An ink jet recording apparatus has an ink jet recording head mounted on a carriage. The ink jet recording head is provided with pressure generation means for applying pressure to pressure generation chambers and nozzle openings for discharging the pressurized ink as ink droplets from the nozzle openings. The ink jet recording apparatus is configured so that the ink jet recording apparatus is continuously printable while ink of an ink cartridge is supplied to the recording head via a pass. The ink cartridge is configured so as to be attachable to and detachable from the recording apparatus so that the ink cartridge is easily changeable by the user at the time when the ink is completely consumed.
Conventionally, as a method of managing an ink consumption of the ink cartridge, there are a method of managing an ink consumption by performing calculations of adding up the number of ink droplets discharged from the recording head and a volume of ink absorbed due to the maintenance using a software, a method of managing a point in time at which the ink is actually consumed by mounting electrodes on the ink cartridge for detecting an ink level and the like.
As to the method of managing an ink consumption by performing calculations of an ink consumption by means of adding up the number of discharging ink droplets and a volume of the ink using a software, there are some problems that an error is generated due to the form of printing of the user side and a large error is generated when the same ink cartridge is mounted again. The error not to be negligible is generated between the calculated ink consumption and the actual volume of consumption due to the use circumstance.
The method of managing a point in time at which the ink is consumed using electrodes can manage whether the ink is present or absent with a high degree of reliability since an actual volume of the ink can be detected. However, since the detection of an ink level depends on the electrical conductivity of ink, kinds of inks for use are limited, and a sealing structure of electrodes becomes complex. Moreover, since usually precious metal having a good conductivity and corrosion resistance is used as a material for the electrodes, the manufacturing cost of the ink cartridge is increased. Furthermore, since two pieces of electrodes are required to be mounted, the number of steps of manufacturing it is increased, and as a result, the manufacturing cost is increased.
Then, a method of detecting a liquid level of the ink by detecting a change of acoustic impedance using a piezoelectric device utilizing a piezoelectric material is proposed. In the method of detecting a liquid level of the ink using a piezoelectric device, whether the ink is present or absent can be managed in a high degree of reliability, the sealing structure of the electrodes are not to be a complex structure, and the manufacturing cost of the ink cartridge is low.
However, in the case where the piezoelectric device is defective, the piezoelectric device is not normally operated and erroneously judges whether the ink is present or absent within the ink cartridge. Therefore, if it can be judged whether or not the piezoelectric device is normally operated, it has an advantage over the above.
Moreover, in an ink cartridge with a defect, the reduction of an ink volume is generated due to the leakage and evaporation of the ink. Therefore, it is desired to be able to detect by the piezoelectric device that the ink cartridge is not filled with the ink of the predetermined volume due to the defect of the ink cartridge.
Moreover, even in the manufacturing an ink cartridge, if the method can confirm whether or not the ink cartridge is filled with the ink of the predetermined volume, it has an advantage over the method which is not capable of confirming it.
Furthermore, when the ink cartridge is utilized again for recycling and the like, the ink is refilled within the ink cartridge. If the method can detect whether or not the ink of the predetermined volume is actually present or not within the ink cartridge after the ink refilling, the method has an advantage over the method which is not capable of detecting it.
Furthermore, it is desirable to be able to detect the cases where the ink cartridge is not properly mounted and where the ink jet recording apparatus is gradient, based on a gradient of the liquid level. Thereby, the ink jet recording apparatus is prevented from performing a poor printing.
Accordingly, an object of the present invention is to provide a method and an apparatus for controlling an ink jet recording apparatus based on the obtained result of whether or not there is a defect of a liquid detecting function by a piezoelectric device.
Moreover, an object of the present invention is to provide a liquid container capable of confirming that the liquid of the predetermined volume presents within the liquid container during manufacturing the liquid container, and after manufacturing the same.
Furthermore, other objects of the present invention are to provide a liquid container capable of detecting that the predetermined volume of the ink is not contained in the liquid container due to defects of the liquid container and/or the piezoelectric device, and to provide a method and an apparatus for controlling an ink jet recording apparatus based on the detected results of ink volume.
Still further, other objects of the present invention are to provide a liquid container capable of detecting a gradient of the liquid container in the case, e.g., where the liquid container is not properly mounted, and to provide a method and an apparatus for controlling an ink jet recording apparatus based on the detected results of an ink volume.
Furthermore, another object of the present invention is to provide a liquid container and an ink jet recording apparatus capable of easily and precisely detecting an ink volume within the liquid container.
The present invention is a method of controlling an ink jet recording apparatus on which a liquid container is able to be detachably mounted, said liquid container having a container body containing a liquid supplied to a recording head discharging an ink droplet from a nozzle opening and a piezoelectric device for detecting said liquid within said container body, comprising the steps of: detecting a characteristic value of said piezoelectric device by a detection section provided inside or outside of said ink jet recording apparatus; judging whether or not said characteristic value satisfies a predetermined condition by a judging section provided inside or outside of said ink jet recording apparatus; and controlling said ink jet recording apparatus so that said ink jet recording apparatus is set in an operable state or in a non-operable state based on a result of said judging step.
Preferably, said detecting step is executed at the time that said liquid container is mounted on said ink jet recording apparatus.
Preferably, the method further comprises a step of measuring a consumption volume of said liquid within said liquid container until at least a predetermined volume by a measuring section provided inside or outside of said ink jet recording apparatus.
Preferably, the method further comprises a step of, in a case that said ink jet recording apparatus is in said non-operable state, selecting either to maintain said non-operable state of said ink jet recording apparatus or to change said non-operable state of said ink jet recording apparatus to said operable state.
Preferably, said characteristic value is an element characteristic value of a piezoelectric element of said piezoelectric device.
Preferably, said characteristic value is an oscillation characteristic value of an oscillating portion of said piezoelectric device.
Preferably, said liquid container is provided with at least two said piezoelectric devices. Said detection section detects oscillation characteristic values of said at least two piezoelectric devices in said detecting step. Said judging section judges a consumption state of said liquid within said liquid container based on a relative condition of mutual oscillation characteristic values of said at least two piezoelectric devices in said judging step.
The present invention is an apparatus for controlling an ink jet recording apparatus on which a liquid container is able to be detachably mounted, said liquid container having a container body containing a liquid supplied to a recording head discharging an ink droplet from a nozzle opening and a piezoelectric device for detecting said liquid within said container body, comprising: a detection section for detecting a characteristic value of said piezoelectric device, said detection section being provided inside or outside of said ink jet recording apparatus; a judging section for judging whether or not said characteristic value satisfies a predetermined condition, said judging section being provided inside or outside of said ink jet recording apparatus; and a controlling section for controlling said ink jet recording apparatus so that said ink jet recording apparatus is set in an operable state or in a non-operable state based on a result obtained by said judging section.
Preferably, said detection section detects oscillation characteristic values of at least two said piezoelectric devices which are attached to said liquid container. Said judging section judges a consumption state of said liquid within said liquid container based on a relative condition of mutual oscillation characteristic values of said at least two piezoelectric devices.
The present invention is a liquid container comprising: a container body containing a liquid; a liquid supplying opening for supplying said liquid outside of said container body; and a piezoelectric device for detecting said liquid within said container body, said piezoelectric device being positioned nearby a liquid level of said liquid when said liquid is not consumed.
Preferably, the liquid container further comprises an additional piezoelectric device for detecting said liquid within said container body.
Preferably, said additional piezoelectric device is positioned nearby a bottom surface of said container body.
Preferably, said additional piezoelectric device is positioned nearby said piezoelectric device, an initial liquid level when said liquid within said container body is not consumed being located between said piezoelectric device and said additional piezoelectric device.
Preferably, said piezoelectric device and said additional piezoelectric device have oscillating sections contacting with a medium within said container body, respectively. Oscillation characteristic values of said oscillating sections are detected.
Preferably, said liquid container is adapted to be mounted on an ink jet recording apparatus which performs a recording by a recording head discharging an ink droplet, said liquid within said container body being supplied to said recording head.
The present invention is an ink jet recording apparatus on which a liquid container is able to be detachably mounted, said liquid container having a container body containing a liquid and a piezoelectric device for detecting said liquid within said container body, comprising: a recording head receiving said liquid from said liquid container and discharging an ink droplet from a nozzle opening; and a controller for controlling an operation state of said ink jet recording apparatus, said controller including: a detection section for detecting a characteristic value of said piezoelectric device, said detection section being provided inside or outside of said ink jet recording apparatus; a judging section for judging whether or not said characteristic value satisfies a predetermined condition, said judging section being provided inside or outside of said ink jet recording apparatus; and a controlling section for controlling said ink jet recording apparatus so that said ink jet recording apparatus is set in an operable state or in a non-operable state based on a result obtained by said judging section.
Preferably, the ink jet recording apparatus further comprises a storage device capable of storing at least said characteristic value.
Preferably, the ink jet recording apparatus further comprises a measuring section for measuring a liquid consuming volume within said liquid container until at least a predetermined volume.
Preferably, said detection section detects oscillation characteristic values of at least two said piezoelectric devices which are attached to said liquid container. Said judging section judges a consumption state of said liquid within said liquid container based on a relative condition of mutual oscillation characteristic values of said at least two piezoelectric devices.
The present invention is a method of detecting a liquid consumption state of a liquid container mounted on an ink jet recording apparatus, said liquid container having a container body containing a liquid supplied to a recording head discharging an ink droplet from a nozzle opening and a piezoelectric device for detecting said liquid within said container body, comprising the steps of: detecting oscillation characteristic values of at least two said piezoelectric devices attached to said liquid container by a detection section, said detection section being provided inside or outside of said ink jet recording apparatus; and judging a consumption state of said liquid within said liquid container based on a relative condition of mutual oscillation characteristic values of said at least two piezoelectric devices by a judging section, said judging section being provided inside or outside of said ink jet recording apparatus.
Preferably, said relative condition of said oscillation characteristic values is that said oscillation characteristic values of said at least two piezoelectric devices are approximately equal to each other.
The present invention is an ink jet recording apparatus on which a liquid container is able to be detachably mounted, said liquid container having a container body containing a liquid and a piezoelectric device for detecting said liquid within said container body, comprising: a recording head receiving said liquid from said liquid container and discharging an ink droplet from a nozzle opening; and a controller for controlling an operation state of said ink jet recording apparatus, said controller including: a detection section for detecting oscillation characteristic values of at least two said piezoelectric devices attached to said liquid container; and a judging section for judging a consumption state of said liquid within said liquid container based on a relative condition of mutual oscillation characteristic values of said at least two piezoelectric devices.
Preferably, said relative condition of said oscillation characteristic values is that said oscillation characteristic values of said at least two piezoelectric devices are approximately equal to each other.
Hereinafter, the present invention will be described through embodiments of the invention, however, the following embodiments of the invention do not limit the scope of the invention according to the claims, and all of the combinations of the characteristics described in the embodiments are not necessarily essential for solving means for the invention.
The fundamental concept of the present invention is to detect a liquid state within a liquid container (including the presence or absence of the liquid within the liquid container, a volume of the liquid, a liquid level of the liquid, the kind of the liquid and compositions of the liquid) by utilizing an oscillation phenomenon. Some concrete methods are considered as methods of detecting a liquid state within the liquid container by utilizing an oscillation phenomenon. For example, there is a method in which elastic wave generation means generates an elastic wave with respect to the interior of the liquid container and detects a medium within the liquid container and a change of state thereof by receiving a reflection wave reflected by the liquid level or opposed wall. Moreover, apart from this, there is a method of detecting a change of acoustic impedance from the oscillation characteristic of an oscillating object. As methods of utilizing a change of acoustic impedance, there are a method of detecting a change of acoustic impedance by making a piezoelectric device having a piezoelectric element or an oscillating section of actuator oscillated, subsequently measuring an counter electromotive force generated by the residual oscillation remained in the oscillating section, and detecting an amplitude of resonance frequency or counter electromotive force waveform, and a method of measuring an impedance characteristic of the liquid or an admittance characteristic of the liquid by a measuring device of an impedance analyzer, for example, a transmission circuit and a change of current value and voltage value or a change of current value and voltage value due to frequency when an oscillation is applied to the liquid.
It should be noted that characteristic values of an actuator as one example of a piezoelectric device described below include at least an element characteristic value and an oscillation characteristic value. An element characteristic value is meant to be a characteristic value of a material itself having a piezoelectric character included in an actuator. For example, an electric characteristic such as voltage value or current value, resistance value and an electric capacity, and an optical characteristic when constant current or constant voltage is applied to an actuator can be listed. An oscillation characteristic value is meant to be an oscillating characteristic of the oscillating section changing based on the change of acoustic impedance due to the change of a medium contacting with the oscillating section included in the actuator. For example, an oscillating frequency and an amplitude of the oscillating section can be listed. In addition, a characteristic value of the counter electromotive force generated by the oscillation of the oscillating section is included in the oscillation characteristic value.
The ink cartridge of
In the ink cartridge according to the present embodiment, the actuator 106 is provided and arranged on the internal wall of the opposed side wall 1015 out of the internal walls of the container body 1. The actuator 106 is electrically connected to a lead wire 111 penetrating the opposed side wall 1015. Moreover, an external terminal 107 is mounted on the external wall of the opposed side wall 1015 so that the external terminal 107 is electrically contacted to the lead wire 111. The actuator 106 is provided and arranged on the opposed side wall 1015, however, the receiving and delivering of an electrical signal to and from the external can be performed by electrically connecting to the external terminal 107 which exists in the external of the container body 1 via the lead wire 111. Moreover, the actuator 106 is located at the lower position of the liquid level of the ink in a not-used state of an ink cartridge and provided and arranged nearby the liquid level of the ink. Therefore, the oscillating section of the actuator 106 is positioned at the slightly lower position with respect to the liquid level of the ink.
The actuator 106 is not protruded to the external by providing and arranging on the internal wall of the container body 1. Therefore, the appearance of the ink cartridge is approximately same with the outline of an ink cartridge in which the actuator 106 is not provided and arranged except that the external terminal 107 is protruded. Therefore, a large modification in a design such as the specification of a holder of an ink cartridge of an ink jet recording apparatus is not accompanied by physically changing the outline of the ink cartridge.
Moreover, a hole perforated on the internal wall of the container body 1, that is, the opposed sidewall 1015 in the present embodiment is large enough such that the lead wire 111 penetrates through the hole. Therefore, it is not necessary to provide a comparatively large hole on the side wall of the container body 1 in order that the actuator 106 is penetrated. Hence, the internal of the container body 1 is maintained in a fluid-tight manner, the leakage of the ink within the container body 1 to the external is prevented. As a result, the ink cartridge according to the present embodiment does not require a complex sealing structure. Moreover, since the complex sealing structure is not necessary, the manufacturing cost becomes lower.
Moreover, the element characteristic value can be detected by applying a current and voltage to the actuator 106 via the external terminal 107 and the lead wire 111.
Furthermore, in the present embodiment, the actuator 106 is located at the lower position of the liquid level of the ink in a not-used state of the ink cartridge, and since the actuator 106 is provided and arranged nearby the liquid level of the ink, when the ink cartridge is manufactured or, the ink cartridge is recycled, whether or not the predetermined volume of the ink is actually present within the ink cartridge can be detected. Furthermore, after manufacturing the ink cartridge, due to a defect of the ink cartridge, the leakage of the ink and the evaporation of the ink may reduce the volume of the ink. In such a case, since the actuator 106 can detect whether or not the predetermined volume of ink is present within the ink cartridge, the defect of the ink cartridge can be also detected.
Moreover, in the case where an ink cartridge is left it alone for a long period as it is in a not-used state, the qualities such as viscosity and the like of the ink may be getting worse by the evaporation of the ink. The actuator 106 can judge whether the quality of the ink is good or bad to some extent by detecting that the predetermined volume of ink is not present within the ink cartridge.
Furthermore, in the case where the ink cartridge is not properly mounted and/or in the case where the ink jet recording apparatus is gradient, although the ink cartridge is in a not-used state, it can be detected that the ink cartridge is gradient by confirming the exposure of the actuator 106 from the liquid level of the ink. To the contrary, it may be also detected that the ink cartridge is gradient by the non-exposure of the actuator 106 from the liquid level of the ink although the predetermined volume of ink is consumed.
By changing the height of the actuator 106 with respect to the liquid level of the ink, the volume of the ink to be filled within the ink cartridge can be changed, and also, the reduced volume of the ink for judging a gradient of the ink cartridge or that the ink cartridge is not good can be modified. It should be noted that the actuator 106 might be also used as only detecting means of the medium by providing oscillating means separately.
Also in the present embodiment, an element characteristic value can be detected by applying a current and voltage to the actuator 106 via the external terminal 107 and the lead wire 111.
Moreover, in the case where the ink cartridge is not properly mounted, and in the case where ink jet recording apparatus is gradient, although the ink cartridge is in a not-used state, the gradient of the ink cartridge can be detected by detecting the ink using the actuator 106.
A similar effect of the actuator 106 in the embodiment of
Therefore, all of the judgment of whether or not the actuators 106a and 106b have defects, the detection of whether or not the predetermined volume of the ink is present within the ink cartridge, and the detection of the ink end can be carried out by providing and arranging two actuators of the actuators 106a and 106b as the embodiment of
Moreover, the consumed volume of the ink within the ink cartridge can be also detected based on the relative condition of mutual characteristic values of the actuators 106a and 106b. More particularly, semiconductor storage means 7 stores an oscillating characteristic value of the actuator 106a detected when the predetermined volume of the ink within the ink cartridge was consumed and the ink was absent on the periphery of the actuator 106a. When the value of oscillating characteristic value that the actuator 106b detects is approximately equal to the value of the oscillating characteristic value of the actuator 106a detected when the ink was absent on the periphery of the actuator 106a, it can be judged that the liquid level of the ink passed through the actuator 106b. Since the actuator 106b is provided and arranged nearby the liquid level of the ink at the time of the ink end of the container body 1, when the passage of the liquid level of the ink was judged, it can be judged as the ink end. Moreover, according to the present embodiment, it is not necessary to measure oscillating characteristic values of the actuators 106a and 106b in the manufacturing processes when the ink is absent within the container body 1. Therefore, the manufacturing of the actuators 106a and 106b or the ink cartridge becomes easy and the manufacturing processes can be shortened. Furthermore, it is preferable that the actuators 106a and 106b are manufactured in the same lot number. It is because owing to this, the characteristics of the actuator 106a and the actuator 106b are approximately equal. The ink within the ink cartridge can be precisely detected by employing the actuator 106a and the actuator 106b whose characteristics are approximately equal.
Moreover, when the ink is refilled in the ink cartridge according to the embodiment of
It should be noted that the actuators 106, 106a, 106b in the embodiments from
In the present embodiment, the actuator 106 is provided and arranged at the slightly lower position than the liquid level of the ink in a not-used state of the ink cartridge on the internal wall of the intervening side wall 1020a. However, the actuator 106 may be provided and arranged as in
According to the present embodiment, all of the judgment of whether or not the actuator 106 has a defect, the detection of whether or not the ink of the predetermined volume presents in the ink cartridge, and the detection of the ink end can be carried out by the single actuator 106.
Moreover, a consumption state of the liquid within the liquid container can be judged based on at least two oscillating characteristic values of the actuators 106.
When the ink supplying opening 2 of the container body 1 is inserted along to the ink supplying needle 32 of the sub-tank unit 33, a valve body 6 is set back against a spring 5, an ink pass is formed, and the ink within the container body 1 flows into an ink chamber 34. After the ink is filled into the ink chamber 34, the nozzle opening of the recording head 31 is subjected to the action of negative pressure, ink is discharged from the recording head 31 and the recording operation is carried out.
It should be noted that in the embodiments of
When the ink is consumed in the recording head 31 by the recording operation, since the pressure of downstream side of a film valve 36 is lowered, the film valve 36 is opened. Thus, the ink in the ink chamber 34 flows into the recording head 31 via an ink supplying pass 35. The ink in the container body 1 flows into the sub-tank unit 33 via the ink supplying needle 32 accompanying with the inflow of the ink to the recording head 31, and the printing is repeated.
The actuator 106 mounted on the ink cartridge 180 is controlled by piezoelectric device control means 720. A characteristic value of the actuator 106 controlled by the piezoelectric device control means 720 is detected by a characteristic value detecting section 810. For example, by applying the constant voltage to the actuator by the piezoelectric device control means 720, a current value flown in a piezoelectric element contained in the actuator 106 is detected by the characteristic value detecting section 810. Owing to this, the characteristic value detecting section 810 can detect the resistance value of the piezoelectric element. Moreover, the characteristic value detecting section 810 may detect the electrical capacity of the piezoelectric element by utilizing the alternating current electric source.
The characteristic value detecting section 810 may detect an oscillating characteristic of the oscillating section of the actuator 106. For example, the piezoelectric device control means 720 applies the voltage to the actuator 106, and the characteristic value detecting section 810 detects a counter electromotive force generated by the remaining residual oscillation in the oscillating section of the actuator 106. Owing to this, the characteristic value detecting section 810 can detect resonance frequency of the residual oscillation and the amplitude of the counter electromotive force.
A characteristic value of the actuator 106 detected in the characteristic value detecting section 810 is sent to a characteristic value judging section 820. On the other hand, the predetermined conditions that the characteristic value should satisfy have been previously stored in the storage section 850. The predetermined conditions may be set according to the characteristic values. For example, in the case where the characteristic value is a resistance value of a piezoelectric element, the specification that the resistance value of the piezoelectric element should satisfy is defined as the predetermined condition. Moreover, for example, in the case where the characteristic value is judged as a resonance frequency of the actuator 106, the specification that the resonance frequency should satisfy is defined as the predetermined condition. The storage section 850 sends the predetermined conditions to the characteristic value judging section 820 corresponding to the timing when the characteristic value detecting section 810 detects the characteristic value of the actuator 106. The characteristic value sent to the characteristic value judging section 820 is compared with the predetermined condition by a comparator included in the characteristic value judging section 820.
In the case where the characteristic value judging section 820 judges that the characteristic value does not satisfy the predetermined conditions, the characteristic value judging section 820 sends an error signal to an output section 840. The output section 840 outputs the display of the error corresponding to the error signal. The output section 840 is, for example, the panel 2000 and the external output terminal 2500 shown in
On the other hand, in the case where the characteristic value judging section 820 judges that the characteristic value satisfies the predetermined conditions, the characteristic value judging section 820 sends an operable signal to the control section 750. The operable signal is a signal for making a state where the ink jet recording apparatus can carry out the operations such as printing, cleaning, flashing, standby and the like, that is, for making the ink jet recording apparatus in an operable state. The ink jet recording apparatus which has received the operable signal can start or restart or is in a standby state prior to the operation. Furthermore, the display notifying that the output section 840 satisfies the predetermined conditions, the ink jet recording apparatus is in an operable state and the like may be also outputted.
The timing that the characteristic value detecting section 810 detects the characteristic value of the actuator 106 may be even at the time when the ink cartridge is mounted on the ink jet recording apparatus. Moreover, it may be even at the time when the ink consumption volume measuring section 830 measures the predetermined volume portion of the ink within the ink cartridge is consumed.
The timing when the ink consumption volume measuring section 830 measures that the predetermined volume of the ink within the ink cartridge is consumed will be described in more detail below. The ink consumption volume measuring section 830 calculates an ink consumption within the ink cartridge by adding up a volume of ink droplets discharged from the recording head and the ink volume actually used at the time of cleaning and flashing. Information of consumed volume of the ink mathematically calculated which has been measured in the ink consumption volume measuring section 830 is sent to the characteristic value judging section 820. On the other hand, the predetermined conditions that the consumed volume mathematically calculated should satisfy has been previously stored in the storage section 850. The predetermined conditions may be set corresponding to the volume of ink droplets discharged from the recording head, the frequency of the cleanings and flashings, the position where the actuator 106 is provided and arranged and the like. The storage section 850 sends the predetermined conditions previously stored to the characteristic value judging section 820. The characteristic value judging section 820 emits a signal to the control section 750 when a consumed volume of the ink mathematically calculated achieves the predetermined volume in the ink consumption volume measuring section 830. The piezoelectric device control means 720 of the control section 750 apply a voltage or the like to the actuator 106 corresponding to a signal from the characteristic value judging section 820. Owing to this, the characteristic value detecting section 810 detects the characteristic value of the actuator 106.
It should be noted that as for the volume of the ink droplets and the volume of the ink actually used at the time of cleanings and flashings which have been previously judged in the ink consumption volume measuring section 830, errors compared with the actually discharging volume of the ink occurred due to the use circumferences may arise in many cases. Therefore, it is preferable that the predetermined condition stored in the storage section 850 is made as a value to which a little over addition or a little over reduction is performed to some extent. Moreover, in the case where the characteristic value of the actuator 106 is detected when the ink cartridge is mounted on the ink jet recording apparatus, the consumed volume of the ink as the predetermined condition stored in the storage section 850 may be set as zero.
In the ink jet recording apparatus, a cap 712 is further mounted on the non-printing region for sealing the recording head 702. The cap 712 is connected to an absorbing pump 718 via a tube, performs the cleaning of the nozzle opening of the recording head 702 by receiving the supply of the negative pressure and discharging the ink from the whole nozzle of the recording head 702. Moreover, the flashing is performed by positioning the recording head 702 at the cap 712 and discharging the ink from the whole nozzle of the recording head 712. These timings of cleaning processes, flashing processes and a timing of exchanging from the printing state to the non-printing state may be timings for detecting the characteristic value of the actuator 106.
It should be noted that the characteristic value detecting section 810, the characteristic value judging section 820, the ink consumption volume measuring section 830, the output section 840 and the storage section 850 may be provided and arranged inside of the ink jet recording apparatus, for example, provided and arranged within the control section 750, or may be provided and arranged in the device which is provided and arranged outside, for example, in the external host computer. Preferably, the characteristic value detecting section 810, the characteristic value judging section 820, the ink consumption volume measuring section 830, the output section 840 and the storage section 850 which are concerning the operation of the piezoelectric device are provided and arranged in the ink cartridge. In consideration of the case where members concerning the operation of the piezoelectric device are out of working order, it is preferable that these members are configured to be able to be exchanged at the same time of the exchange of the ink cartridge. Furthermore, the characteristic value detecting section 810, the characteristic value judging section 820, the ink consumption volume measuring section 830, the output section 840 and the storage section 850 which are concerning the operation of the piezoelectric device may be provided and arranged on the recording head which is mounted on the ink jet recording apparatus to/from which the recording head is easily attachable and detachable. The control section 750 includes head control means 724 and pump control means 728. The head control means 724 controls head drive means 742. The pump control means 728 controls the pump drive means 744.
An operation of an ink jet recording apparatus will be described below on the basis of the flowchart of
Next, the piezoelectric device control means 720 sends an element characteristic detecting signal for detecting an element characteristic value of the actuator 106 to the actuator 106. The element characteristic detecting signal is, for example, a current and a voltage. Subsequently, in
In the case where an element characteristic value of the actuator 106 does not satisfy the predetermined condition, the error 0 is displayed on the output section 840. For example, the error 0 is displayed on the panel 2000 as a display section provided on the ink jet recording apparatus, or on the external host computer 3000 connected to the external output terminal 2500 provided on the ink jet recording apparatus. Or, again, an instruction S0 sending an element characteristic detection signal to the actuator 106 may be returned to the ink jet recording apparatus. In such a case, it may be set so that the display of the error 0 is outputted in the case where although the element characteristic detection signal is sent a number of the predetermined times according to the instruction S0, the element characteristic value of the actuator 106 does not satisfy the predetermined condition. Furthermore, it may be set so that the display of the error 0 is outputted in the case where the average value of the element characteristic values of the actuator 106 does not satisfy the predetermined condition when the element characteristic detection signal is sent a number of the predetermined times. Furthermore, it can be judged based on whether or not the maximum value out of a plurality of element characteristic values is in the predetermined range, or whether or not the minimum value is in the predetermined range.
The display of the error 0 may be a display notifying only an occurrence of an error to the user. Preferably, the display of the error 0 is a display indicating that the actuator 106 is not good, the element characteristic value, the results of the judgment in the characteristic value judging section 820 or the like. Accompanying with the error 0 is displayed, the ink jet recording apparatus is in a non-operable state. The output section 840 may display that the ink jet recording apparatus is in a non-operable state. Moreover, the storage section 850 may store that the ink jet recording apparatus is in a non-operable state. Owing to this, the past data of the ink jet recording apparatus is stored. It should be noted that an non-operable state is referred to a state where the an operation as a recording apparatus is impossible. Moreover, even if the ink jet recording apparatus according to the present embodiment is in a non-operable state, it is in a state where a signal for moving the ink cartridge into the predetermined position in order to be capable of exchanging it into a new ink cartridge, and a signal for the selection and the like being made by the user, which will be described later can be received.
As defects of the element characteristic value of the actuator 106, the defect of the piezoelectric element and the defective contact of the wiring to the piezoelectric element are considered. The defect of the piezoelectric element occurs since the element characteristic itself of the piezoelectric element is defective. The defective contact of the wiring to the piezoelectric element occurs since the electric contacts of a piezoelectric layer 160, an upper portion electrode 164, a lower portion electrode 166, an upper portion electrode terminal 168, a lower electrode terminal 170 and an auxiliary electrode 172 in
The user exchanges an ink cartridge based on the display of the error 0 while maintaining the state where the ink jet recording apparatus is in a non-operable state. Or, it may be set so that the user can select an instruction S2 in order that the ink jet recording apparatus is made in an operable state using the already mounted ink cartridge. The ink jet recording apparatus can be in an operable state by the instruction S2. It is preferable cthat the past errors and the contents of the instructions including the element characteristic values of the actuator 106 have been stored in the storage section 850.
In the case where the element characteristic value of the actuator 106 satisfy the predetermined condition, an operation signal is sent from the piezoelectric device control means 720 to the actuator 106 (see
In
The display of the error 1 may be a display notifying only an occurrence of an error to the user. Preferably, the display of the error 1 is a display indicating that the ink cartridge is defective, or that the actuator 106 provided and arranged in the ink cartridge is defective, the characteristic value, the results of the judgment in the characteristic value judging section 820 or the like. It can be displayed that an ink cartridge on which the actuator 106 is not provided is mounted on the ink jet recording apparatus as a display of the error 1. In the case where the actuator 106 does not perform the predetermined operation, the ink jet recording apparatus is in a non-operable state as well as the error 1 is displayed.
The user exchanges an ink cartridge according to the display of the error 1 while the non-operable state is left maintained as it is. Moreover, it may be set so that the user can select the instruction S2 in order to make it in an operable state using the already mounted ink cartridge. The ink jet recording apparatus can be in an operable state by the instruction S2. It is preferable that the past errors and instructions have been stored in the storage section 850.
In
In
The display of the error 2 may be a display notifying only an occurrence of an error to the user. Preferably, the display of the error 2 is a display indicating that the ink cartridge is defective, the characteristic value, the results of the judgment in the characteristic value judging section 820 or the like. As defects of the ink cartridge indicated by the display of the error 2, for example, there are the case where the liquid level of the ink does not reach to the position of the actuator 106 since the predetermined volume of the ink is not filled when the ink cartridge is manufactured, the case where the ink is not present on the periphery of the actuator 106 since the ink cartridge or the ink jet recording apparatus is gradient, the case where the ink evaporates by leaving the ink cartridge unused for a long time and the liquid level of the ink does not reach to the position of the actuator 106, the case where the ink leaks or evaporates due to the defect of the ink cartridge and the liquid level of the ink does not reach to the position of the actuator 106, the case where the ink cartridge once used is mounted again on the ink jet recording apparatus and the like. In the case where the initial oscillation characteristic value does not satisfy the predetermined condition, the ink jet recording apparatus is in a non-operable state as well as the error 2 is displayed.
The user exchanges an ink cartridge according to the display of the error 2 while the non-operable state is left maintained as it is. Moreover, it may be set so that the user can select the instruction S2 in order to make it in an operable state using the already mounted ink cartridge. The ink jet recording apparatus can be in an operable state by the instruction S2. It is preferable that the past errors and instructions have been stored in the storage section 850.
In
In
As for the flowchart of
The ink consumption volume measuring section 830 measures the volume of the ink discharged from the recording head by counting the number of the ink droplets discharged from the recording head and the number of times of maintenance, for example, the flashings and the cleanings, for recovering clogging of the nozzle provided in the recording head and the mechanics.
The measurement value of the volume of the ink discharged from the recording head is approximately consistent with the consumed volume of the ink within the ink cartridge. In the case where the measurement value of the consumed volume of the ink does not reach to the predetermined reference value, the operation of the inkjet recording apparatus continues. When the measurement value of the consumed volume of the ink reaches to the predetermined value, the ink jet recording apparatus sends an operation signal to the actuator 106. It should be noted that as for the predetermined reference value, in consideration of the difference between the actual consumed volume of the ink and the measurement value of the volume of the ink discharged from the recording head 31, it is preferable that a little over is added to the reference or the reference is reduced by a little over.
The actuator 106 receives an operation signal. In the case where the actuator 106 is not defective, the actuator 106 performs the predetermined operation. On the other hand, in the case where the actuator 106 is defective, the actuator 106 does not perform the predetermined operation (see
In
The display of the error 3 may be a display notifying only an occurrence of an error to the user. Preferably, the display of the error 3 is a display indicating that the ink cartridge is defective, the actuator 106 provided and arranged in the ink cartridge is defective, the ink jet recording apparatus is stopped, the characteristic value, the results of the judgment in the characteristic value judging section 820 or the like. It can be displayed that the ink cartridge in which the actuator 106 is not provided is mounted on the ink jet recording apparatus as a display of the error 3 . In the case where the actuator 106 does not perform the predetermined operation, the ink jet recording apparatus is in a non-operable state as well as the error 3 is displayed.
The user exchanges an ink cartridge according to the display of the error 3 while the ink jet recording apparatus is maintained in the non-operable state. Moreover, it may be set so that the user can select an instruction S5 in order to continue the printing using the already mounted ink cartridge. The ink jet recording apparatus can be in an operable state by the instruction S5. It is preferable that the past errors and instructions have been stored in the storage section 850.
In
In
The display of the error 4 may be a display notifying only an occurrence of an error to the user. Preferably, the display of the error 4 is a display indicating that the ink cartridge is defective, the characteristic value, the results of the judgment in the characteristic value judging section 820 or the like. As defects of the ink cartridge indicated by the display of the error 4, for example, there are the case where the ink is present on the periphery of the actuator 106 since the ink cartridge and the ink jet recording apparatus is gradient, the case where the ink is not supplied from the ink cartridge to the recording head, the case where the ink is not discharged due to the defect of the recording head and the like. In the case where the intermediate oscillation characteristic value does not satisfy the predetermined condition, the ink jet recording apparatus is in a non-operable state as well as the error 4 is displayed.
The user exchanges the ink cartridge according to the display of the error 4 while the ink jet recording apparatus is maintained in the non-operable state. Moreover, it may be set so that the user can select the instruction S5 in order to restart the operation using the already mounted ink cartridge. The ink jet recording apparatus can be in an operable state by the instruction S5. It is preferable that the past errors and instructions have been stored in the storage section 850.
In
Only one of the methods of
The actuator 106 has a substrate 178 having a circular opening 161 at approximate center of it, an oscillation plate 176 arranged on one of the faces (hereinafter, referred to as surface) of the substrate 178 so as to cover the opening 161, a piezoelectric layer arranged on the side of the surface of the oscillation plate 176, an upper portion electrode 164 and a lower portion electrode 166 sandwiching the piezoelectric layer 160 from the both sides, an upper portion electrode terminal 168 for electrically coupling to the upper portion electrode 164, a lower portion electrode terminal 170 for electrically coupling to the lower portion electrode 166, and an auxiliary electrode 172 provided and arranged between the upper portion electrode 164 and the upper portion electrode terminal 168 and electrically coupling both of these. The piezoelectric layer 160, the upper portion electrode 164 and the lower portion electrode 166 have a circular portion as a major portion, respectively. The respective circular portions of the piezoelectric layer 160, the upper portion electrode 164 and the lower portion electrode 166 forms the piezoelectric elements.
The oscillation plate 176 is formed so as to cover the opening 161 on the surface of the substrate 178. The cavity 162 is formed by the portion facing the opening 161 of the oscillation plate 176 and the opening 161 of the surface of the substrate 178. The face of the contrary side (hereinafter, referred to as reverse face) of a piezoelectric element of the substrate 178 faces the liquid container side, the cavity 162 is configured so that the cavity 162 contacts with a liquid. The oscillation plate 176 is mounted with respect to the substrate 178 in a fluid-tight manner so that even if a liquid enters within the cavity 162, the liquid does not leak to the surface side of the substrate 178.
The lower portion electrode 166 is located on the surface of the oscillation plate 176, that is to say, on the face of the contrary side of the liquid container, and it is mounted so that the center of the circular portion which is the major portion of the lower portion electrode 166 and the center of the opening 161 are approximately consistent with each other. It should be noted it is set so that an area of the circular portion of the lower portion electrode 166 is smaller than that of the opening 161. On the other hand, on the surface side of the lower portion electrode 166, the piezoelectric layer 160 is formed so that the center of its circular portion and the center of the opening 161 are approximately consistent with each other. It is set so that an area of the circular portion of the piezoelectric layer 160 is smaller than that of the opening 161 and larger than that of the circular portion of the lower portion electrode 166.
On the other hand, on the surface side of the piezoelectric layer 160, the upper portion electrode 164 is formed so that the center of the circular portion which is the major portion of it and the center of the opening 161 are approximately consistent with each other. It is set so that an area of the circular portion of the upper portion electrode 164 is smaller than those of the circular portion of the opening 161 and the piezoelectric layer 160 and larger than that of the circular portion of the lower portion electrode 166.
Therefore, the major portion of the piezoelectric layer 160 has a structure so that the major portion of it is sandwiched from the front face side and back face side by the major portion of the upper portion electrode 164 and the major portion of the lower portion electrode 166, respectively, and the piezoelectric layer 160 can be effectively deformed and driven. The circular portions which are the major portions of the piezoelectric layer 160, the upper portion electrode 164 and the lower portion electrode 166, respectively, form piezoelectric elements in the actuator 106. As described above, the piezoelectric element contacts with the oscillation plate 176. Moreover, the largest area is the area of the opening 161 among the circular portion of the upper portion electrode 164, the circular portion of the piezoelectric layer 160, the circular portion of the lower portion electrode 166 and the opening 161. Owing to this structure, the actually oscillating region out of the oscillation plate 176 is determined by the opening 161. Moreover, since the circular portion of the upper portion electrode 164, the piezoelectric layer 160 and the circular portion of the lower portion electrode 166 are smaller than that of the opening 161, the oscillation plate 176 is more easily oscillating. Moreover, when comparing the circular portion of the circular portion of the upper portion electrode 164 and the lower portion electrode 166 for electrically connecting with the piezoelectric layer 160, the circular portion of the lower portion electrode 166 is smaller. Therefore, the circular portion of the lower portion terminal 166 judges the portion of the piezoelectric layer 160 where the piezoelectric effect is generated.
The upper portion electrode terminal 168 is formed on the front face of the oscillation plate 176 so that it electrically connects with the upper portion electrode 164 via the auxiliary electrode 172. On the other hand, the lower portion electrode terminal 170 is formed on the front face side of the oscillation plate 176 so that it electrically connects with the lower portion electrode 166. The upper portion electrode 164 is formed on the front face side of the piezoelectric layer 160, on the way of connecting with the upper portion electrode terminal 168, it is necessary to have a step difference equivalent to the sum of the thickness of the piezoelectric layer 160 and the thickness of the lower portion electrode 166. It is difficult to form this step difference only by the upper portion electrode 164, if it is possible, the connection state between the upper portion electrode 164 and the upper portion electrode terminal 168 becomes fragile, there may be a risk to be cut. Therefore, the upper portion electrode 164 and the upper portion electrode terminal 168 are connected by employing the auxiliary electrode 172 as an auxiliary member. By dealing with it in such a manner, it becomes a structure that the piezoelectric layer 160 as well as the electrode portion electrode 164 is supported by the auxiliary electrode 172, the desired mechanical strength can be obtained, and the connection between the upper portion electrode 164 and the upper portion electrode terminal 168 is capable of being secured.
It should be noted that the piezoelectric element and the oscillating region directly facing the piezoelectric element out of the oscillating plate 176 are the oscillating section for actually oscillating in the actuator 106. Moreover, it is preferable that members contained in the actuator 106 is integrally formed by burning each other. The treatment of the actuator 106 becomes easier by integrally forming the actuator 106. Furthermore, the oscillating property is enhanced by enhancing the strength of the substrate 178. Specifically, by enhancing the strength of the substrate 178, only the oscillating section of the actuator 106 vibrates and portions except for the oscillating section do not vibrate. Moreover, the purpose for making the portions except for the oscillating section of the actuator 106 not vibrate can be achieved by making the piezoelectric element of the actuator 106 thinner and smaller and the oscillation plate 176 thinner in the contrast to by enhancing the strength of the substrate 178.
As a material for the piezoelectric layer 160, it is preferable to employ lead zirconate titanate (PZT), lead lanthanum zirconate titanate (PLZT) or lead less piezoelectric film in which lead is not used, and as a material for the substrate 178, it is preferable to employ zirconia or almina. Moreover, for the oscillation plate 176, it is preferable to employ the same material with the substrate 178. For the upper portion electrode 164, the lower portion electrode 166, the upper portion electrode terminal 168 and the lower portion electrode terminal 170, a material having electrical conductivity, for example, a metal such as gold, silver, copper, platinum, aluminum, nickel and the like can be employed.
The actuator 106 constituted as described above can be applied to a container for containing a liquid. For example, the actuator can be mounted on an ink cartridge and an ink tank, or a container containing a washing solvent for solving a recording head and the like.
The actuator 106 shown in
Now, the principle of a liquid level detection by an actuator will be described below.
In order to detect a change of acoustic impedance of the medium, an impedance property or admittance property of the medium is measured. In the case where an impedance property or admittance property is measured, for example, a transmission circuit can be utilized. A transmission circuit applies a certain voltage to the medium and measures the electric current supplying to the medium by changing the frequency. Or, a transmission circuit supplies a certain electric current to the medium and measures the voltage applying to the medium by changing the frequency. A change of current value or voltage value measured in the transmission circuit indicates a change of acoustic impedance. Moreover, a change of frequency fm whose current value or voltage value becomes maximum or minimum indicates a change of acoustic impedance.
Separate from the above-described method, an actuator can detect a change of acoustic impedance of a liquid by employing only a change of resonance frequency. As a method of utilizing a change of acoustic impedance of a liquid, there is a method that in the case where resonance frequency is detected by measuring a counter electromotive force generated by a residual oscillation remaining in an oscillating section after the oscillating section of an actuator, for example, a piezoelectric element can be utilized. A piezoelectric element is an element for generating a counter electromotive force by residual oscillation remaining in an oscillating section of the actuator, a largeness of a counter electromotive force by an amplitude of the oscillating section of the actuator. Therefore, the larger the amplitude of the oscillating section of the actuator is, the easier it is detected. Moreover, a cycle of changing the largeness of counter electromotive force is changed by frequency of the residual oscillation in the oscillating section of the actuator. Therefore, a frequency of the oscillating section of the actuator corresponds to a frequency of a counter electromotive force. By the way, resonance frequency is referred to a frequency in resonance state of the oscillating section of the actuator and the medium contacted with the oscillating section.
In order to obtain resonance frequency fs, Fourier transform is performed to a waveform obtained by measuring a counter electromotive force when the oscillating section and the medium are in a state of resonance. Since an oscillation of an actuator accompanies with not only a deformation in one direction but also a variety of deformations such as deflection, extension and the like, it has a variety of frequencies including the resonance frequency fs. Hence, the resonance frequency fs is judged by performing Fourier transform to a waveform of the counter electromotive force when the piezoelectric element and the medium are in a state of resonance and specifying the most predominant frequency component.
A frequency fm denotes a frequency at the time when the admittance of the medium is maximum or the impedance of the medium is minimum. Supposing resonance frequency is fs, frequency fm generates subtle error with respect to resonance frequency fs by dielectric loss, or mechanical loss of the medium. However, since it is troublesome to lead resonance frequency fs from the frequency fm actually measured, in general, frequency fm is replaced by resonance frequency and used. Where, the actuator 106 can detect at least acoustic impedance by inputting an output of the actuator 106 into the transmission circuit.
It has been proved by the experiment that there is almost no difference between resonance frequency specified by a method of measuring impedance property or admittance property of the medium and measuring frequency fm and a resonance frequency specified by a method of measuring resonance frequency fs by measuring a counter electromotive force generated by residual oscillation in the oscillating section of an actuator.
The oscillating region of the actuator 106 is a portion composed of the cavity 162 determined by the opening 161 out of the oscillation plate 176. In the case where the liquid container is sufficiently contained with the liquid, the cavity 162 is filled with a liquid, the oscillating region contacts with the liquid within the liquid container. On the other hand, in the case where the liquid container is not filled with the liquid, the oscillating region contacts with the liquid remained in the cavity within the container, or the oscillating region does not contact with the liquid, and contacts with gas or vacuum.
In the actuator 106 of the present invention, the cavity 162 is provided, owing to this, it is designed so that in the oscillating region of the actuator 106, a liquid within the liquid container remains. The reasons why are the following.
Depending on mounting position and mounting angle to the liquid container of the actuator, the liquid is attached to the oscillating region of the actuator, although the liquid level of the liquid within the liquid container is lower than the mounting position of the actuator. In the case where the actuator detects the presence or absence of the liquid only by the presence or the absence of the liquid in the oscillating region, the liquid attached to the oscillating region of the actuator hinders it from precisely detecting the presence or absence of the liquid. For example, in a state where the liquid level is lower than the mounting position of the actuator, if the liquid container is swung by reciprocating movement of the carriage and the like, the liquid is waved and the liquid droplets are attached to the oscillating region, the actuator erroneously judges that the liquid sufficiently exists within the liquid container. Therefore, to the contrary, by positively providing a cavity designed to precisely detect the presence or absence of the liquid even in the case where the liquid remains there, if the liquid container is swung and the liquid level is waved, malfunction of the actuator can be prevented. In this way, by employing an actuator having a cavity, malfunction can be prevented.
Moreover, as shown in
Now, an operation and the principle of detecting a state of the liquid within the liquid container from the resonance frequency of the medium and the oscillating section of the actuator 106 by measurement of a counter electromotive force with reference to
A residual oscillation is a free oscillation of the oscillating section of the actuator 106 and the medium. Therefore, the resonance state of the oscillating section and the medium can be easily obtained after the voltage is applied by converting the voltage applied to the piezoelectric layer 160 into a pulse waveform or rectangular wave. The residual oscillation also deforms even the piezoelectric layer 160 in order to make the oscillating section of the actuator 106. Therefore, the piezoelectric layer 160 generates a counter electromotive force. Its counter electromotive force is detected via the upper portion electrode 164, the lower portion electrode 166, the upper portion electrode terminal 168 and the lower portion electrode terminal 170. A state of the liquid within the liquid container can be detected since resonance frequency can be specified by the detected counter electromotive force.
In general, resonance frequency fs is represented as follows:
fs=1/(2*π*(M*Cact)1/2) (Expression 1)
wherein M denotes the sum of inertance M act of the oscillating section and additive inertance M′ and C act denotes compliance of the oscillating section.
M act denotes the product of the thickness of the oscillating section and the density of the oscillating section which is divided by the area of the oscillating section, and further in detail, as shown in
M act=M pzt+M electrode1+M electrode2+M vib (Expression 2)
wherein M pzt is the product of the thickness of the piezoelectric layer 160 in the oscillating layer 160 and the density of the piezoelectric layer 160 which is divided by the area of the piezoelectric layer 160, M electrode1 denotes the product of the thickness of the upper portion electrode 164 and the density of the upper portion electrode 164 in the oscillating section which is divided by the area of the upper portion electrode 164, M electrode2 denotes the product of the thickness of the lower portion electrode 166 and the density of the lower portion electrode 166 in the oscillating section which is divided by the area of the lower portion electrode 166, and M vib denotes the product of the thickness of the oscillation plate 176 in the oscillating section and the density of the oscillation plate 176 which is divided by the area of the oscillating region. However, it is preferable that in the present embodiment, the respective areas of the piezoelectric layer 160, the upper portion electrode 164, the lower portion electrode 166 and the oscillating region of the oscillation plate 176 have relationships of being larger and smaller between them as described above, mutual difference of the area is minute so that M act can be calculated from the thickness, density, and area as the entire oscillation portion. Moreover, in the present embodiment, it is preferable that the portions except for these major portion which is circular portion is minute to the degree of being negligible in the piezoelectric layer 160, the upper portion electrode 164 and the lower portion electrode 166.
Therefore, in the actuator 106, M act denotes the sum of the respective inertance of the oscillating regions out of the upper portion electrode 164, the lower portion electrode 166, the piezoelectric layer 160 and the oscillation plate 176. Moreover, compliance C act denotes the compliance of the portion formed by the oscillating region out of the upper portion electrode 164, the lower portion electrode 166, the piezoelectric layer 160 and the oscillation plate 176.
It should be noted that
1/C act=(1/C pzt)+(1/C electrode 1)+(1/C electrode 2)+(1/C vib) (Expression 3)
By Expression 2 and Expression 3,
Compliance C act denotes volume capable of receiving the medium generated by deformation occurred at the time when a pressure is added on one unit area of the oscillating section. Moreover, it can be said that compliance C act denotes the easiness of deformation.
M′ max=(π*ρ/(2*k3))*(2*(2*k*a)3/(3*π))/(π*a2)2 (Expression 4)
wherein a denotes diameter of the oscillating section and ρ denotes density of the medium and k denotes wave number.
It should be noted that Expression 4 holds in the case where the oscillating region of the actuator 106 is a circular shape of the diameter a. An additive inertance M′ denotes a volume indicating the apparent increase of mass of the oscillating section. As understood from Expression 4, M′max is largely changed by diameter a of the oscillating section and density ρ of the medium.
Wave number k is represented by:
k=2*π*f act/c (Expression 5)
wherein f act denotes a resonance frequency of the oscillating section at the time when the liquid does not contact with and c denotes a speed of sound which propagates through the medium.
M′=ρ*t/S (Expression 6)
wherein t denotes thickness of the medium involved with oscillation and S denotes an area of the oscillating region of the actuator 106. In the case where the oscillating region is a circular shape of diameter a, S=π*a2 holds. Therefore, An additive inertance M′ adheres to Expression 4 in the case where the liquid is sufficiently contained in the liquid container and the liquid is filled on the periphery of the oscillating region of the actuator 106. On the other hand, in the case where the liquid is consumed and the liquid on the periphery of the oscillating region of the actuator 106 becomes gas or vacuum while the liquid remains within the cavity 162, adhere to Expression 6.
Now, as shown in
Now, parameters involved with a state of the medium are density ρ of the medium and thickness t of the medium in Expression 6. In the case where the liquid is sufficiently contained in the liquid container, the liquid contacts with the oscillating section of the actuator 106, and in the case where the liquid is sufficiently contained within the liquid container, the liquid remains within the cavity, or gas or vacuum contacts with the oscillating section of the actuator 106. The liquid on the periphery of the actuator 106 is consumed, and if an additive inertance in the processing for moving from M′max of
M′cav=ρ*d/S (Expression 7)
Moreover, even if the media are different kinds of liquids with each other, since densities ρ are different from the difference of the components, an additive inertance M′ is changed, and resonance frequency fs is also changed. Therefore, the presence or absence of the liquid of the liquid container can be detected by specifying resonance frequency fs.
It should be noted that in the case where only any one of the ink or the air contacts with the oscillating section of the actuator 106 and these are not mixed up, the difference of M′ can be detected even if calculated by Expression 4.
In the case where the ink is sufficiently contained in the ink container and the ink is filled on the periphery of the oscillating region of the actuator 106, the maximum additive inertance M′max is a value represented by Expression 4. On the other hand, in the case where the ink is consumed and the ink is not filled on the periphery of the oscillating region of the actuator 106 while the ink remains within the cavity 162, the additive inertance M′var is calculated on the thickness of the medium by Expression 6. Since t in Expression 6 denotes thickness of the medium involving with the oscillation, by making d of the cavity of the actuator 106 (see
Moreover, by making the oscillating region of the actuator 106 larger or longer and arranging it in a longitudinal direction, S in Expression 6 is changed adhere to the liquid level position due to the ink consumption. Therefore, the actuator 106 can detect the processing in which the ink is consumed step by step. For example, the actuator 106 is arranged on the side wall of the ink cartridge in an approximately perpendicular to the ink liquid level. When the ink is consumed and the ink liquid level arrives at the oscillating region of the actuator 106, since the additive inertance M′ is reduced accompanied with lowering of the liquid level, resonance frequency fs is increased step by step. Therefore, as far as the ink liquid level exists within the range of a radius 2a of the cavity 162 (see FIG. 12(C)), the actuator 106 can detect a consuming state of the ink step by step.
Curve X of the
More particularly, the case where that the processing in which the ink is consumed step by step can be detected is a case where a liquid and gas having different densities with each other both exist and involves with the oscillation. As the ink is consumed step by step, as to the media involving with the oscillation on the periphery of the oscillating region of the actuator 106, the gas is increased while the liquid is reduced. For example, in the case where the actuator 106 is arranged in parallel with the ink liquid level, and when t ink is smaller than t ink—max, the media involving with the oscillation of the actuator 106 include both the ink and the gas. Therefore, supposing an area S of the oscillating region of the actuator 106, a state of being less than M′max of Expression 4 is represented by additive masses of the ink and the gas as the following:
M′=M′air+M′ink=ρ air*t air/S+ρ ink*t ink/S (Expression 8)
wherein M′air denotes inertance of the air, and M′ink denotes inertance of the ink, ρ air denotes density of the air, and p ink denotes density of the ink, and Tt air denotes thickness of the air involving with the oscillation, and t ink denotes thickness of the ink involving with the oscillation. Out of the media involving with the oscillation on the periphery of the oscillating region of the actuator 106, as the liquid is reduced and the air is increased, t air is increased and t ink is reduced in the case where the actuator 106 is arranged in an approximately parallel with the ink liquid level, thereby M′var is reduced step by step and resonance frequency is increased step by step. Therefore, a volume of the ink remaining within the ink cartridge or the consuming volume of the ink can be detected. It should be noted that the reason why Expression 7 is an equation involving only with density of the liquid is because the case where the density of the air is small as negligible is supposed.
In the case where the actuator 106 is arranged in an approximately perpendicular to the ink liquid level, parallel equivalent circuits (not shown) of the region where the medium involving with the oscillation of the actuator 106 is only the ink and the region where the medium involving with the oscillation of the actuator 106 is only the air out of the oscillating region of the actuator 106 are considered. Supposing that the region where an area of the medium involving with the oscillation of the actuator 106 is only the ink is S ink, and the region where an area of the medium involving with the oscillation of the actuator 106 is only the air is S air:
1/M′=1/M′air+1/M′ink=S air/(ρ air*t air)+S ink/(ρ ink*t air) (Expression 9)
It should be noted that Expression 9 is applied in the case where the ink is not held in the cavity of the actuator 106. In the case where the ink is held in the cavity of the actuator 106, it can be calculated by Expression 7, Expression 8 and Expression 9.
On the other hand, in the case where the substrate 178 is thick, specifically, the depth d of the cavity 162 is deep, d is comparatively close to the thickness t ink—max of the medium, or in the case where an actuator whose oscillating region is very small compared to the height of the liquid container is employed, actually whether or not the ink liquid level is higher position or lower position than the mounting position of the actuator, rather than detecting the processing in which the ink is reduced step by step. In other words, the presence or absence of the ink in the oscillating region of an actuator is detected. For example, curve Y of
Specifically, an ink cartridge containing kinds of inks different with each other can be identified.
Subsequently, conditions in which a state of the liquid when the size and shape of the cavity is set so that the liquid remains within the cavity 162 of the actuator 106 even if the liquid within the liquid container is hollow can be precisely detected will be described in detail below. If the actuator 106 can detect a state of the liquid in the case where the liquid is filled within the cavity 162, it can detect a state of the liquid even in the case where the liquid is not filled within the cavity 162.
Resonance frequency fs is a function of inertance M. Inertance M is the sum of inertance M act and additive inertance M′, where the additive inertance involves with a state of the liquid. Additive inertance M′ is a volume indicating the apparent increase of mass of the oscillating section by the action of the medium nearby the oscillating section. Specifically, that is referred to a increment of mass of the oscillating section by apparently absorbing the medium by the oscillation of the oscillating section.
Accordingly, in the case where M′cav is larger than M′max in Expression 4, the apparently absorbed medium is all the liquid remaining within the cavity 162 and gas within the liquid container or vacuum. At that time, since M′ is not changed, resonance frequency fs is not changed neither. Therefore, the actuator 106 cannot detect a state of the liquid within the liquid container.
On the other hand, in the case where M′cav is smaller than M′max in Expression 4, the apparently absorbed media are the remaining liquid within the cavity 162 and the gas or vacuum within the liquid container. At that time, sinceM′ is changed differently from a state where the liquid is filled within the liquid container, resonance frequency fs is changed. Therefore, the actuator 106 can detect a state of the liquid within the liquid container.
Specifically, in the case where the liquid within the liquid container is in a state of being empty and the liquid remains within the cavity 162 of the actuator 106, the conditions in which the actuator 106 can precisely detect a state of the liquid is that M′cav is smaller than M′max. It should be noted that the conditions M′max>M′cav in which the actuator 106 can precisely detect a state of the liquid is not involved with the shape of the cavity 162.
M′cav is mass of the liquid having an approximately equivalent to the volume of the cavity 162. Accordingly, from the inequalityofM′max>M′cav, the conditions in which the actuator 106 can precisely detect a state of the liquid can be represented as conditions for the volume of the cavity 162. For example, suppose that diameter of the opening 161 of the circular cavity 162 is a, and the depth of the cavity 162 is d,
M′max>ρ*d/πa2 (Expression 10)
Expression 10 is expanded, the following conditions are found:
a/d>3*π/8 (Expression 11)
It should be noted that Expression 10, Expression 11 hold as far as shape of the cavity 162 is circular. When Expression of M′max in the case where it is not circular is employed and substituting its area into πa2 in Expression 10, the relationship between dimensions such as width and length of the cavity and the depth of the cavity is led.
Therefore, the actuator 106 having the cavity 162 whose dimensions are the radius a of the opening 161 and the depth d of the cavity 162 which satisfies Expression 11 can detect a state of the liquid without malfunctions even in the case where the liquid within the liquid container is empty and the liquid remains within the cavity 162.
Since additive inertance M′ has influence on acoustic impedance property, it can be said that a method of measuring a counter electromotive force generated by the actuator 106 due to the residual oscillation detects at least a change of acoustic impedance.
Moreover, according to the present embodiment, the actuator 106 generates an oscillation and measures a counter electromotive force generated in the actuator 106 due to the subsequently occurred residual oscillation. However, it is not always necessary that the oscillating section of the actuator 106 applies the oscillation to the liquid by oscillation itself due to the drive voltage. Specifically, if the oscillating section itself does not oscillate, the piezoelectric layer 160 is deflected and deformed by oscillating with the liquid in a certain range in which the oscillating section contacts with the liquid. This residual oscillation causes the piezoelectric layer 160 to generate a counter electromotive force voltage and transmits its counter electromotive force voltage to the upper portion electrode 164 and the lower portion electrode 166. A state of the medium may be detected by utilizing this phenomenon. For example, in an ink jet recording apparatus, a state of the ink cartridge or the ink within it may be detected by utilizing the oscillation occurred on the periphery of the oscillating section of an actuator generated by the oscillation due to the reciprocating movement of the carriage by scanning of the recording head at the time when it is printing.
In the embodiment shown in
More particularly, after the actuator 106 oscillates, the times that the reference voltage previously set is crossed from the lower voltage side to the higher voltage side are counted. Digital signal in the range from the fourth count to the eighth count is defined as High, a time period spanning from the fourth count to the eighth count is measured by the predetermined clock pulse.
For example, in the case where the quality of the ink is stable and variation of the amplitude between the peaks are small, in order to speed up the detection rate, resonance frequency may be found by detecting a time span from the fourth count to the sixth count. Moreover, in the case where the quality of the ink is unstable and the variation of the amplitude of the pulse is large, in order to precisely detect the residual oscillation, a time span from the fourth count to twelfth count may be detected.
Moreover, as another embodiment, wave number of voltage waveform of counter electromotive force in the predetermined period may be counted (not shown). By this method, resonance frequency can be also found. More particularly, after the actuator 106 oscillates, a digital signal is made High only in the predetermined period, the predetermined reference voltage is crossed from the lower voltage side to the higher voltage side. The presence or absence of the ink can be detected by measuring its number of count.
Furthermore, as it is understood by comparing
The tip of the module body 500 is slanting, and the actuator 106 is mounted on its slanting surface. Therefore, when the module body 500 is mounted on the bottom portion or side wall of the container body 1, the actuator 106 has a slope with respect to the vertical direction of the container body 1. The slanting angle of the tip of the module body 500 is preferably between approximately 30° and 60° in consideration of detection performance.
The module body 500 is mounted on the bottom or side wall of the container body 1 so that the actuator 106 is arranged within the container body 1. In the case where the module body 500 is mounted on the side portion of the container body 1, the actuator 106 is mounted on the container body 1 so that the actuator 106 is slanting and facing toward the upper side, lower side or lateral side. On the other hand, in the case where the module body 500 is mounted on the bottom portion of the container body 1, the actuator 106 is mounted on the container body 1 so that the actuator 106 is slanting and facing toward the ink supplying opening of the container body 1.
The ink is not easily leaked from the container body 1 since a sealing structure 372 is not required between the mold section 364 and the container body 1 which are protected by the mold structure 600 of
In the present embodiment, the mold structure 600 is mounted on an apex wall 1040 located at the upper position with respect to the liquid level of the ink within the container body 1. Moreover, the oscillation region of the actuator 106 is located at the slightly lower position with respect to the liquid level of the liquid when the liquid is not consumed. Therefore, immediately after the ink cartridge is used and the ink is beginning to be consumed, the oscillation region of the actuator 106 detects the gas. Therefore, the actuator 106 is not necessarily mounted on the side wall of the container body 1.
It should be noted that the mold structure 600 is formed so that the oscillation region of the actuator 106 is located at the slightly upper position with respect to the liquid level of the ink, thereby being capable of obtaining the similar effect of the ink cartridge according to the embodiment of
The semiconductor storage means 7 may be, for example, constituted by a rewritable semiconductor memory such as EEPROM and the like. Since the semiconductor storage means 7 and the actuator 106 are formed on the same circuit substrate 610, when the actuator 106 and the semiconductor storage means 7 are mounted on the ink cartridge, the mounting step of one time is enough to be completed. Moreover, the working step during the manufacturing an ink cartridge and during the recycling is simplified. Furthermore, since the number of items of the parts are reduced, the manufacturing cost of the ink cartridge is reduced.
The actuator 106 detects the consumption state of the ink within the ink cartridge. The semiconductor storage means 7 stores the information such as the ink residual volume that the actuator 106 has detected, the characteristic value that the characteristic value detecting section 810 has detected and the results that the characteristic value judging section 820 has judged, and can act as the storage section 850. Preferably, the semiconductor storage means 7 stores the predetermined condition that the characteristic value of the actuator 106 should satisfy and the past errors and the instructions. Furthermore, a resonance frequency is previously stored in the semiconductor storage means 7 when the ink is full or ended, dispersion when the ink residual volume is detected may be corrected by reading the data of resonance frequency on the side of the ink jet recording apparatus.
Up to this point, the case where the actuator 106 is attached to the ink cartridge mounted on the carriage or to the carriage in the case that the ink cartridge is separate from the carriage has been described. However, the actuator 106 may be mounted on the ink cartridge mounted on the ink jet recording apparatus integrated with the carriage and mounted on it with the carriage. Furthermore, the actuator 106 may be mounted on the ink cartridge, which is separate from the carriage, of which is an off carriage method of supplying the ink to the carriage via a tube and the like. Still furthermore, the actuator of the present invention may be mounted on an ink cartridge integrally configured with the recording head in an exchangeable manner.
Up to this point, the embodiments of the present invention have been described, however, the technical scope of the present invention is not limited to the scope described in the above-described embodiments. A variety of modifications or improvements can be added to the above-described embodiments. It is apparent from the recitation of the scope of the claims that the modes to which such modifications or improvements have been added can be also included in the technical scope of the present invention.
According to the present invention, it can be judged that whether or not the piezoelectric device is normally operated, and further, an operation of the ink jet recording apparatus can be controlled based on the judgment of whether the piezoelectric device is normally operated or not.
Moreover, according to the present invention, during manufacturing a liquid container and after manufacturing the same, it can be confirmed that liquid of the predetermined volume is contained within the liquid container.
Furthermore, according to the present invention, it can be detected that the predetermined volume of the ink is not contained within the liquid container due to the defect of the liquid container and/or the piezoelectric device, and further, an operation of the ink jet recording apparatus can be controlled based on the detected results of the volume of the ink.
Furthermore, according to the present invention, the gradient of the liquid container can be detected in the case where the liquid container is not properly mounted and the like, and further, an operation of the ink jet recording apparatus can be controlled based on the detected results of the volume of the ink.
The present invention is applicable to an ink jet recording apparatus and a liquid container used for the same.
Number | Date | Country | Kind |
---|---|---|---|
2000-207193 | Jul 2000 | JP | national |
This is a continuation of application Ser. No. 10/049,830 filed Feb. 19, 2002, which is a National Stage Entry Application of PCT/JP01/05756, whose international filing date is Jul. 3, 2001. The entire disclosure of both applications are hereby incorporated by reference. The present invention relates to a liquid container having a piezoelectric device for detecting a consumption state of liquid within the liquid container, an ink jet recording apparatus for which the liquid container can be used, an apparatus and a method for controlling the same, and an apparatus and a method for detecting a liquid consumption state.
Number | Name | Date | Kind |
---|---|---|---|
3110890 | Westcott et al. | Nov 1963 | A |
3220258 | Rod | Nov 1965 | A |
3394589 | Tomioka | Jul 1968 | A |
3703693 | Levinn | Nov 1972 | A |
3832900 | Ross | Sep 1974 | A |
3889085 | Voll | Jun 1975 | A |
4008612 | Nagaoka et al. | Feb 1977 | A |
4107994 | Sogo | Aug 1978 | A |
4196625 | Kern | Apr 1980 | A |
4310957 | Sachs | Jan 1982 | A |
4329875 | Nolting et al. | May 1982 | A |
4337470 | Furukawa | Jun 1982 | A |
4403227 | Bertschy et al. | Sep 1983 | A |
4419677 | Kasugayama et al. | Dec 1983 | A |
4479982 | Nilsson et al. | Oct 1984 | A |
4570482 | Murata et al. | Feb 1986 | A |
4594891 | Benz et al. | Jun 1986 | A |
4604633 | Kimura et al. | Aug 1986 | A |
4636814 | Terasawa | Jan 1987 | A |
4677448 | Mizusawa et al. | Jun 1987 | A |
4703652 | Itoh et al. | Nov 1987 | A |
4770038 | Zuckerwar et al. | Sep 1988 | A |
4796782 | Wales et al. | Jan 1989 | A |
4811595 | Marciniak et al. | Mar 1989 | A |
4853718 | El Hatem et al. | Aug 1989 | A |
4935751 | Hamlin | Jun 1990 | A |
4977413 | Yamanaka et al. | Dec 1990 | A |
4984449 | Caldwell et al. | Jan 1991 | A |
4984457 | Morris | Jan 1991 | A |
5035140 | Daniels et al. | Jul 1991 | A |
5051759 | Karita et al. | Sep 1991 | A |
5068836 | Steel | Nov 1991 | A |
5132711 | Shinada et al. | Jul 1992 | A |
5179389 | Arai et al. | Jan 1993 | A |
5233369 | Carlotta et al. | Aug 1993 | A |
5247832 | Umezawa et al. | Sep 1993 | A |
5264831 | Pfeiffer | Nov 1993 | A |
5315317 | Terasawa et al. | May 1994 | A |
5319973 | Crayton et al. | Jun 1994 | A |
5353631 | Woringer et al. | Oct 1994 | A |
5410518 | Birkett | Apr 1995 | A |
5463377 | Kronberg | Oct 1995 | A |
5473353 | Soucemarianadin et al. | Dec 1995 | A |
5506611 | Ujita et al. | Apr 1996 | A |
5524486 | Hermann | Jun 1996 | A |
5583544 | Stamer et al. | Dec 1996 | A |
5586085 | Lichte | Dec 1996 | A |
5610635 | Murray et al. | Mar 1997 | A |
5616929 | Hara | Apr 1997 | A |
5619238 | Higuma et al. | Apr 1997 | A |
5675367 | Scheffelin et al. | Oct 1997 | A |
5689288 | Wimmer et al. | Nov 1997 | A |
5694156 | Hoisington et al. | Dec 1997 | A |
5697248 | Brown | Dec 1997 | A |
5712667 | Sato | Jan 1998 | A |
5737963 | Eckert et al. | Apr 1998 | A |
5747689 | Hampo et al. | May 1998 | A |
5774136 | Barbehenn et al. | Jun 1998 | A |
5788388 | Cowger et al. | Aug 1998 | A |
5788819 | Onishi et al. | Aug 1998 | A |
5793705 | Gazis et al. | Aug 1998 | A |
5835817 | Bullock et al. | Nov 1998 | A |
5841454 | Hall et al. | Nov 1998 | A |
5877997 | Fell | Mar 1999 | A |
5900888 | Kurosawa | May 1999 | A |
5949447 | Arai et al. | Sep 1999 | A |
5975102 | Schalk | Nov 1999 | A |
6003966 | Ahn | Dec 1999 | A |
6007190 | Murray et al. | Dec 1999 | A |
6012793 | Haigo | Jan 2000 | A |
6012794 | Nakano et al. | Jan 2000 | A |
6024429 | Coffy et al. | Feb 2000 | A |
6044694 | Anderson et al. | Apr 2000 | A |
6050669 | Yano et al. | Apr 2000 | A |
6070958 | Kanome | Jun 2000 | A |
6089686 | Thornton et al. | Jul 2000 | A |
6089688 | Froger et al. | Jul 2000 | A |
6155664 | Cook | Dec 2000 | A |
6164744 | Froger et al. | Dec 2000 | A |
6254212 | Coudray et al. | Jul 2001 | B1 |
6302527 | Walker | Oct 2001 | B1 |
6312074 | Walker | Nov 2001 | B1 |
6312106 | Walker | Nov 2001 | B1 |
6312115 | Hara et al. | Nov 2001 | B1 |
6344658 | Nakagawa et al. | Feb 2002 | B1 |
6347853 | Kato | Feb 2002 | B1 |
6361136 | Watanabe et al. | Mar 2002 | B1 |
6390590 | Hansburg | May 2002 | B1 |
6416152 | Matsuzaki et al. | Jul 2002 | B1 |
6435638 | Wilson et al. | Aug 2002 | B1 |
6438500 | Froger et al. | Aug 2002 | B1 |
6470744 | Usui et al. | Oct 2002 | B1 |
6536861 | Usui et al. | Mar 2003 | B1 |
6799820 | Usui et al. | Oct 2004 | B1 |
20020012015 | Tsukada et al. | Jan 2002 | A1 |
20020015068 | Tsukada et al. | Feb 2002 | A1 |
20020015084 | Tsukada et al. | Feb 2002 | A1 |
20020105555 | Tsukada et al. | Aug 2002 | A1 |
20020135623 | Tsukada et al. | Sep 2002 | A1 |
20020170353 | Usui et al. | Nov 2002 | A1 |
20030043216 | Usui et al. | Mar 2003 | A1 |
20030071862 | Tsukada et al. | Apr 2003 | A1 |
20030117450 | Usui et al. | Jun 2003 | A1 |
20030117451 | Usui et al. | Jun 2003 | A1 |
20030140694 | Usui et al. | Jul 2003 | A1 |
Number | Date | Country |
---|---|---|
1274645 | Nov 2000 | CN |
1274845 | Nov 2000 | CN |
0 553 535 | Aug 1993 | EP |
0 660 092 | Jun 1995 | EP |
0 676 624 | Oct 1995 | EP |
0 684 136 | Nov 1995 | EP |
0 684 136 | Nov 1995 | EP |
0 803 364 | Oct 1997 | EP |
0803365 | Oct 1997 | EP |
0 853 236 | Jul 1998 | EP |
0860284 | Aug 1998 | EP |
0 873 873 | Oct 1998 | EP |
0 881 079 | Dec 1998 | EP |
0 885 731 | Dec 1998 | EP |
1 055 520 | Feb 1999 | EP |
0 881 079 | Jul 1999 | EP |
0956964 | Nov 1999 | EP |
1 055 520 | Nov 2000 | EP |
1 088 668 | Apr 2001 | EP |
2572519 | May 1986 | FR |
2 304 898 | Mar 1997 | GB |
2 321 107 | Jul 1998 | GB |
56039413 | Apr 1981 | JP |
56039414 | Apr 1981 | JP |
56-53078 | May 1981 | JP |
58-201027 | Nov 1983 | JP |
58-205820 | Nov 1983 | JP |
59-052422 | Apr 1984 | JP |
56-061421 | Oct 1984 | JP |
60-4820 | Jan 1985 | JP |
62095225 | May 1987 | JP |
62-184856 | Aug 1987 | JP |
08-314327 | Oct 1988 | JP |
63247047 | Oct 1988 | JP |
63-295266 | Dec 1988 | JP |
1-067530 | May 1989 | JP |
03-036037 | Feb 1991 | JP |
3-038037 | Feb 1991 | JP |
03-067657 | Mar 1991 | JP |
03-169642 | Jul 1991 | JP |
3-211907 | Sep 1991 | JP |
3-218847 | Sep 1991 | JP |
04135862 | May 1992 | JP |
4-234670 | Aug 1992 | JP |
5-025325 | Apr 1993 | JP |
63-257645 | Jun 1993 | JP |
05-254142 | Oct 1993 | JP |
5-318757 | Dec 1993 | JP |
6-155762 | Jun 1994 | JP |
05-138948 | Aug 1994 | JP |
06297726 | Oct 1994 | JP |
7-137291 | May 1995 | JP |
07137276 | May 1995 | JP |
8-34123 | Feb 1996 | JP |
11-048499 | Nov 1996 | JP |
9-020013 | Jan 1997 | JP |
09-029989 | Feb 1997 | JP |
9-029991 | Feb 1997 | JP |
9-039263 | Feb 1997 | JP |
09-136434 | May 1997 | JP |
09-314854 | May 1997 | JP |
06-210934 | Jun 1997 | JP |
9-220216 | Aug 1997 | JP |
9-267488 | Oct 1997 | JP |
09-286121 | Nov 1997 | JP |
10-029320 | Dec 1997 | JP |
10026549 | Jan 1998 | JP |
09-156125 | Feb 1998 | JP |
10-038662 | Feb 1998 | JP |
10-151753 | Jun 1998 | JP |
10-175312 | Jun 1998 | JP |
10-305590 | Nov 1998 | JP |
10323993 | Dec 1998 | JP |
10-323997 | Dec 1998 | JP |
11-10909 | Jan 1999 | JP |
11-020162 | Jan 1999 | JP |
11-048490 | Feb 1999 | JP |
11-240180 | Sep 1999 | JP |
11-277760 | Oct 1999 | JP |
11-334107 | Dec 1999 | JP |
2000-43287 | Feb 2000 | JP |
2000-190523 | Jul 2000 | JP |
2000318183 | Nov 2000 | JP |
2001-146030 | May 2001 | JP |
WO 9809139 | Mar 1998 | WO |
WO 9831548 | Jul 1998 | WO |
9934453 | Jul 1999 | WO |
WO 9942293 | Aug 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20060023009 A1 | Feb 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10049830 | US | |
Child | 11236687 | US |