hole 112 can be tapered shape or stepped shape. The module 400 can be mounted on the bottom of the container 1 such that the through hole 412 is arranged inside of the container 1. Because the actuator 106 is arranged inside the container 1 such that the actuator 106 extends in the vertical direction, the setting of the timing of the ink end can be easily changed by changing the height of the mounting position of the actuator 106 in the container 1 by changing the height of the base mount 402.
The top end of the module 500 is slanted, and the actuator 106 is mounted on this slanted surface. Therefore, if the module 500 is mounted on the bottom or the side of the container 1, the actuator 106 slants in the vertical direction of the container 1. The slanting angle of the top end of the module 500 is substantially between 30 degree and 60 degree with considering the detecting performance.
The module 500 is mounted on the bottom or the side of the container 1 so that the actuator 106 can be arranged inside the container 1. When the module 500 is mounted on the side of the container 1, the actuator 106 is mounted on the container 1 such that the actuator 106 faces the upside, downside, or side of the container 1 with slanting. When the module 500 is mounted on the bottom of the container 1, the actuator 106 is preferable to be mounted on the container 1 such that the actuator 106 faces to the ink supply port side of the container 1 with slanting.
The module 700B shown in
There is possibility that the actuator 106 malfunctions by the contact of the ink which is dropped from a top face or a side face of the container 1 with the actuator 106, the ink of which is attached to the top face or the side face of the container 1 when the ink cartridge is shaken. However, because the liquid container mounting member 360 of the module 700B protrudes into the inside of the container 1, the actuator 106 does not malfunction by the ink dropped from the top face or the side face of the container 1.
Furthermore, the module 700B is mounted on the container 1 so that only part of the vibrating plate 176 and the mounting plate 350 are contact with ink inside of the container 1 in the embodiment of
FIG. 42((B) shows the cross section of the ink container when mounting actuator 106 on the container 1. A protecting member 361 is mounted on the container separately with the actuator 106 in the ink cartridge of the embodiment shown in FIG. 42((B). Therefore, the protecting member 361 and the actuator 106 is not one body as a module, and the protecting member 361 thus can protect the actuator 106 not to be contact by the user. A hole 380 which is provide on the front face of the actuator 106 is arranged on the side wall of the container 1. The actuator 106 includes the piezoelectric layer 160, the upper electrode 164, the lower electrode 166, the vibrating plate 176, and the mounting plate 350. The vibrating plate 176 is formed on the mounting plate 350, and the lower electrode 166 is formed on the vibrating plate 176. The piezoelectric layer 160 is formed on the top face of the lower electrode 166, and the upper electrode 164 is formed on the top face of the piezoelectric layer 160.
Therefore, the main portion of the piezoelectric layer 160 is formed by sandwiching the main portion of the piezoelectric layer 160 by the main portion of the upper electrode 164 and the lower electrode 166 from top and bottom. The circular portion, which is a main portion of each of the piezoelectric layer 160, the upper electrode 164, and the lower electrode 166, forms a piezoelectric element. The piezoelectric element is formed on the vibrating plate 176. The vibrating region of the piezoelectric element and the vibrating plate 176 constitutes the vibrating section, on which the actuator 106 actuary vibrates. A through hole 370 is provided on the mounting plate 350. Furthermore, a hole 380 is formed on the side wall of the container 1.
Therefore, ink contacts with the vibrating plate 176 through the hole 380 of the container 1 and the through hole 370 of the mounting plate 350. The hole 380 of the container land the through hole 370 of the mounting plate 350 together forms ink storing part.
Moreover, because the actuator 106 is protected by the protecting member 361, the actuator 106 can be protected form the outside contact. The base plate 178 shown in
Because the mold structure 600 shown in
Furthermore, the wave preventing wall, not shown in the figure, is provided inside the ink cartridge 180 such that the wave preventing wall faces to the actuator 106.
Furthermore, the wave preventing wall, not shown in the figure, is provided inside the ink cartridge 180 such that the wave preventing wall faces to the actuator 106.
A gap, which is filled with ink, is formed between the actuator 106 and the wave preventing wall 1192v. The gap between the wave preventing wall 1192v and the actuator 106 does not hold ink by capillary force. When the container 194 is rolled, ink wave is generated inside the container 194 by the waving, and there is possibility that the actuator 106 malfunctions by detecting gas or an air bubble caused by the shock of the ink wave. By providing the wave preventing wall 1192v, ink wave around the actuator 106 can be prevented so that the malfunction of the actuator 106 can be prevented.
The actuator 106 of the ink cartridge 180B shown in
Furthermore, by providing the actuator 106 nearby the ink supply port 187, the setting position of the actuator 106 to the connection point on the carriage on the ink container becomes reliable during the mounting of the ink container on the cartridge holder of the carriage. It is because the reliability of coupling between the ink supply port with the ink supply needle is most important during the coupling of the ink container and the carriage. If there is even a small gap, the tip of the ink supply needle will be hurt or a sealing structure such as O-ring will be damaged so that the ink will be leaked. To prevent this kind of problems, the ink jet printer usually has a special structure that can accurately positioning the ink container during the mounting of the ink container on the carriage. Therefore, the positioning of the actuator 106 becomes reliable by arranging the actuator nearby the ink supply port. Furthermore, the actuator 106 can be further reliably positioned by mounting the actuator 106 at the center of the width direction of the container 194. It is because the waving is the smallest when the ink container rolls along an axis, the center of which is center line of the width direction, during the mounting of the ink container on the holder.
A terminals 612 are formed on the semiconductor memory device 7 and around the semiconductor memory device 7. The terminal 612 transfer the signal between the semiconductor memory device 7 and outside the ink jet recording apparatus. The semiconductor memory device 7 can be constituted by the semiconductor memory which can be rewritten such as EEPROM. Because the semiconductor memory device 7 and the actuator 106 are formed on the same circuit board 610, the mounting process can be finished at one time during mounting the semiconductor memory device 7 and the actuator 106 on the ink cartridge 180C. Moreover, the working process during the manufacturing of the ink cartridge 180C and the recycling of the ink cartridge 180C can be simplified. Furthermore, the manufacturing cost of the ink cartridge 180C can be reduced because the numbers of the parts can be reduced.
The actuator 106 detects the ink consumption status inside the container 194. The semiconductor memory device 7 stores the information of ink such as residual quantity of ink detected by the actuator 106. That is, the semiconductor memory device 7 stores the information related to the characteristic parameter such as the characteristic of ink and the ink cartridge used for the actuator 106 when detecting the ink consumption status. The semiconductor memory device 7 previously stores the resonant frequency of when ink inside the container 194 is full, that is, when ink is filled in the container 194 sufficiently, or when ink in the container 194 is end, that is, ink in the container 194 is consumed, as one of the characteristic parameter. The resonant frequency when the ink inside the container 194 is full status or end status can be stored when the ink container is mounted on the ink jet recording apparatus for the first time. Moreover, the resonant frequency when the ink inside the container 194 is full status or end status can be stored during the manufacturing of the container 194. Because the unevenness of the detection of the residual quantity of ink can be compensated by storing the resonant frequency when the ink inside the container 194 is full status or end status in the semiconductor memory device 7 previously and reading out the data of the resonant frequency at the ink jet recording apparatus side, it can be accurately detected that the residual quantity of ink is decreased to the reference value.
The ink cartridge 180F shown in
Because ink is drained from the ink supply port 187, and air enters from the air introducing inlet 185, ink is consumed from the containing chamber 213 of the ink supply port 187 side to the containing chamber 213 of the inner part of the ink cartridge 180G. For example, the ink in the containing chamber 213 which is most near to the ink supply port 187 is consumed, and during the ink level of the containing chamber 213 which is most near to the ink supply port 187 decreases, the other containing chamber 213 are filled with ink. When the ink in the containing chamber 213 which is most near to the ink supply port 187 is consumed totally, air enters to the containing chamber 213 which is second by counted from the ink supply port 187, then the ink in the second containing chamber 213 is beginning to be consumed so that the ink level of the second containing chamber 213 begin to decrease. At this time, ink is filled in the containing chamber 213 which is third or more than third by counted from the ink supply port 187. In this way, ink is consumed from the containing chamber 213 which is most near to the ink supply port 187 to the containing chamber 213 which is far from the ink supply port 187 in order.
As shown above, because the actuator 106 is arranged on the containing chamber 213 that is farthermost from the ink supply port 187, the actuator 106 can detect the ink end. Furthermore, the plurality of wave preventing walls 212a can effectively prevent the waves of ink.
The ink cartridge 180H shown in
Furthermore, among the plurality of wave preventing wall 212b, the wave preventing wall 212b which extends from the top wall 1090 and the side wall, not shown in the figure, located on width direction of the container 194 can be coupled liquid-tightly or air-tightly. In case the wave preventing wall 212b which is nearest to the actuator 106 among the plurality of wave preventing wall 212b extends from the top wall 1080, gas enters to the containing chamber 213 which is nearest to the actuator 106 when the level of ink surface inside the container 194 reaches to the lower end of the wave preventing wall 212b which is nearest to the actuator 106. Therefore, the level of ink surface for detecting the ink end is determined by the position of the lower end 212f to the level of ink surface along a vertical direction
In the ink cartridge 180I shown in
A buffer 214 is formed on the top wall 1080 of the containing chamber 213b. The buffer 214 is a concave part which accepts the bubble which enters into the ink cartridge 180I when the ink cartridge 180I is manufactured or when the ink cartridge 180I is left for a long period without to be used. In
In the ink cartridge 180J shown in
A ventilation side ink chamber 225a is formed on the inner part of the first wave preventing wall 222, seen from the ink supply port 230, by the first wave preventing wall 222. On the other hand, a detection side ink chamber 225b is formed on the front side of the second wave preventing wall 224, seen from the ink supply port 230, by the second wave preventing wall 224. The volume of the ventilation side ink chamber 225a is larger than the volume of the detection side ink chamber 225b. A detection side small ink chamber 227 is formed by providing a gap, which can generate the capillary phenomenon, between the first wave preventing wall 222 and the second wave preventing wall 224. Therefore, the ink in the ventilation side ink chamber 225a is collected to the detection side small ink chamber 227 by the capillary force of the detection side small ink chamber 227. Therefore, the detection side small ink chamber 227 can prevent that the air or air bubble enters into the detection side ink chamber 225b. Furthermore, the ink level in the detection side ink chamber 225b can decrease steadily and gradually. Because the ventilation side ink chamber 225a is formed at more inner part of the detection side ink chamber 225b, seen from the ink supply port 230, the ink in the detection side ink chamber 225b is consumed after the ink in the ventilation side ink chamber 225a is consumed.
The actuator 106 is mounted on the side wall 1071 of the ink cartridge 220A of the ink supply port 230 side, that is, the side wall 1071 of the detection side ink chamber 225b of the ink supply port 230 side. The actuator 106 detects the ink consumption status inside the detection side ink chamber 225b. The residual quantity of ink at the timing closed to the ink near end can be detected stably by mounting the actuator 106 on the side wall 1071 of the detection side ink chamber 225b. Furthermore, by changing the height of the mounting position of the actuator 106 on the side wall 1071 of the detection side ink chamber 225b, the timing to determine which ink residual quantity as an ink end can be freely set. Because ink is sullied from the ventilation side ink chamber 225a to the detection side ink chamber 225b by the detection side small ink chamber 227, the actuator 106 does not influenced by the waving of ink caused by the waving of the ink cartridge 220A, and actuator 106 can thus reliably measure the ink residual quantity. Furthermore, because the detection side small ink chamber 227 holds ink, the detection side small ink chamber 227 can prevent ink to flow backward from the detection side ink chamber 225b to the ventilation side ink chamber 225a.
A check valve 228 is provided on the top face of the ink cartridge 220A. The leaking of ink outside of the ink cartridge 220A caused by the waving of the ink cartridge 220A can be prevented by the check valve 228. Furthermore, the evaporation of ink from the ink cartridge 220A can be prevented by providing the check valve 228 on the top face of the ink cartridge 220A. If ink in the ink cartridge 220A is consumed, and negative pressure inside the ink cartridge 220A exceeds the pressure of the check valve 228, the check valve 228 opens and introduces air into the ink cartridge 220A. Then the check valve 228 closes to maintain the pressure inside the ink cartridge 220A to be stable.
The ink cartridge 220B shown in FIG. 51((B) has a porous member 242 in the ventilation side ink chamber 225a instead of providing the check valve 228 on the ink cartridge 220A as shown in
The airhole 233 is provided on the top wall 1030 of the ventilation side ink chamber 123a which ventilates with atmosphere. The check valve 228 shown in
The partition wall 193a is coupled with the top wall 1030 liquid-tightly. Therefore, even the ink is consumed, ink K is filled in the detection side ink chamber 123b in the container 1 until the level of liquid surface of ink K reaches to the lower end 193aa of the partition wall 193a. When the ink consumption advances and the level of liquid surface of ink K reaches to the lower end 193aa of the partition wall 193a, gas enters to the detection side ink chamber 123b. Thereby the ink k remained in the detection side ink chamber 123b flows out to the ink supply port 2, and the medium existed around the actuator 106 changes from ink K to atmosphere. Therefore, the actuator 106 can detect that the status inside the ink cartridge is in ink end status. Thus, it is the lower end 193aa to determine which level of the liquid surface of ink K to be a ink end. Furthermore, the volume of the detection side ink chamber 132b is determined by the width between the side wall 1010, which extends substantially vertical to the ink surface, and the partition wall 193a. Therefore, the ink quantity remains inside the container 1 when detecting the ink end can be set by the width between the side wall 1010 and the partition wall 193a and the height of the lower end 193aa in the direction vertical to the ink surface.
The volume of the detection side ink chamber 123b is preferably half or smaller than half of the volume of the ventilation side ink chamber 123a. A capillary force such as to hold ink K does not work on the detection side ink chamber 123b.
The actuator 106 can be used as a means of merely detecting the vibration without vibrating itself. Moreover, the detailed configuration of the airhole will be described in
A packing ring 4 and a valve body 6 are provided in the ink supply port 2. Referring to
If there is no partition wall 193a in the container 1, bubbles may be generated by the waving of ink, which is caused by the vibration of ink cartridge generated by such as the scanning operation during the printing process. Then, there is a danger that the actuator 106 may detect mistakenly that there is enough ink in the container 1 if the ink attaches to the actuator 106 by the waving of ink even if there is little amount of ink in the container 1. Moreover, there is also a danger that the actuator 106 may detect mistakenly that there is no ink if the bubble attaches to the actuator 106 even if the ink is filled in the container 1.
However, according to the embodiment of the liquid container of the present embodiment, the partition wall prevents the waving of ink around the piezoelectric device even when the ink cartridge vibrates by such as the scanning operation during the printing process. By preventing the waving of ink around the piezoelectric device, the partition wall 193a prevents the generation of the bubbles. Furthermore, even the bubbles generate in the ventilation side ink chamber, the partition wall separates the ventilation side ink chamber and the detection side ink chamber air-tightly and liquid-tightly. Therefore, the partition wall prevents the bubbles to move close to the actuator 106 and contact with the actuator 106.
There is no limitation of the size, thickness, shape, flexibility, and material for the partition wall. Therefore, the size of the partition wall can be made relatively larger or smaller. The thickness of the partition wall can be made relatively thicker or thinner. Furthermore, the shape of the partition wall can be square or rectangular. Preferably the shape, size and thickness of the partition wall is changed according to the shape of the ink cartridge. Furthermore, the partition wall can be made from the hard material or flexible material. For example, material such as plastic, tefron, nylon, polypropylene, or PET can be used for the partition wall. Preferably, the partition wall is made from the air-tight or liquid-tight material which does not pass through gas or liquid. Moreover, the container and the partition wall are made from same material so that the container and the partition wall can be formed in one body. The manufacturing process of the ink cartridge can thereby be reduced.
When the ink supply port 2 of the container 1 is inserted through the ink supply needle 32 of the subtank unit 33, the valve body 6 recedes against the spring 5, so that an ink passage is formed and the ink inside the container 1 flows into the ink chamber 34. At a stage where the ink chamber 34 is filled with ink, a negative pressure is applied to a nozzle opening of the recording head 31 so as to fill the recording head with ink. Thereafter, the recording operation is performed.
When the ink is consumed in the recording head 31 by the recording operation, a pressure in the downstream of the flexible valve 36 decreases. Then, the flexible valve 36 is positioned away from a valve body 38 so as to become opened. When the flexible valve 36 is opened, the ink in the ink chamber 34 flows into the recording head 31 through the ink passage 35. Accompanied by the ink which has flowed into the recording head 31, the ink in the container 1 flows into the subtank unit 33 via the ink supply needle 32.
The volume of the ventilation side ink chamber 123a which is close to the ink supply port 2 is larger than the volume of the detection side ink chamber 123b which is relatively far from the ink supply port 2. Furthermore, the volume of the detection side small ink chamber 1123a which is close to the ink supply port 2 is larger than the volume of the detection side small ink chamber 1123b which is relatively far from the ink supply port 2 within the detection side ink chamber 123b. Therefore, ink in the ventilation side ink chamber 123a is consumed at first. With consumption of ink advanced, the level of ink surface in the ventilation side ink chamber 123a decreases. On the other hand, because the partition wall 193cc and the top wall 1039 is coupled liquid-tightly or air-tightly, the detection side ink chamber 123b is filled with ink until the level of ink surface reaches to the lower end 193cc of the partition wall 193c.
Next, if the ink surface in the ventilation side ink chamber 123a reaches to the lower end 193cc of the partition wall 193c, ink in the detection side small ink chamber 1123a is beginning to be consumed because ink in the detection side small ink chamber 1123a flows out to the ink supply port 2. With consumption of ink advanced, the level of ink surface in the detection side small ink chamber 1123a decreases. On the other hand, because the partition wall 193dd and the top wall 1039 is coupled liquid-tightly or air-tightly, the detection side small ink chamber 1123b is filled with ink until the level of ink surface reaches to the lower end 193dd of the partition wall 193d. Finally, if the level of ink surface of the detection side small ink chamber 1123a reaches to the lower end 193dd of the partition wall 193d, ink in the detection side small ink chamber 1123b is beginning to be consumed because ink in the detection side small ink chamber 1123b flows out to the ink supply port 2.
Therefore, the actuators 106a and 106b can detect the ink consumption status step by step. Moreover, because the volume of the ink chambers are designed such that the volume decreases from the ventilation side ink chamber 123a, which is nearest to the ink supply port 2, to the detection side small ink chamber 1123a and further to the detection side small ink chamber 1123b, which is farthest from the ink supply port 2, the frequency of detecting an ink by the actuators 106a and 106b increases with the advance of ink consumption. Therefore, the frequency of detection of ink increases with the decreasing of residual quantity of ink.
The container of the ink cartridge shown in
Moreover, because the volume of the ink chambers are designed such that the volume decreases from the detection side small ink chamber 1123a, which is near to the ink supply port 2, to the detection side small ink chamber, which is far from the ink supply port 2, the time interval of detecting a decrease of ink by the actuator 106 gradually decreases as the ink cartridge shown in
Furthermore, the actuator 106a is mounted nearby the partition wall 193c, and the actuator 106b is mounted nearby the partition wall 193d. Therefore, even if the bubble G generates and enters into the detection side ink chamber 123b when the ink inside the ventilation side ink chamber 123a does not reach to the lower end 193cc of the partition wall 193c, the bubble G stays in the upper side of boundary between the top wall 1039 and the partition wall 193c or the upper side of boundary between the top wall 1039 and the side wall 1030. Therefore, the bubble G does not attaches to the actuator 106.
A ventilation side ink chamber 225a is formed relatively near to the airhole 233. On the other hand, a detection side ink chamber 225b is formed relatively far from the airhole 233. By the second partition wall 224, the detection side ink chamber 225b and a detection side small ink chamber 227 are formed. The volume of the ventilation side ink chamber 225a is larger than the volume of the detection side ink chamber 225b. A detection side small ink chamber 227 is formed by providing a gap, which can generate the capillary phenomenon, between the first partition wall 222 and the second partition wall 224. Therefore, the ink in the ventilation side ink chamber 225a is collected to the detection side small ink chamber 227 by the capillary force of the detection side small ink chamber 227. The first partition wall 222 can prevent that the gas or air bubble to enter into the detection side ink chamber 225b. Furthermore, the ink level in the detection side ink chamber 225b can decrease steadily and gradually. Because the ventilation side ink chamber 225a is formed at more inner part of the detection side ink chamber 225b, seen from the ink supply port 230, the ink in the detection side ink chamber 225b is consumed after the ink in the ventilation side ink chamber 225a is consumed.
Because ink is supplied from the ventilation side ink chamber 225a to the detection side ink chamber 225b by the detection side small ink chamber 227, the actuator 106 does not influenced by the rolling of ink caused by the rolling of the ink cartridge 220A, and actuator 106 can thus reliably measure the ink residual quantity. Furthermore, because the detection side small ink chamber 227 holds ink, the detection side small ink chamber 227 can prevent ink to flow backward from the detection side ink chamber 225b to the ventilation side ink chamber 225a.
The actuator 106 is mounted on the top wall 1013 of the ink supply port 230 side of the detection side ink chamber 225b. The actuator 106 detects the ink consumption status inside the detection side ink chamber 225b. The residual quantity of ink at the timing closed to the ink near end can be detected stably by mounting the actuator 106 on the side wall of the detection side ink chamber 225b.
A airhole 233 is provided on the top wall 1013 of the ink cartridge 220A. Moreover, a check valve 228 is provided on the airhole 233. The leaking of ink outside the ink cartridge 220A caused by the rolling of the ink cartridge 220A can be prevented by the check valve 228. Furthermore, the evaporation of ink from the airhole 233 of the ink cartridge 220A can be prevented by providing the check valve 228 on the top face of the ink cartridge 220A. If ink in the ink cartridge 220A is consumed, and negative pressure inside the ink cartridge 220A exceeds the pressure of the check valve 228, the check valve 228 opens and introduces air into the ink cartridge 220A. Then the check valve 228 closes to accelerate the drainage of ink from the ink cartridge 220A.
A buffer 214a, that is a concave part for accepting the air bubble which enters to the ink cartridge 180A is formed on the top wall 194c of the detection side ink chamber 213b. In
One end of the second partition wall 212e, which extends from the partition wall 212d toward the side wall 194b, extends until to the position where just under the buffer 214b. Therefore, first, the first partition wall 212d prevents the entering of bubble into the first detection side ink chamber 213c. If the bubble enters into the detection side ink chamber 213c mistakenly, the bubble is introduced to the position which is just under the buffer 214a by the second partition wall 212e. Therefore, the bubble is caught by the buffer 214a. Therefore, the malfunction of the actuator 106 to detects the ink end wrongly by the attaching of bubble to the actuator 106, which is provided in the second detection side ink chamber 213d, can be further prevented.
Therefore, first, the partition wall 212a prevents the entering of bubble into the detection side ink chamber 213b. If the bubble enters into the detection side ink chamber 213b mistakenly, the bubble is directly caught by the buffer 214a or introduced to the buffer 214b along the tapered face 1040. Therefore, the malfunction of the actuator 106 to detects the ink end wrongly by the attaching of bubble to the actuator 106 can be further prevented. The shape and size of the buffer can be other arbitrary shape and size.
Because gas is introduced from the airhole 233, ink is consumed from the ventilation side ink chamber 213a of the ink supply port 187 side to the detection side ink chamber 213k. For example, the ink in the ventilation side ink chamber 213a which is nearest to the ink supply port 187 is consumed, and during the ink level of the ventilation side ink chamber 213a decreases, the other detection side small ink chambers are filled with ink. When the ink level in the ventilation side ink chamber 213a reaches to the lower end 212hh of the partition wall 212h, air enters into the detection side small ink chamber 213h, and then the ink in the detection side small ink chamber 213h is beginning to be consumed. At this time, ink is filled in the detection side small ink chamber 213i, 213j, and 213k. Furthermore, if the ink level in the detection side small ink chamber 213h reaches to the lower end 212ii of the partition wall 212i, air enters into the detection side small ink chamber 213i, and then the ink in the detection side small ink chamber 213i is beginning to be consumed. In this way, ink is sequentially consumed from the ventilation side ink chamber 213a to the detection side small ink chamber 213k.
Each of the actuators 106h, 106i, 106j, and 106k is mounted on the top wall 194c of each of the detection side small ink chambers. Therefore, the actuators 106h, 106i, 106j, and 106k can detect the decrease of the ink quantity step by step. Furthermore, the volume of the ink chambers decreases from the ventilation side ink chamber 213a, which is near to the ink supply port 187, to the detection side small ink chamber 213k gradually. Therefore, the time interval of detecting the decrease of the ink quantity gradually decreases. Therefore, the frequency of the ink quantity detection can be increased as the ink end is drawing near.
The semiconductor memory device 7 can be constituted by the semiconductor memory which can be rewritten such as EEPROM. Because the semiconductor memory device 7 and the actuator 106 are formed on the same circuit board 610, the mounting process can be finished at one time during mounting the semiconductor memory device 7 and the actuator 106 on the ink cartridge 180C. Moreover, the working process during the manufacturing of the ink cartridge 180C and the recycling of the ink cartridge 180C can be simplified. Furthermore, the manufacturing cost of the ink cartridge 180C can be reduced because the numbers of the parts can be reduced. Furthermore, a partition wall 212J extends from the top wall 194c downward to the ink surface. The partition wall 212J prevents the waving of ink or bubbling. The partition wall 212J thereby prevents the malfunction of the actuator 106.
The actuator 106 detects the ink consumption status inside the container 194. The semiconductor memory device 7 stores the information of ink such as residual quantity of ink detected by the actuator 106. That is, the semiconductor memory device 7 stores the information related to the characteristic parameter such as the characteristic of ink and the ink cartridge used for the actuator 106 when detecting the ink consumption status. The semiconductor memory device 7 previously stores the resonant frequency of when ink inside the container 194 is full, that is, when ink is filled in the container 194 sufficiently, or when ink in the container 194 is end, that is, ink in the container 194 is consumed, as one of the characteristic parameter. The resonant frequency when the ink inside the container 194 is full status or end status can be stored when the ink container is mounted on the ink jet recording apparatus for the first time. Moreover, the resonant frequency when the ink inside the container 194 is full status or end status can be stored during the manufacturing of the container 194. Because the unevenness of the detection of the residual quantity of ink can be compensated by storing the resonant frequency when the ink inside the container 194 is full status or end status in the semiconductor memory device 7 previously and reading out the data of the resonant frequency at the ink jet recording apparatus side, it can be accurately detected that the residual quantity of ink is decreased to the reference value.
Furthermore, the ink cartridge 180K has a ventilation side ink chamber 213a and a plurality of detection side small ink chamber 213m, 213n, 213p, and 213q separated by the each of plurality of partition walls 212m, 212n, 212p and 212q. The bottom part of the ventilation side ink chamber 213a and a plurality of the detection side small ink chambers 213m, 213n, 213p, and 213q communicates with each other. Each of the actuators 106m, 106n, 106p, and 106q is mounted on the top face 194c of each of the plurality of the detection side small ink chambers 213m, 213n, 213p, and 213q, respectively. Each of the actuators 106m, 106n, 106p, and 106q is arranged on substantially center of the top face 194c of each of the plurality of the detection side small ink chambers 213m, 213n, 213p, and 213q, respectively.
If ink is consumed, gas is introduced from the airhole 233. Therefore, ink is consumed from the ventilation side ink chamber 213a which is near to the airhole 233 to the detection side ink chamber 213q. For example, the ink in the ventilation side ink chamber 213a which is nearest to the airhole 233 is consumed, and during the ink level of the ventilation side ink chamber 213a decreases, the other detection side small ink chambers are filled with ink. When the ink level in the ventilation side ink chamber 213a reaches to the lower end 212mm of the partition wall 212m, air enters into the detection side small ink chamber 213m, and then the ink in the detection side small ink chamber 213m is beginning to be consumed. At this time, ink is filled in the detection side small ink chamber 213n, 213p, and 213q. Furthermore, if the ink level in the detection side small ink chamber 213m reaches to the lower end 212nn of the partition wall 212n, air enters into the detection side small ink chamber 213n, and then the ink in the detection side small ink chamber 213n is beginning to be consumed. In this way, ink is sequentially consumed from the ventilation side ink chamber 213a to the detection side small ink chamber 213q.
Because the gap between the each of the lower ends and the bottom wall 1a narrows gradually in the order from the lower ends 212mm, 212nn, 212pp, and 212qq, ink is consumed in the order from the ventilation side ink chamber 213a, detection side small ink chamber 212m, 212n, 212p, and 212q, sequentially. Therefore, the gas is difficult to enter mistakenly into the ink chambers in the same order mentioned above. For example, even if gas enters into the detection side small ink chamber 213m and 213n mistakenly, and the actuator 106 detects the ink end mistakenly, the partition walls 212p and 212q, which is longer than the partition walls 212m and 212n, prevents the gas to enter into the detection side small ink chamber 213p and 213q. Therefore, the actuators 106p and 106q do not mistakenly detect the ink end. Thus, in the present embodiment, the actuator 106q detects the ink end finally and most reliably.
Furthermore, because the partition walls 212m, 212n, 212p, and 212q prevent the waving of ink, the partition walls 212m, 212n, 212p, and 212q also prevent the generation of the bubble.
Moreover, the intervals between each of the partition walls 212m, 212n, 212p, and 212q with each other can be equal, and the interval between the partition wall 212q and the side wall 194b of the container 1 can be equal. In this case, the capacity of each of the detection side small ink chambers 213m, 213n, 213p, and 213q can be adjusted by adjusting the length of the partition walls 212m, 212n, 212p, and 212q.
At least two ink chambers include a ventilation side ink chamber 123a which communicate with atmosphere and the detecting side ink chamber 123b. The actuator 106 is mounted on the top wall 1030 of the ink chamber 123b, and a porous member 1000 is provided in the detection side ink chamber 123b as a buffer member. A coarse buffer material such as filter can be used instead of the porous member 1000.
The airhole 2c is provided on the top wall 1030 of the ventilation side ink chamber 123a which ventilates with atmosphere. The check valve 228 shown in
The partition wall 193a is coupled with the top wall 1030 and side wall, not shown in the figure, liquid-tightly. Therefore, even the ink is consumed, ink K is sufficiently absorbed in the porous member 1000 and filled in the detection side ink chamber 123b in the container 1 until the level of liquid surface of ink K reaches to the lower end 193aa of the partition wall 193a. When the ink consumption advances, and the level of liquid surface of ink K reaches to the lower end 193aa of the partition wall 193a, gas enters to the detection side ink chamber 123b. The ink k absorbed by the porous member 1000 in the detection side ink chamber 123b thereby flows out to the ink supply port 2, and the medium existed around the actuator 106 changes from ink to atmosphere. Therefore, the actuator 106 can detect that the status inside the ink cartridge is in ink end status. Thus, it is the lower end 193aa to determine which level of the liquid surface of ink K to be a ink end. Furthermore, the volume of the detection side ink chamber 132b is determined by the position of partition wall 193a to the top wall 1030. Therefore, the ink quantity remains inside the container 1 when detecting the ink end can be set by the position of the partition wall 193a to the top wall 1030 and the height of the lower end 193aa in the direction vertical to the ink surface.
Here, the case of using an on-carriage type ink jet recording apparatus, the ink cartridge of which is move together with recording head during the scanning process will be considered. If there is no partition wall 193a in the container 1, or if no buffer material is provide around the actuator 106, bubbles may be generated by the waving of ink, which is caused by the vibration of ink cartridge generated by such as the scanning operation during the printing process because the ink cartridge moves together with recording head. Then, there is a danger that the actuator 106 may detect mistakenly that there is enough ink in the container 1 if the ink attaches to the actuator 106 by the waving of ink even if there is little amount of ink in the container 1. Moreover, there is also a danger that the actuator 106 may detect mistakenly that there is no ink if the bubble attaches to the actuator 106 even if the ink is filled in the container 1.
However, according to the embodiment of the liquid container of the present embodiment, the partition wall prevents the waving of ink around the piezoelectric device even when the ink cartridge vibrates by such as the scanning operation during the printing process. By preventing the waving of ink around the piezoelectric device, the partition wall 193a prevents the generation of the bubbles. Furthermore, even the bubbles generate in the ventilation side ink chamber, the partition wall separates the ventilation side ink chamber and the detection side ink chamber. Therefore, the partition wall prevents the bubbles to move close to the actuator 106 and contact with the actuator 106.
Moreover, the porous member 1000 is provided on the detection side ink chamber 123b to intervene between the actuator 106 and the ventilation side ink chamber 123a. Therefore, even if the bubbles generated in the ventilation side ink chamber 123a enters into the detection side ink chamber 123b mistakenly, the porous member 1000 prevents the bubbles to move close to the actuator 106 and contact with the actuator 106.
Furthermore, because the porous member 1000 is provided in the detection side ink chamber 123b, ink inside the detection side ink chamber 123b does not wave by the vibration of the actuator 106. Therefore, the actuator 106 can reliably and stably detect the ink consumption status in the container 1.
The volume of the detection side ink chamber 123b is preferably half or smaller than half of the volume of the ventilation side ink chamber 123a. The detection side ink chamber 123b preferably has a width in a degree not to arise a capillary force such as to hold ink K.
The actuator 106 can be used as a means of merely detecting the vibration without vibrating itself.
There is no limitation of the size, thickness, shape, flexibility, and material for the partition wall of the ink cartridge of the embodiment of the liquid container according to the present embodiment. Therefore, the size of the partition wall can be made further larger or smaller. The thickness of the partition wall can be made further thicker or thinner. Furthermore, the shape of the partition wall can be square or rectangular. Furthermore, the partition wall can be made from the hard material or flexible material. For example, material such as plastic, tefron, nylon, polypropylene, or PET can be used for the partition wall. Preferably, the partition wall is made from the air-tight or liquid-tight material which does not pass through gas or liquid. Moreover, the container and the partition wall are made from same material so that the container and the partition wall can be formed in one body. The manufacturing process of the ink cartridge can thereby be reduced.
Moreover, there is no limitation of the size, thickness, shape, flexibility, and material for the porous member of the ink cartridge of the embodiment of the liquid container according to the present embodiment. Therefore, the size of the porous member can be made further larger or smaller. The thickness of the porous member can be made further thicker or thinner. Furthermore, the shape of the porous member can be cubic or rectangular parallelepiped.
Moreover, there is no limitation of the shape of the hole included in the porous member. Therefore, for example, the negative pressure or capillary force of the porous member, which includes the hole of spherical shape, can be increased by reducing the size of the hole. On the other hand, the negative pressure or capillary force of the porous member, which includes the hole of spherical shape, can be decreased by enlarging the size of the hole. Preferably, the porous member 1000 is made from a flexible material such as sponge. Moreover, it is preferable to set the diameter of hole of the porous member to predetermined diameter so that the porous member can absorb ink from a cavity, referring to
The porous member 1000 of the embodiment shown in
A packing ring 4 and a valve body 6 are provided in the ink supply port 2. Referring to
Furthermore, a porous member 1002 and a porous member 1003 are provided to each of the inside of the detection side small ink chamber 1123a and the detection side small ink chamber 1123b.
Because gas is introduced from the airhole 128, ink is consumed from the ventilation side ink chamber 123a, which is near to the airhole 128, to the detection side small ink chamber 1123b, which is far from the airhole 128. Therefore, during ink in the ventilation side ink chamber 123a which is nearest to the airhole 128 is consumed, the detection side ink chamber 123b is filled with ink. When the ink level in the ventilation side ink chamber 123a reaches to the lower end 193cc of the partition wall 193c, air enters into the detection side small ink chamber 1123a, and then the ink in the detection side small ink chamber 1123a is beginning to be consumed. At this time, ink is filled in the detection side small ink chamber 1123b. Furthermore, if the ink level in the detection side small ink chamber 1123a reaches to the lower end 193dd of the second partition wall 193d, air enters into the detection side small ink chamber 1123b, and then the ink in the detection side small ink chamber 1123b is beginning to be consumed. In this way, ink is sequentially consumed from the ventilation side ink chamber 123a to the detection side small ink chamber 1123b.
Because each of the actuators 106 is mounted on the top wall 1030 of each of the detection side small ink chambers 1123a and 1123b, the actuators 106 can detect the decrease of the ink quantity step by step. Furthermore, the volume of the detection side ink chamber 123b is smaller than the volume of the ventilation side ink chamber 213a. Furthermore, the volume of the detection side small ink chamber 1123a and 1123b gradually decreases from the detection side small ink chamber 1123a which is near to the airhole 128 to the detection side small ink chamber 1123b, which is far from the airhole 128. Therefore, the time interval of detecting the decrease of the ink quantity gradually decreases. The frequency of the ink quantity detection can thereby be increased as the ink end is drawing near.
A buffer member 1005a is provided to block the communicating port between the ventilation side ink chamber 213a and the detection side ink chamber 213b. A filter-like material, which includes many holes on its surface, can be used for buffer member 1050a if the buffer member closes the communicating port. Furthermore, the buffer member can be porous member. Therefore, the ventilation side ink chamber 213a and the detection side ink chamber 123b communicates each other through the buffer member 1005a. Because the buffer member 1005a is made from porous material, the buffer material pass through gas and liquid. However, if the buffer member 1005a holds liquid by the capillary force, the buffer member becomes airtight. Therefore, the buffer member 1050a can suppress bubbles to passing through the buffer member 1050a. Thus, the buffer member 1050a can prevents the bubbles, which is generated in the ventilation side ink chamber 213a, to enter inside the detection side ink chamber 213b and attach to the actuator 106.
The actuator 106 is mounted on the top wall 194c of each of the ventilation side ink chamber 213a and the detection side ink chamber 213b. The volume of the detection side ink chamber 213b is smaller than the volume of the ventilation side ink chamber 213a. The volume of the detection side ink chamber 213b is smaller than the half of the volume of the ventilation side ink chamber 213a in the ink cartridge of according to the present embodiment.
A buffer 214a, that is a concave part for accepting the air bubble which enters to the ink cartridge 180A is formed on the top wall 194c of the detection side ink chamber 213b. In
The ink cartridge 180B shown in
Moreover, gas existed in the ventilation side ink chamber 213a is difficult to enter into the detection side ink chamber 213b. Therefore, the malfunction caused by the attaching of bubble to the actuator 106 can be further prevented. Furthermore, a gap is provided between the lower end 212cc and the bottom wall 2a of the ink cartridge 180F. A capillary force, which can hold ink, does not work on the gap provided between the lower end 212cc and the side wall 194b.
A porous member 1005g, which is a bottom part of porous member 1005f, is sandwiched and compressed by the lower end 212bb and the side wall 194b. Therefore, the hole diameter of the porous member 1005g is smaller than the hole diameter of the porous member 1005f. Thus, the hole diameter of the porous member decreases from the porous member 1005f, which locates nearby the actuator 106, to the porous member 1005g and further to porous member 1005h. The hole diameter of the porous member 1005f thereby decreases step by step downward to the ink surface. Therefore, the ink, which once flows into the lower part of the porous member 1005f does not flow backward to the upside of the porous member 1005f by the capillary force. Furthermore, the porous member 1005f of the present embodiment prevents ink to attach to the actuator 106, which is mounted on the top wall 194c, by the waving of ink. Therefore, the malfunction of the actuator 106 to detect the ink end status as the ink exist status can be prevented.
Moreover, the bottom end 212bb is longer than the lower end 212aa of the partition wall 212a of the embodiments shown in
Therefore, first, the first partition wall 212d prevents the entering of bubble into the first detection side ink chamber 213c. If the bubble enters into the detection side ink chamber 213c mistakenly, the bubble is absorbed by the porous member 1005i. Furthermore, if the bubble reaches to the second partition wall 212e, the bubble is introduced to the position which is just under the buffer 214a by the second partition wall 212e. Therefore, the bubble is caught by the buffer 214a. Therefore, the malfunction of the actuator 106 to detects the ink end wrongly by the attaching of bubble to the actuator 106, which is provided in the second detection side ink chamber 213d, can be further prevented.
Therefore, first, the partition wall 212a prevents the entering of bubble into the detection side ink chamber 213b. If the bubble enters into the detection side ink chamber 213b mistakenly, the bubble is absorbed by the porous member 1005b. If the bubble reaches to the upper side of the detection side ink chamber 213b, the bubble is directly caught by the buffer 214a or introduced to the buffer 214b along the tapered face 1040. Therefore, the malfunction of the actuator 106 to detects the ink end wrongly by the attaching of bubble to the actuator 106 can be further prevented. The shape and size of the buffer can be other arbitrary shape and size.
Moreover, the second partition wall 212e in the embodiment shown in
The volume of the ventilation side ink chamber 213a, and the detection side small ink chamber 213f, 213g, 213h, and 213i are gradually decreases as the distance from the airhole 128 increases to the inner side of the ink container 194. Therefore, the volume of the ink chambers gradually decreases in the order from the ventilation side ink chamber 213a, the detection side small ink chamber 213f, 213g, 213h, and 213i. Therefore, the interval of the mounting position of the actuator 106 is wider on the airhole 128 side and becomes narrower as the distance from the airhole increases to the inner side of the ink container 194.
Furthermore, each of the porous members 1005f, 1005g, 1005h and 1005i are filled in the each of the detection side small ink chambers 213f, 213g, 213h, and 213i. The each of the porous members 1005f, 1005g, 1005h and 1005i are filled from the detection side small ink chambers 213f, which is near to the airhole 128, to the detection side small ink chamber 213i, which is far from the airhole 128, sequentially. The porous members are designed such that the hole diameter increases in the order from the porous member 1005f, 1005g, 1005h and 1005i. The porous members can be formed such that the affinity for ink decreases in the order from the porous member 1005f, 1005g, 1005h and 1005i.
Because gas is introduced from the airhole 128, ink is consumed from the ventilation side ink chamber 213a of the airhole 128 side to the detection side ink chamber 213i. For example, the ink in the ventilation side ink chamber 213a which is nearest to the airhole 128 is consumed, and during the ink level of the ventilation side ink chamber 213a decreases, the other detection side small ink chambers 213f, 213g, 213h, and 213i are filled with ink. When the ink level in the ventilation side ink chamber 213a reaches to the lower end 212tt of the partition wall 212f, air enters into the detection side small ink chamber 213f, and then the ink in the detection side small ink chamber 213f is beginning to be consumed. The ink level in the detection side small ink chamber 213f thereby begin to decrease. At this time, ink is filled in the detection side small ink chambers 213g, 213h, and 213i. In this way, ink is sequentially consumed from the ventilation side ink chamber 213a to the detection side small ink chamber 213i.
Furthermore, the porous members are designed such that the hole diameter increases in the order from the porous members 1005f, 1005g, 1005h and 1005i. Therefore, ink is consumed in the order from the detection side small ink chamber 213f which is relatively near to the airhole 128 to the detection side small ink chamber 213I which is far from the airhole 128, sequentially. Moreover, the porous members 1005f, 1005g, 1005h and 1005I prevent ink to flow back from the detection side small ink chamber 213f to the detection side small ink chamber 213i.
In the present embodiment, each of the actuators 106f, 106g, 106h, and 106i is mounted on the top wall 194c of each of the detection side small ink chambers 213f, 213g, 213h, and 213I with interval. Therefore, the actuators 106f, 106g, 106h, and 106i can detect the decrease of the ink quantity step by step. Furthermore, the volume of the ink chambers decreases from the ventilation side ink chamber 213a to the detection side small ink chamber 213i gradually. Therefore, the time interval of detecting the decrease of the ink quantity gradually decreases. Therefore, the frequency of the ink quantity detection can be increased as the ink end is drawing near.
Furthermore, each of the volume of the detection side small ink chamber can be changed by changing the length of the partition wall as in the embodiment shown in
A ventilation side ink chamber 225a is formed relatively near to the airhole 233. On the other hand, a detection side ink chamber 225b is formed relatively far from the airhole 233. By the second partition wall 224, the detection side ink chamber 225b and a detection side small ink chamber 227 are formed. The detection side small ink chamber 227 is formed between the first partition wall 222 and the second partition wall 224. The detection side small ink chamber 227 is formed by providing a gap, which can generate the capillary phenomenon, between the first partition wall 222 and the second partition wall 224. Therefore, the ink in the ventilation side ink chamber 225a is collected to the detection side small ink chamber 227 by the capillary force of the detection side small ink chamber 227. Therefore, the detection side small ink chamber 227 can prevent that the air bubble to enter into the detection side ink chamber 225b. Furthermore, the ink level in the detection side ink chamber 225b can decrease steadily and gradually.
Moreover, a porous member 1005g is provided inside the detection side ink chamber 225b. The volume of the ventilation side ink chamber 225a is larger than the volume of the detection side ink chamber 225b. Because the ventilation side ink chamber 225a is formed closer to the airhole 223 than the detection side small ink chamber 225b, the ink in the detection side small ink chamber 225b is consumed after the ink in the ventilation side ink chamber 225a is consumed. Furthermore, the waving of ink inside the detection side small ink chamber 225b is prevented by providing the porous member 1005g inside the detection side small ink chamber 225b. Moreover, the porous member 1005g prevents the bubble, which is entered from the ink supply port 230, to attach to the actuator 106.
Furthermore, the capillary force of the porous member 1005g is greater than the capillary force of the detection side small ink chamber 227. The porous member 1005g thereby prevents ink to flow back from the ink supply port 230 to the ventilation side small ink chamber 225a. The capillary force of the porous member 1005g can be increased by adjusting the hole diameter. Moreover, the capillary force of the porous member 1005g can be increased by compressing the porous member 1005g.
A airhole 233 is provided on the top wall of the ink cartridge 220A. Moreover, a check valve 228 is provided on the airhole 233 for preventing the leaking of ink from the airhole 233. The leaking of ink outside the ink cartridge 220A caused by the rolling of the ink cartridge 220A can be prevented by the check valve 228. Furthermore, the evaporation of ink from the airhole 233 of the ink cartridge 220A can be prevented by providing the check valve 228 on the top face of the ink cartridge 220A. If ink in the ink cartridge 220A is consumed, and negative pressure inside the ink cartridge 220A exceeds the pressure of the check valve 228, the check valve 228 opens and introduces air into the ink cartridge 220A. Then the check valve 228 closes to accelerate the drainage of ink from the ink cartridge 220A.
Here, a piezoelectric device as an embodiment of a liquid censor will be explained. The piezoelectric device, or actuator, detects a state of the liquid inside a liquid container by utilizing vibration phenomena. The state of the liquid includes whether or not the liquid in the liquid container is empty, amount of the liquid, level of the liquid, types of the liquid and combination of liquids. Several specific methods realizing for detection of the state of the liquid inside the liquid container utilizing vibration phenomena are considered. For example, a method is considered in which the medium and the change of its state inside the liquid container are detected in such a manner that an elastic wave generating device generates an elastic wave inside the liquid container, and then the reflected wave which is thus reflected by the liquid surface or a wall disposed counter thereto is captured. There is another method in which a change of acoustic impedance is detected by vibrating characteristics of a vibrating object. As a method utilizing the change of the acoustic impedance, a vibrating portion of a piezoelectric device or an actuator having a piezoelectric element therein is vibrated. Thereafter, a resonant frequency or an amplitude of the back electromotive force waveform is detected by measuring the back electromotive force which is caused by residual vibration which remains in the vibrating portion, so as to detect the change of the acoustic impedance. As another method utilizing the change of the acoustic impedance, the impedance characteristic or admittance characteristic of the liquid is measured by a measuring apparatus such as an impedance analyzer and a transmission circuit, so that the change of a current value or a voltage value, or the change of the current value or voltage value due to the frequency caused by the vibration given to the liquid is measured. In the present embodiment, the actuator 106 can detect the liquid status inside the liquid container by any method mentioned above.
A different-type O-ring 614 is mounted on the side wall 194b such that the different-type O-ring 614 surrounds the actuator 106. A plurality of caulking part 616 is formed on the side wall 194b to couple the circuit board 610 with the container 194. By coupling the circuit board 610 with the container 194 using the caulking part 616 and pushing the different-type O-ring 614 to the circuit board 610, the vibrating region of the actuator 106 can contacts with ink, and at the same time, the inside of the ink cartridge is sealed from outside of the ink cartridge.
A terminals 612 are formed on the semiconductor memory device 7 and around the semiconductor memory device 7. The terminal 612 transfer the signal between the semiconductor memory device 7 and outside the ink jet recording apparatus. The semiconductor memory device 7 can be constituted by the semiconductor memory which can be rewritten such as EEPROM. Because the semiconductor memory device 7 and the actuator 106 are formed on the same circuit board 610, the mounting process can be finished at one time during mounting the semiconductor memory device 7 and the actuator 106 on the ink cartridge 180P. Moreover, the working process during the manufacturing of the ink cartridge 180C and the recycling of the ink cartridge 180P can be simplified. Furthermore, the manufacturing cost of the ink cartridge 180P can be reduced because the numbers of the parts can be reduced.
The actuator 106 detects the ink consumption status inside the container 194. The semiconductor memory device 7 stores the information of ink such as residual quantity of ink detected by the actuator 106. That is, the semiconductor memory device 7 stores the information related to the characteristic parameter such as the characteristic of ink and the ink cartridge used for the actuator 106 when detecting the ink consumption status. The semiconductor memory device 7 previously stores the resonant frequency of when ink inside the container 194 is full, that is, when ink is filled in the container 194 sufficiently, or when ink in the container 194 is end, that is, ink in the container 194 is consumed, as one of the characteristic parameter. The resonant frequency when the ink inside the container 194 is full status or end status can be stored when the ink container is mounted on the ink jet recording apparatus for the first time. Moreover, the resonant frequency when the ink inside the container 194 is full status or end status can be stored during the manufacturing of the container 194. Because the unevenness of the detection of the residual quantity of ink can be compensated by storing the resonant frequency when the ink inside the container 194 is full status or end status in the semiconductor memory device 7 previously and reading out the data of the resonant frequency at the ink jet recording apparatus side, it can be accurately detected that the residual quantity of ink is decreased to the reference value.
Because the length of each of the partition walls 212p, 212q, and 212r increases with the increase of the distance from the airhole 128, gas is most difficult to enter into the detection side small ink chamber 213r which is farthest from the airhole 128. Therefore, the actuator 106r can detect the ink existence most accurately among the actuators 106p, 106q, and 106r which is mounted on the each of the detection side small ink chamber 213p, 213q, and 213r.
A packing ring 4 and a valve body 6 are provided in the ink supply port 2. Referring to
Furthermore, a porous member 1050 is provided inside the container 1. A gap is provided between the porous member 1050 and the elastic wave generating device 3 to form an ink layer. By providing the porous member 1050 inside the container 1, the porous member 1050 prevents the waving or bubbling of ink inside the container 1 when the ink cartridge moves together with the recording head by the scanning operation during the printing process. Therefore, the bubble and wave of ink is difficult to generate around the elastic wave generating device 3, the elastic wave generating device 3 can accurately detect the ink consumption status.
Furthermore, the hole diameter of porous member 1050 is set such that the porous member 1050 does not absorbs ink existed in the ink layer 1060 when the ink surface reaches to the ink layer 1060 by the consumption of ink inside the container 1. In other words, the porous member 1050 is designed such that the capillary force works in the porous member 1050 does not hold ink in the container 1. Therefore, ink does not remain in the porous member 1050 by its own weight and remains in the ink layer 1060 when the ink inside the container 1 is in an ink near end status.
An airhole, not shown in the figure, is provided on the container 1. The airhole is provided on the upper side of the ink surface to communicate with outside of container 1. Air is introduced inside the container 1 by the airhole, and ink flows downward by its own weight with advance of ink consumption. The residual ink thereby stays in the ink layer 1060. Because the porous member 1050 is provided inside the container 1, the elastic wave generating device 3 can detect the ink quantity only when the ink status is near to the ink end if the width of the ink layer is small. However, ink does not wave by providing the porous member 1050 in the container 1. Therefore, the elastic wave generating device 3 can detect the ink surface accurately when the ink surface inside the container 1 reaches to the lower end of the porous member 1050, and ink surface exists within the ink layer 1060.
Moreover, the width of the gap between the porous member 1050 and the elastic wave generating device 3 is not limited. To suppress the bubbling of ink as much as possible, the width of ink layer 1060 is reduced by providing the porous member 1050 on lower side of the container 1. If the width of the ink layer 1060 is small, the elastic wave generating device 3 can detect the ink quantity only when the ink status is near to the ink end. However, ink does not wave inside the container 1. Therefore, the elastic wave generating device 3 can accurately detect the ink quantity and existence of ink when the ink consumption status is near to the ink end status. Therefore, the porous member 1050 is preferably located nearby the elastic wave generating device 3 without limiting the width of gap between the porous member 1051 and elastic wave generating device 3. Moreover, even the bubble of ink generates, because the bubble of ink is absorbed in the porous member 1050, the bubble does not stays around the elastic wave generating device 3. The porous member 1050 thereby prevents the elastic wave generating device 3 to detect the ink consumption status mistakenly.
While the recording apparatus is operating, a drive signal is supplied to the elastic wave generating device 3 at a detection timing which is set in advance, for example, at a certain period of time. The elastic wave generated by the elastic wave generating device 3 is transferred to the ink by propagating through the bottom face 1a of the container 1 so as to be propagated to the ink.
By adhering the elastic wave generating device 3 to the container 1, since a process of embedding electrodes for use in detecting the liquid surface is unnecessary in the course of forming the container 1, an injection molding process can be simplified and the leakage of the liquid from a place in which the electrodes are supposedly embedded can be avoided, thus improving the reliability of the ink cartridge.
Furthermore, a porous member 1050 is provided inside the container 1. By providing the porous member 1050 inside the container 1, the porous member 1050 prevents the waving or bubbling of ink inside the container 1 when the ink cartridge moves together with the recording head by the scanning operation during the printing process. Because the bubble and wave of ink is difficult to generate around the elastic wave generating device 3, the elastic wave generating device 3 can accurately detect the ink consumption status.
Referring to
When the ink is consumed in the recording head 31 by the recording operation, a pressure in the downstream of the flexible valve 36 decreases. Then, the flexible valve 36 is positioned away from a valve body 38 so as to become opened. When the flexible valve 36 is opened, the ink in the ink chamber 34 flows into the recording head 31 through the ink passage 35. Accompanied by the ink which has flowed into the recording head 31, the ink in the container 1 flows into the subtank unit 33 via the ink supply needle 32.
According to the embodiment shown in
The elastic wave generating device 3 detects the ink quantity or existence of ink inside the subtank unit 33. In case of the present embodiment, because the porous member 1050 is provided inside the subtank unit 33, if the width of the ink layer 1060 becomes small, the elastic wave generating device 3 can detect the ink quantity only when the ink status is near to the ink end. However, ink does not wave inside the container 1 because the porous member 1050 is provided inside the subtank unit 33. Therefore, the elastic wave generating device 3 can accurately detect the ink surface when the ink surface inside the subtank unit 33 reaches to the lower end of the porous member 1050 and exits between the ink layer 1060. Moreover, the elastic wave generating device 3 can detect the ink quantity and existence of ink inside the subtank unit 33 accurately.
Moreover, because the elastic wave generating device 3 is provided inside the subtank unit 33, the elastic wave generating device 3 can detect the ink quantity and the existence of ink inside the subtank unit 33 even when the ink inside the ink cartridge 180 is used up. Therefore, the ink jet recording apparatus can judge whether the printing process can be continued or not.
The elastic wave generating device 3 and the porous member 1050 are provided inside the container 1 of the ink cartridge in the embodiment shown in
According to the embodiment shown in
Now, the elastic wave is a type of waves which can propagate through gas, liquid and solid as medium. Thus, the wavelength, amplitude, phase, frequency, propagating direction and propagating velocity of the elastic wave change based on the change of medium in question. On the other hand, the state and characteristic of the reflected wave of the elastic wave change according to the change of the medium. Thus, by utilizing the reflected wave which changes based on the change of the medium through which the elastic wave propagates, the state of the medium can be observed. In a case where the state of the liquid inside the liquid container is to be detected by this method, an elastic wave transmitter-receiver will be used for example. Let us explain this by referring to embodiments shown in
As described above, in the elastic wave, generated by the elastic wave generating device 3, propagating through the ink liquid, the traveling time of the reflected wave occurring on the ink liquid surface to arrive at the elastic wave generating device 3 varies depending on density of the ink liquid and the liquid level. Thus, if the composition of ink is fixed, the traveling time of the reflected wave which occurred in the ink liquid surface varies depending on the ink amount. Therefore, the ink amount can be detected by detecting the time period during which the elastic wave generating device 3 generates the elastic wave and then the wave reflected from the ink surface arrives at the elastic wave generating device 3. Moreover, the elastic wave vibrates particles contained in the ink. Thus, in a case of using pigment-like ink which uses pigment as a coloring agent, the elastic wave contributes to prevent precipitation of the pigment or the like.
By providing the elastic wave generating device 3 in the container 1, when the ink of the ink cartridge approaches (decreases to) an ink-end state and the elastic wave generating device 3 can no longer receive the reflected wave, it is judged as an ink-near-end and thus can give indication to replace the cartridge.
According to the embodiments shown in
Furthermore, a porous member 1050 is provided inside the container 1. The porous member 1050 prevents the waving and bubbling of ink inside the container 1. The porous member 1050 thereby prevents the elastic wave generating device 65 and 66 to detects the ink existence mistakenly.
In the embodiment shown in
In the embodiment shown in
Though in the above embodiments a flexural oscillating type piezoelectric vibrator is used so as to suppress the increase of the cartridge size, a vertically vibrating type piezoelectric vibrator may also be used. In the above embodiments, the elastic wave is transmitted and received by a same elastic wave generating device. In still another embodiment, the elastic wave generating device may be provided separately as one for use in transmitting the elastic wave and other for receiving the elastic wave, so as to detect the ink remaining amount.
Furthermore, a porous member 1050 is provided inside the container 1. A gap is provided between the porous member 1050 and the elastic wave generating device 65a, 65b, and 65c to form an ink layer 1060. By providing the porous member 1050 inside the container 1, the porous member 1050 prevents the waving or bubbling of ink inside the container 1 when the ink cartridge moves together with the recording head by the scanning operation during the printing process. Therefore, the bubble of ink is difficult to generate around the elastic wave generating device 65z, 65b, and 65c. Furthermore, even if the bubble of ink generates, because the porous member 1050 absorbs the bubble of ink, the bubble does not stay around the elastic wave generating device 65a, 65b, and 65c. The elastic wave generating device 65a, 65b, and 65c can thereby accurately detect the ink consumption status.
The width of the ink layer 1060 is not limited as the embodiment t shown in
According to the present embodiment, the arrival time (traveled time) of the reflected waves of the elastic waves to the respective elastic wave generating device 65a, 65b and 65c in the respective mounting positions of the elastic wave generating device 65a, 65b and 65c differs depending on whether or not the ink is present in the respective positions of the plural elastic wave generating device 65a, 65b and 65c. Thus, whether or not the ink is present in the respective mounted position levels of the elastic wave generating device 65a, 65b and 65c can be detected by scanning each elastic generating means (65a, 65b and 65c) and by detecting the traveled time of the reflected wave of the elastic wave in the elastic wave generating device 65a, 65b and 65c. Hence, the ink remaining amount can be detected in a step-by-step manner. For example, suppose that the liquid level of ink is at a point between the elastic wave generating device 65b and 65c. Then, the elastic wave generating device 65c detects and judges that the ink is empty while the elastic wave generating device 65a and 65b detect and judge respectively that the ink is present. By overall evaluating these results, it becomes known that the liquid level of ink lies in a level between the elastic wave generating device 65b and 65c.
The ink supply port 276 includes a packing ring 282, a valve body 286 and a spring 284. The packing ring 282 is engaged with the ink supply needle 254 in a fluid-tight manner. The valve body 286 is constantly and elastically contacted against the packing ring 282 by way of the spring 284. When the ink supply needle 254 is inserted to the ink supply port 276, the valve body 286 is pressed by the ink supply needle 254 so as to open an ink passage. On an upper wall of the container 274, there is mounted a semiconductor memory means 288 which stores data on ink inside the ink cartridge and so on.
A porous member 1050 is provided inside the container 274. A gap is provided between the porous member 1050 and the gelated material 280 to form an ink layer 1060. By providing the porous member 1050 inside the container 274, the porous member 1050 prevents the waving or bubbling of ink inside the container 274. Therefore, the elastic wave generating device 260 can accurately detect the ink consumption status as shown in
As in the embodiment shown in
Referring to
While the recording apparatus is operating, a drive signal is supplied to the elastic wave generating device 260 at a detection timing which is set in advance, for example, at a certain period of time. The elastic wave generated by the elastic wave generating device 260 is radiated from the convex part 258 and is transferred to the ink inside the ink cartridge 272 by propagating through the gelated material 280 in the bottom face 274a of the ink cartridge 272. Though the elastic wave generating device 260 is provided in the carriage 250 in
Since the elastic wave generated by the elastic wave generating device 260 propagates through the ink liquid, the traveling time of the reflected wave occurring on the ink liquid surface to arrive at the elastic wave generating device 260 varies depending on density of the ink liquid and the liquid level. Thus, if the composition of ink is fixed, the traveling time of the reflected wave which occurred in the ink liquid surface varies depending on the ink amount. Therefore, the ink amount can be detected by detecting the time duration during which the reflected wave arrives at the elastic wave generating device 260 from the ink liquid surface when the ink liquid surface is excited by the elastic wave generating device 260. Moreover, the elastic wave generated by the elastic wave generating device 260 vibrates particles contained in the ink. Thus, in a case of using pigment-like ink which uses pigment as a coloring agent, the elastic wave contributes to prevent precipitation of the pigment or the like.
After the printing operation and maintenance operation or the like and when the ink of the ink cartridge approaches (decreases to) an ink-end state and the elastic wave generating device 260 can no longer receive the reflected wave even after the elastic wave generating device sends out the elastic wave, it is judged that the ink is in an ink-near-end state and thus this judgment can give indication to replace the cartridge anew. Moreover, when the ink cartridge 272 is not mounted properly to the carriage 250, the shape of the elastic wave from the elastic generating means 260 changes in an extreme manner. Utilizing this, warning can be given to a user in the event that the extreme change in the elastic wave is detected, so as to prompt the user to check on the ink cartridge 272.
The traveling time of the reflected wave of the elastic wave generated by the elastic wave generating device 260 is affected by the density of ink housed in the container 274. Since the density of ink may differ by the type of ink used, data on the types of ink are stored in a semiconductor memory means 288, so that a detection sequence can be set based on the data and thus the ink remaining amount can be further precisely detected.
In the ink cartridge 272 shown in
Furthermore, a porous member 1050 is provided inside the container 274. The porous member 1050 prevents the waving or bubbling of ink inside the container 274. Therefore, the elastic wave generating device 260 can accurately detect the ink consumption status.
The porous member 1050 is provided in the container 274 such that the slope of the bottom face 1055 of the porous member 1050 is parallel to the slope of the bottom face of the container 274. A gap is provided between the bottom face 1055 and the elastic wave generating device 260 and forms a ink layer 1060.
When ink is filled inside the container 274 and ink layer 1060, the reflective wave of the elastic wave generated by the elastic wave generating device 260 does not change. On the other hand, if ink inside the container 274 is consumed, gap arises in the ink layer 1060 instead of ink. With the arising of the gap in the ink layer 1060, the reflective wave of the elastic wave generated by the elastic wave generating device 260 gradually changes. Therefore, the elastic wave generating device 260 can detect the ink quantity when the ink status in the container 274 is near to ink end status. The width of the ink layer 1060 is not limited as the embodiment shown in
The ink cartridge according to the present embodiment further has a porous member 1050 provided inside the container 274. The ink-jet recording apparatus includes a convex part 258′ in a side face 274b in an ink supply port 276 side of the ink cartridge 272. The convex part 258′ includes an elastic wave generating device 260′. The side face 1056 of the porous member 1050 is parallel to the side face 274b of the container 274. An ink layer 1060 is formed on the gap between the side face 1056 and the elastic wave generating device 260′.
The porous member 1050 prevents the waving or bubbling of ink inside the container 274. Therefore, the elastic wave generating device 260′ can accurately detect the ink consumption status.
When ink is filled inside the container 274 and ink layer 1060, the reflective wave of the elastic wave generated by the elastic wave generating device 260′ does not change. On the other hand, if ink inside the container 274 is consumed, gap arises in the part corresponding to the Δh2 which is a width in the height direction of the gelated material 280′ within the ink layer 1060. With the arising of the gap in the ink layer 1060, the reflective wave of the elastic wave generated by the elastic wave generating device 260′ gradually changes. Therefore, the elastic wave generating device 260′ can detect the ink consumption status when the is ink surface within the width Δh2 in the height direction.
If the ink surface is within the region of the Δh2, the elastic wave generating device 260′ can detect the ink surface. According to the ink cartridge according to the present embodiment, there is a gap between the side face 1056 of the porous member 1050 and the elastic wave generating device 260′, the elastic wave generating device 260′ can detect the ink surface within the region of the Δh2 even if the porous member 1050 is provided in the container 274. Therefore, by widen the width of the Δh2, the elastic wave generating device 260′ can detect the ink surface when ink is filled in the container 274 until the ink surface when ink in the container 274 is nearly end.
In the above embodiments, the elastic wave is transmitted and received by the same elastic wave generating device 260 and 260′ when the ink remaining amount is detected based on the reflected wave at the liquid surface. The present invention is not limited thereby and for example, as still another embodiment the elastic wave generating device 260 may be provided separately as one for use in transmitting the elastic wave and other for receiving the elastic wave, so as to detect the ink remaining amount.
Furthermore, a porous member 1050 is provided inside the container 1. The porous member 1050 is provided around the actuator 106 inside the container 1. A gap having a same depth with the through hole 1c is provided between the porous member 1050 and the actuator 106. By providing the porous member 1050 inside the container 1, the porous member 1050 prevents the waving or bubbling of ink inside the container 1 when the ink cartridge moves together with the recording head by the scanning operation during the printing process. Therefore, the bubble of ink is difficult to generate around the actuator 106. The actuator 106 can thereby detect the ink consumption status accurately.
Moreover, the width of the gap between the porous member 1050 and the actuator 106 is not limited. To suppress the bubbling of ink as much as possible, the width of ink layer 1060 is reduced by providing the porous member 1050 on lower side of the container 1. If the width of the ink layer 1060 is small, the actuator 106 can detect the ink quantity only when the ink status is near to the ink end. However, ink does not wave inside the container 1. Therefore, the actuator 106 can accurately detect the ink quantity when the ink consumption status is near to the ink end status. Therefore, the porous member 1050 is preferably located nearby the actuator 106 without limiting the width of gap between the porous member 1050 and the actuator 106.
Furthermore, the hole diameter of porous member 1050 is set such that the porous member 1050 does not absorbs ink existed in the through hole 1c before the ink surface reaches to the through hole 1c. In other words, the porous member 1050 is designed such that the capillary force works in the porous member 1050 is smaller than the capillary force which can hold ink in the container 1. Therefore, ink does not remain in the porous member 1050 by its own weight and exists in the through hole 1c when the ink inside the container 1 is in an ink near end status. Furthermore, an airhole, not shown in the figure, is provided on the container 1. The airhole is provided on the upper side of the container 1 to communicate with outside of container 1. Air is introduced inside the container 1 by the airhole, and ink flows downward by own weight with advance of ink consumption. The residual ink thereby stays in the through hole 1c.
On the other hand, the hold diameter of the porous member 1050 can be set such that the porous member 1050 absorbs ink existed in the through hole 1c when the predetermined amount of the ink is consumed. That is, the hole diameter of the porous member 1050 is set that the capillary force works in the porous member 1050 is equal to or larger than the capillary force which can hold ink inside the container 1. The porous member 1050 thereby absorbs ink existed in the through hole 1c when the predetermined amount of ink inside of the container 1 is consumed. Furthermore, the hole diameter of the porous member 1050 of a part nearby the ink supply port 2 is made smaller than the hole diameter of the other part of the porous member 1050. Ink existed in the through hole 1c is thereby absorbed by the porous member 1050 and further supplied to the ink supply port 2 from the porous member 1050.
For example, the hole diameter of the porous member 1050 is designed such that the porous member 1050 absorbs ink remained in the through hole 1c when the ink quantity in the ink cartridge becomes small amount in a degree that printing becomes defective. Furthermore, the hole diameter of the porous member 1050 is designed such that the porous member 1050 can send the ink, which is absorbed from the through hole 1c by the porous member 1050, to the ink supply port 2. The actuator 106 can thereby detects the ink end accurately when the predetermined amount of ink is consumed and prevents the defective printing. More specifically, the hole diameter of the porous member 1050 nearby the actuator 106 is made larger than the hole diameter of the porous member 1050 around the ink supply port 2.
The porous member 1050 occupies more than half of the volume of the container 1. However, a relatively small porous member, not shown in the figure, can be provided only around the actuator 106.
The ink cartridge according to the present embodiment has a porous member 1050 provided inside the through hole 1c. The porous member 1050 thereby contacts with the vibrating region of the actuator 650. By providing the porous member 1050 to contact with the vibrating region of the actuator 650, ink does not remained in the through hole 1c.
For example, the hole diameter of the porous member 1050b provided around the through hole 1c is made smaller than the hole diameter of the porous member 1050a provided inside the through hole 1c. The capillary force of the porous member 1050a around the through hole 1c thereby becomes smaller than the capillary force of the porous member 1050a inside of the through hole 1c. Therefore, ink contained in the porous member 1050a inside the through hole 1c is absorbed by the porous member 1050b provided around the through hole 1c when the ink inside the ink cartridge is consumed. Thus, ink does not remain in the through hole 1c. Therefore, the accuracy of detecting the ink consumption status inside the ink cartridge by the actuator 650 can be improved.
While the recording apparatus is operating, a drive signal is supplied to the actuator 106 at a detection timing which is set in advance, for example, at a certain period of time.
By adhering the actuator 106 to the container 1, a process of embedding electrodes for use in detecting the liquid surface is unnecessary in the course of forming the container 1. Therefore, an injection molding process can be simplified and the leakage of the liquid from a place in which the electrodes are supposedly embedded can be avoided, thus improving the reliability of the ink cartridge.
According to the embodiment shown in
If the actuator 106 and the porous member 1050 are provided on both inside of the container 1 of the ink cartridge and the subtank unit 33, the actuator 106 can detect the ink consumption status more accurately. Furthermore, the actuator 106 can detect the timing of ink end inside the container 1 of the ink cartridge.
According to the embodiments shown in
In the embodiment, the porous member 1050 is provided in the container 1. The porous member 1050 prevents the waving and bubbling of ink inside the container 1. The porous member 1050 thereby improves the accuracy of detecting the ink quantity by the actuator 106.
In the embodiment shown in
To suppress the waving and bubbling of ink as much as possible, it is not preferable to have a gap between the porous member 1050 and the actuator 106. On the other hand, it is also not preferable that the porous member 1050 adhere to the vibrating region of the actuator 106 in a degree that the vibrating section of the actuator 106 cannot vibrate. Therefore, the porous member 1050 is preferable to provided around the vibrating region of the actuator 106. However, the porous member 1050 can be contacts with the vibrating region of the actuator 106 if the vibrating region of the actuator 106 can vibrate and detect the ink existence and the ink quantity.
According to the present embodiment, depends on whether the ink is existed in the mounting position of each of the actuators 106a, 106b, and 106c, the amplitude of the residual vibration and a resonant frequency of the each of the actuators 106a, 106b, and 106c differs at each of the mounting position of the actuators 106a, 106b, and 106c. Therefore, the existence of ink at the level of the mounting position of each of the actuators 106a, 106b, and 106c can be detected by measuring the counter electromotive force of the residual vibration of each of the actuators 106a, 106b, and 106c. Therefore, residual quantity of ink can be detected step by step. For example, if the ink surface is at the level between the actuator 106b and the actuator 106c, the actuator 106a detects non-ink status, and the other actuators 106b and 106c detects ink-exist status. By comprehensively judging these detecting results, it can be known that the ink surface positions between the mounting position of the actuator 106b and actuator 106c.
According to the shape of the through hole 1c shown in
Furthermore, in the ink cartridge of the present embodiment, a porous member, not shown in
The actuator 106 of the ink cartridge 180B shown in
Furthermore, by providing the actuator 106 nearby the ink supply port 187, the setting position of the actuator 106 to the connection point on the carriage on the ink container becomes reliable during the mounting of the ink container on the cartridge holder of the carriage. It is because the reliability of coupling between the ink supply port with the ink supply needle is most important during the coupling of the ink container and the carriage. If there is even a small gap, the tip of the ink supply needle will be hurt or a sealing structure such as O-ring will be damaged so that the ink will be leaked. To prevent this kind of problems, the ink jet printer usually has a special structure that can accurately positioning the ink container during the mounting of the ink container on the carriage. Therefore, the positioning of the actuator 106 becomes reliable by arranging the actuator nearby the ink supply port. Furthermore, the actuator 106 can be further reliably positioned by mounting the actuator 106 at the center of the width direction of the ink container 194. It is because the rolling is the smallest when the ink container rolls along an axis, the center of which is center line of the width direction, during the mounting of the ink container on the holder.
The ink cartridge 180E shown in
The ink cartridge 180F shown in
Furthermore, a porous member 1050 is provided around the actuator 106 in the embodiments shown in
The embodiment that the actuator 106 is mounted on an ink cartridge or a carriage, in which the ink cartridge is a separate body with the carriage and mounted on the carriage, has been explained above. However, the actuator 106 can be mounted on the ink tank which is mounted on the ink jet recording apparatus together with a carriage and formed together with a carriage as one body. Furthermore, the actuator 106 can be mounted on the ink tank of the off-carriage type. The off-carriage type ink tank is a separate body with a carriage and supplies ink to carriage through such as tube. Moreover, the actuator of the present embodiment can be mounted on the ink cartridge constituted so that a recording head and an ink container are formed as on body and possible to be exchanged.
Although the present invention has been described by way of exemplary embodiments, it should be understood that many changes and substitutions may be made by those skilled in the art without departing from the spirit and the scope of the present invention which is defined only by the appended claims.
The liquid container according to the present invention can reliably detect a liquid consumption status and dispense with a complicated sealing structure.
The liquid container according to the present invention can prevent the waving or bubbling of liquid around the piezoelectric device.
Furthermore, the liquid container according to the present invention has a piezoelectric device which can reliably detect a liquid consumption status by detecting the liquid surface even in the case that liquid inside the liquid container waves and bubbles.
Furthermore, the liquid container according to the present invention can reliably detect a liquid consumption status in the liquid container even if the piezoelectric device is mounted on the upper side of the liquid surface in the liquid container.
Furthermore, the liquid container according to the present invention can reliably detect a liquid consumption status in the liquid container even if the piezoelectric device is mounted on the top wall which is located above the liquid surface in the liquid container. Therefore, the degree of freedom to design the mounting position of the piezoelectric device can be increased.
Furthermore, the liquid container according to the present invention can reliably detect a liquid consumption status in the liquid container by reducing the amount of liquid remained inside of a cavity after the consumption of the liquid inside the liquid container.
Number | Date | Country | Kind |
---|---|---|---|
11-139683 | May 1999 | JP | national |
11-147538 | May 1999 | JP | national |
11-256522 | Sep 1999 | JP | national |
This is a divisional of Application Ser. No. 10/243,730 filed Sep. 16, 2002, which in turn is a divisional of Application Ser. No. 09/574,012 filed May 19, 2000 now U.S. Pat. No. 6,536,861, the disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3110890 | Westcott et al. | Nov 1963 | A |
3220258 | Rod | Nov 1965 | A |
3394589 | Tomioka | Jul 1968 | A |
3703693 | Levinn | Nov 1972 | A |
3832900 | Ross | Sep 1974 | A |
3889247 | Voll | Jun 1975 | A |
4008612 | Nagaoka et al. | Feb 1977 | A |
4107994 | Sogo | Aug 1978 | A |
4196625 | Kern | Apr 1980 | A |
4310957 | Sachs | Jan 1982 | A |
4329875 | Nolting et al. | May 1982 | A |
4337470 | Furukawa | Jun 1982 | A |
4403227 | Bertschy et al. | Sep 1983 | A |
4419242 | Cheng et al. | Dec 1983 | A |
4419677 | Kasugayama et al. | Dec 1983 | A |
4479982 | Nilsson et al. | Oct 1984 | A |
4570482 | Murata et al. | Feb 1986 | A |
4594891 | Benz et al. | Jun 1986 | A |
4604633 | Kimura et al. | Aug 1986 | A |
4636814 | Terasawa | Jan 1987 | A |
4677448 | Mizusawa et al. | Jun 1987 | A |
4703652 | Itoh et al. | Nov 1987 | A |
4770038 | Zuckerwar et al. | Sep 1988 | A |
4796782 | Wales et al. | Jan 1989 | A |
4811595 | Marciniak et al. | Mar 1989 | A |
4853718 | El Hatem et al. | Aug 1989 | A |
4935751 | Hamlin | Jun 1990 | A |
4977413 | Yamanaka et al. | Dec 1990 | A |
4984449 | Caldwell et al. | Jan 1991 | A |
4984457 | Morris | Jan 1991 | A |
5035140 | Daniels et al. | Jul 1991 | A |
5068836 | Steel | Nov 1991 | A |
5132711 | Shinada et al. | Jul 1992 | A |
5179389 | Arai et al. | Jan 1993 | A |
5233369 | Carlotta et al. | Aug 1993 | A |
5247832 | Umezawa et al. | Sep 1993 | A |
5264831 | Pfeiffer | Nov 1993 | A |
5315317 | Terasawa et al. | May 1994 | A |
5319973 | Crayton et al. | Jun 1994 | A |
5353631 | Woringer et al. | Oct 1994 | A |
5410518 | Birkett | Apr 1995 | A |
5444473 | Hattori et al. | Aug 1995 | A |
5463377 | Kronberg | Oct 1995 | A |
5473353 | Soucemarianadin et al. | Dec 1995 | A |
5506611 | Ujita et al. | Apr 1996 | A |
5524486 | Hermann | Jun 1996 | A |
5583544 | Stamer et al. | Dec 1996 | A |
5586085 | Lichte | Dec 1996 | A |
5610635 | Murray et al. | Mar 1997 | A |
5616929 | Hara | Apr 1997 | A |
5619238 | Higuma et al. | Apr 1997 | A |
5675367 | Scheffelin et al. | Oct 1997 | A |
5689288 | Wimmer et al. | Nov 1997 | A |
5694156 | Hoisington et al. | Dec 1997 | A |
5697248 | Brown | Dec 1997 | A |
5712667 | Sato | Jan 1998 | A |
5737963 | Eckert et al. | Apr 1998 | A |
5747689 | Hampo et al. | May 1998 | A |
5774136 | Barbehenn et al. | Jun 1998 | A |
5788388 | Cowger et al. | Aug 1998 | A |
5788819 | Onishi et al. | Aug 1998 | A |
5793705 | Gazis et al. | Aug 1998 | A |
5815183 | Sasaki | Sep 1998 | A |
5835817 | Bullock et al. | Nov 1998 | A |
5841454 | Hall et al. | Nov 1998 | A |
5877997 | Fell | Mar 1999 | A |
5886721 | Fuji et al. | Mar 1999 | A |
5900888 | Kurosawa | May 1999 | A |
5949447 | Arai et al. | Sep 1999 | A |
5975102 | Schalk | Nov 1999 | A |
6003966 | Ahn | Dec 1999 | A |
6007190 | Murray et al. | Dec 1999 | A |
6012793 | Haigo | Jan 2000 | A |
6012794 | Nakano et al. | Jan 2000 | A |
6024429 | Coffy et al. | Feb 2000 | A |
6044694 | Anderson et al. | Apr 2000 | A |
6050669 | Yano et al. | Apr 2000 | A |
6089686 | Thornton et al. | Jul 2000 | A |
6089688 | Froger et al. | Jul 2000 | A |
6095643 | Cook et al. | Aug 2000 | A |
6155664 | Cook | Dec 2000 | A |
6164744 | Froger et al. | Dec 2000 | A |
6254212 | Coudray et al. | Jul 2001 | B1 |
6302527 | Walker | Oct 2001 | B1 |
6302531 | Usui et al. | Oct 2001 | B1 |
6312074 | Walker | Nov 2001 | B1 |
6312106 | Walker | Nov 2001 | B1 |
6312115 | Hara et al. | Nov 2001 | B1 |
6323584 | Brown | Nov 2001 | B1 |
6332673 | Higuma et al. | Dec 2001 | B1 |
6344658 | Nakagawa et al. | Feb 2002 | B1 |
6347853 | Kato | Feb 2002 | B1 |
6361136 | Watanabe et al. | Mar 2002 | B1 |
6390590 | Hansburg | May 2002 | B1 |
6416152 | Matsuzaki et al. | Jul 2002 | B1 |
6435638 | Wilson et al. | Aug 2002 | B1 |
6438500 | Froger et al. | Aug 2002 | B1 |
6470744 | Usui et al. | Oct 2002 | B1 |
6536861 | Usui et al. | Mar 2003 | B1 |
6729184 | Tsukada et al. | May 2004 | B2 |
6745626 | Usui et al. | Jun 2004 | B2 |
6799820 | Usui et al. | Oct 2004 | B1 |
20020012015 | Tsukada et al. | Jan 2002 | A1 |
20020015068 | Tsukada et al. | Feb 2002 | A1 |
20020015084 | Tsukada et al. | Feb 2002 | A1 |
20020105555 | Tsukada et al. | Aug 2002 | A1 |
20020135623 | Tsukada et al. | Sep 2002 | A1 |
20020170353 | Usui et al. | Nov 2002 | A1 |
20040119798 | Nakamura et al. | Jun 2004 | A1 |
Number | Date | Country |
---|---|---|
1274645 | Nov 2000 | CN |
0 553 535 | Aug 1993 | EP |
0 660 092 | Jun 1995 | EP |
0 684 136 | Nov 1995 | EP |
0 684 136 | Nov 1995 | EP |
0 803 364 | Oct 1997 | EP |
0 803 365 | Oct 1997 | EP |
0 853 236 | Jul 1998 | EP |
0 860 284 | Aug 1998 | EP |
0 873 873 | Oct 1998 | EP |
0 881 079 | Dec 1998 | EP |
0 885 731 | Dec 1998 | EP |
0 956 964 | Nov 1999 | EP |
1 088 668 | Apr 2001 | EP |
2 572 519 | May 1986 | FR |
2 304 898 | Mar 1997 | GB |
2 321 107 | Jul 1998 | GB |
56-039413 | Apr 1981 | JP |
56-039414 | Apr 1981 | JP |
56-53078 | May 1981 | JP |
56-59629 | May 1981 | JP |
56-61421 | May 1981 | JP |
58-32332 | Mar 1983 | JP |
58-201027 | Nov 1983 | JP |
58-205820 | Nov 1983 | JP |
59-1265 | Jan 1984 | JP |
59-019816 | Jan 1984 | JP |
59-31417 | Feb 1984 | JP |
59-52422 | Apr 1984 | JP |
S59-187227 | Oct 1984 | JP |
60-4820 | Jan 1985 | JP |
62-95225 | May 1987 | JP |
62-095225 | May 1987 | JP |
62-184856 | Aug 1987 | JP |
63-257645 | Oct 1988 | JP |
63247047 | Oct 1988 | JP |
63-295266 | Dec 1988 | JP |
1-67530 | May 1989 | JP |
1-70128 | May 1989 | JP |
2-102061 | Apr 1990 | JP |
02-279344 | Nov 1990 | JP |
3-36037 | Feb 1991 | JP |
03-169642 | Jul 1991 | JP |
3-190748 | Aug 1991 | JP |
3-211907 | Sep 1991 | JP |
3-218847 | Sep 1991 | JP |
04135862 | May 1992 | JP |
4-234670 | Aug 1992 | JP |
5-38814 | Feb 1993 | JP |
5-25325 | Apr 1993 | JP |
5-254142 | Oct 1993 | JP |
5-318757 | Dec 1993 | JP |
6-155762 | Jun 1994 | JP |
06-155762 | Jun 1994 | JP |
6-218942 | Aug 1994 | JP |
6-226989 | Aug 1994 | JP |
6-226990 | Aug 1994 | JP |
6-286160 | Oct 1994 | JP |
06297726 | Oct 1994 | JP |
7-101127 | Apr 1995 | JP |
7-137291 | May 1995 | JP |
07137276 | May 1995 | JP |
0 676 624 | Oct 1995 | JP |
8-34123 | Feb 1996 | JP |
8-112912 | May 1996 | JP |
8-122172 | May 1996 | JP |
08-197743 | Jun 1996 | JP |
H8-207296 | Aug 1996 | JP |
H8-207298 | Aug 1996 | JP |
8-258280 | Oct 1996 | JP |
8-281966 | Oct 1996 | JP |
9-20013 | Jan 1997 | JP |
H9-024619 | Jan 1997 | JP |
9-29989 | Feb 1997 | JP |
9-29991 | Feb 1997 | JP |
9-39263 | Feb 1997 | JP |
9-156123 | Jun 1997 | JP |
9-193410 | Jul 1997 | JP |
9-220216 | Aug 1997 | JP |
9-267488 | Oct 1997 | JP |
09-286121 | Nov 1997 | JP |
10026549 | Jan 1998 | JP |
10-38662 | Feb 1998 | JP |
10-71724 | Mar 1998 | JP |
10-151753 | Jun 1998 | JP |
10-175312 | Jun 1998 | JP |
10-244683 | Sep 1998 | JP |
10-305590 | Nov 1998 | JP |
10-323997 | Dec 1998 | JP |
11-10909 | Jan 1999 | JP |
11-020162 | Jan 1999 | JP |
11-20186 | Jan 1999 | JP |
11-020188 | Jan 1999 | JP |
11-48490 | Feb 1999 | JP |
11-240180 | Sep 1999 | JP |
11-277760 | Oct 1999 | JP |
11-286121 | Oct 1999 | JP |
11-334107 | Dec 1999 | JP |
2000-43287 | Feb 2000 | JP |
2000-190523 | Jul 2000 | JP |
2000318183 | Nov 2000 | JP |
9723352 | Jul 1997 | WO |
WO 9809139 | Mar 1998 | WO |
WO 9831548 | Jul 1998 | WO |
9934453 | Jul 1999 | WO |
WO 9942293 | Aug 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20030117450 A1 | Jun 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10243730 | Sep 2002 | US |
Child | 10357377 | US | |
Parent | 09574012 | May 2000 | US |
Child | 10243730 | US |