1. Field of the Invention
The present invention relates to a liquid container that stores various liquids, such as ink and the like, and uniformizes the components of the liquid. In particular, the invention relates to a liquid container that is suitably used as an ink tank containing pigment ink for an ink jet printing apparatus.
2. Description of the Related Art
There is known an ink jet printing apparatus that performs printing by using pigment ink. The pigment ink contained in an ink tank is supplied from the ink tank to the ink jet printing apparatus that can eject ink. In the pigment ink, a pigment is used as a colorant, and the pigment is dispersed in an ink solvent.
A printing medium on which an image is printed by using the pigment ink has excellent light resistance and water resistance. In the pigment ink, the pigment itself is dispersed in the ink solvent as particles. Accordingly, when an ink tank (liquid container) that contains the pigment ink is left standing for many hours, the pigment in the pigment ink settles in the solvent. For example, when a printing apparatus having mounted thereon the ink tank is left standing for many hours, the pigment particles settle at the bottom surface of the ink tank. At this time, there is a concentration gradient of pigment particle from a high concentration portion at the bottom of the ink tank to a low concentration portion at the top thereof. In this state, when the pigment ink is supplied from the ink tank to print an image, the pigment concentration of the pigment ink to be supplied is ununiform, and density unevenness may occur in the printed image. Further, when the pigment ink having extremely high pigment concentration is supplied to a printing head, the coagulated pigment may be clogged in a flow passage of the printing head, and the ink cannot be ejected from the printing head.
In respect to a method that uniformizes the pigment concentration of the pigment ink in the ink tank, and homogenizes the pigment ink, Japanese Patent Laid-Open No. 2005-066520 suggests an ink tank that has a stirring member therein. The ink tank is mounted on a carriage in a serial scan type ink jet printing apparatus and reciprocates along with the carriage during a printing operation. The stirring member, which is provided in the ink tank, operates to stir the pigment ink in the ink tank using an inertial force generated when the ink tank reciprocates along with the carriage.
As such, when the stirring member carries out the stirring operation using the inertial force according to the reciprocation of the carriage, stirring of the pigment ink is quickly performed in a movement direction of the carriage in which the stirring member relatively easily moves. In Japanese Patent Laid-Open No. 2004-216761, a stirring member that operates in the same direction as the movement direction of the carriage is disclosed. However, it is necessary to provide an additional stirring member with respect to a direction perpendicular to the movement direction of the carriage.
A plurality of ink tanks, which are used in the serial scan type ink jet printing apparatus, are mounted on the carriage so as to be parallel to the movement direction of the carriage. For the sake of multicolor printing, various kinds of tanks need to be mounted on the carriage. In this case, while the width of the ink tank is set narrow in the movement direction of the carriage, the width of the ink tank is set wide in the direction crossing the movement direction of the carriage. Accordingly, in respect to the direction crossing the movement direction of the carriage, convection of the pigment ink is rarely generated.
The present invention provides a liquid container that can actively generate a flow for efficiently stirring a liquid, such as pigment ink or the like, contained therein.
In the first aspect of the present invention, there is provided a liquid container that is detachably mounted on a carriage, which reciprocates in a direction crossing a feed direction of a printing medium, the liquid container comprising: a case; a liquid containing chamber that contains a liquid therein; a plurality of support portions that is provided in the case to be arranged in the liquid containing chamber; and a plurality of stirring members, each of which has one end supported by a corresponding one of support portions and the other end as a free end, wherein at least two of the plurality of stirring members are arranged in a direction crossing a movement direction of the carriage, and at least two of stirring mechanisms, each of which has the support portion and the stirring member corresponding to the support portion, have different structures.
In the second aspect of the present invention, there is provided a liquid container that is detachably mounted on a carriage, which reciprocates in a direction crossing a feed direction of a printing medium, the liquid container comprising: a case; a liquid containing chamber that contains a liquid therein; a supply port that supplies the liquid in the liquid containing chamber to the outside; support portions that are provided in the case to be arranged in the liquid containing chamber; and a plurality of stirring members, each of which has one end supported by a corresponding one of support portions and the other end as a free end, wherein at least two of the plurality of stirring members are arranged in a direction crossing the moving direction of the carriage, and when an inertial moment to be applied to each of the stirring members according to the movement of the carriage is In and a maximum surface area of each of the stirring members subject to an inertial force is Sn, at least two stirring members have different ratios In/Sn.
In the third aspect of the present invention, there is provided a liquid container that is detachably mounted on a carriage, which reciprocates in a direction crossing a feed direction of a printing medium, the liquid container comprising: a case; a liquid containing chamber that contains a liquid therein; a supply port that supplies the liquid in the liquid containing chamber to the outside; support portions that are provided in the case to be arranged in the liquid containing chamber; and a plurality of stirring members, each of which has one end supported by a corresponding one of the support portions and the other end as a free end, wherein at least two of the plurality of stirring members are arranged in a direction crossing the moving direction of the carriage, and at least two of the plurality of stirring members have different movement states according to an inertial force.
According to the aspects of the invention, when a plurality of stirring members in the liquid container move by the inertial force according to the movement of the carriage, the individual stirring members make different moves. As a result, the flow of the liquid can be actively generated between the stirring members. With the flow of the liquid generated between the stirring members, a difference in concentration distribution of the liquid in the liquid container can be improved.
Further features of the present invention will become apparent from the following description of exemplary embodiments (with reference to the attached drawings).
Embodiments of the invention will now be described with reference to the drawings.
A liquid container of this embodiment is an ink tank, which contains pigment ink, for a serial scan type ink jet printing apparatus.
Upon printing, the printing head cartridge moves in the main scanning direction along with the carriage and ejects ink from a printing head.
The container main body 17 is formed of, for example, polypropylene. The meniscus forming member 20 is provided in the ink supply port 2 at the bottom of the container main body 17. Further, the pressing member 21 is attached to the ink supply port 2 outside the meniscus forming member 20. The meniscus forming member 20 is a capillary member formed of a textile material, such as polypropylene and having a capillary force, or a combination of the capillary member and a filter member (a hole diameter of approximately 10 to 50 μm). The meniscus forming member 20 communicates with an ink containing chamber (described below) in the container main body 17 by an ink flow passage 19, and forms a meniscus of ink so as to prevent air bubbles from entering the ink containing chamber from the outside.
In the container main body 17, the periphery of the flexible film 4 is welded to an opening peripheral portion 16, thereby forming an ink containing chamber 1 (see
If ink in the ink containing chamber 1 is consumed according to the supply to the printing head, the spring member 5 contracts, the flexible film 4 is bent, and the volume of the ink containing chamber 1 is decreased. The plate member 22 is provided with an opening 27 to avoid interference with support members described below. Accordingly, ink in the ink containing chamber 1 can be consumed until the plate member 22 comes into contact with the inner wall of the container main body 17.
Next, a stirring mechanism of ink in the ink tank of this embodiment will be described.
A stirring mechanism is provided in the ink containing chamber 1 to stir ink. The stirring mechanism of this embodiment includes support members 23, which are provided at the inner wall of the container main body 17, and the stirring member 15. The support member 23 supports one end of the stirring member 15. Each of the support members 23 is provided with a shaft that is parallel to the main scanning direction, in which the carriage 101 moves, and a retaining portion 24. Like this embodiment, when the container main body 17 is formed of a resin material, the support member 23 may be a boss that is formed integrally with the container main body 17. In this case, a front end of the boss can be widened by a thermal processing, such that the boss is in a rivet shape having the retaining portion 24 at its front end. Further, as shown in
For example, the stirring member 15 can be formed as shown in
Each of the support members 23 is provided with the retaining portion 24 to form a gap to such a degree as to allow the movement of the stirring member 15 in a thickness direction of the stirring member 15. Further, the shafts of the support members 23 are engaged with the concave portions 25 or the holes 26 of the stirring member 15 with a space, and a gap is formed therebetween. The two support members 23 hold a portion a of the stirring member 15 located between the two concave portions 25 shown in
In this embodiment, the two support members 23 are provided horizontally along the main scanning direction to be parallel to each other. Accordingly, when the stirring member 15 rotates along the main scanning direction, a rotation center axis is determined in a portion where the stirring member 15 and the support members 23 are engaged with each other. With the rotation of the stirring member 15 about the axis, ink is effectively stirred. If the support member 23 is one rod-shaped member, the stirring member 15 is supported at a point. In this case, the movement of the stirring member 15 in all directions is freely performed about the supporting point, and the rotation axis, about which the stirring member 15 rotates along the main scanning direction, is not determined. For this reason, when an inertial force acts on the stirring member 15 in the main scanning direction, the stirring member 15 moves in a posture having an angle not subject to resistance of ink, and thus ink is not sufficiently stirred. Here, the main scanning direction is an X direction shown in
In such a manner, one end of the stirring member 15 is supported on the container main body 17 by the support members 23. Accordingly, the stirring member 15 freely moves linearly along an axial direction of the support members 23, and also freely rotates about the engagement portion with the support members 23 in the main scanning direction.
Next to the fourth state of the stirring member 15, the first state shown in
As such, the stirring member 15 operates using the inertial force generated according to the reciprocation of the carriage 103 and stirs ink i. During the stirring operation, since frictional resistance is generated between the stirring member 15 and the support member 23, the free end of the stirring member 15 constantly moves precedingly, and then the end near the support member moves. This operation causes a pump effect, such that ink i in the ink containing chamber actively circulates up and down. Further, since the free end of the stirring member 15 that moves widely is located on a lower side in a vertical direction, the pigment components in ink that settle at the bottom of the ink containing chamber are easily stirred. As a result, ink in the entire ink containing chamber is efficiently stirred in combination with the above-described pump effect, and concentration of the pigment components can be reliably uniformized.
In this embodiment, the two stirring members 15 that perform the above-described basic operation are provided in the ink containing chamber. However, in this embodiment, the operations of the two stirring members 15 are slightly different.
At that time, the heavy-weight stirring member 15A is subject to an inertial force larger than the light-weight stirring member 15B does. For this reason, the free end of the stirring member 15A rotates against resistance of ink at a higher speed than the free end of the stirring member 15B. Meanwhile, since the inertial force acting on the light-weight stirring member 15B is smaller than the inertial force acting on the heavy-weight stirring member 15A, the free end of the stirring member 15B rotates at a lower speed than the free end of the stirring member 15A. Accordingly, at the time B in
At that time, the heavy-weight stirring member 15A is subject to an inertial force larger than the light-weight stirring member 15B does. For this reason, the free end of the stirring member 15A rotates against resistance of ink at a higher speed than the free end of the stirring member 15B. Meanwhile, since the inertial force acting on the light-weight stirring member 15B is smaller than the inertial force acting on the heavy-weight stirring member 15A, the free end of the stirring member 15B rotates at a lower speed than the free end of the stirring member 15A. Accordingly, while the heavy-weight stirring member 15A reaches the fourth state in a relatively short time, the light-weight stirring member 15B reaches the fourth state a little late. As such, the operations of the stirring members 15A and 15B are different, and the flow of ink from the free end side of the heavy-weight stirring member 15A, which precedingly moves, toward the free end side of the light-weight stirring member 15B occurs in a direction of an arrow F7 in
As such, in this embodiment, the stirring member performs the stirring operation of ink using the inertial force generated by the reciprocation of the carriage. In addition, the two stirring members have different weights and different inertial forces are applied to the two stirring members, such that a temporal difference occurs in the stirring operations of the two stirring members. Accordingly, with the temporal difference of the stirring operations, the flow of ink actively occurs in the movement direction of the carriage and in a direction crossing the movement direction of the carriage. Therefore, a stirring effect can be markedly improved.
In this embodiment, in order to generate the temporal difference of the stirring operations of the two stirring members, different inertial forces are applied to the two stirring members, and the stirring members are subject to a resistive force from ink at the substantially same area at the time of stirring operation. That is, when inertial moments of the two stirring members are Ia and Ib, and the area of a stirring surface of each of the two stirring members is S, ratios Ia/S and Ib/S are set different from each other, such that the temporal difference of the stirring operations of the stirring members is generated. Alternatively, the two stirring members may have different masses, such that ratios Ma/S and Mb/S of the masses Ma and Mb and the area S may be different from each other. With this configuration, when the stirring members move linearly along the support members, the movement timings of the stirring members can be different from each other.
The ink tank of this embodiment includes two stirring members 15C and 15D substantially having the same weight and size. The inertial moments of the stirring members 15C and 15D are substantially the same. A stirring surface of the stirring member 15C is flat, and a stirring surface of the stirring member 15D is wavy to increase the surface area. Accordingly, during the stirring operation, the stirring member 15D is subject to resistance from ink larger than the stirring member 15C does. For this reason, when the areas of the stirring surfaces of the stirring members 15C and 15D are Sa and Sb, and the inertial moment of each of the stirring members 15C and 15D is I, ratios I/Sa and I/Sb are different from each other. Further, when the mass of each of the stirring members 15C and 15D is M, ratios M/Sa and M/Sb are different from each other.
In this embodiment, according to the movement of the carriage, the flat plate-shaped stirring member 15C precedingly moves, and then the wavy plate-shaped stirring member 15D moves late. As a result, similarly to the above-described embodiment, with the temporal difference of the stirring operations of the stirring members 15C and 15D, the active flow of ink occurs in the arrangement direction of the stirring members, that is, the directions of the arrows F5, F6, F7, and F8 in
In the above-described embodiments, in order to shift the timings of the stirring operations of the two stirring members, the ratios of the inertial moment and the areas of the stirring surfaces of the stirring members are made different from each other, or the ratios of the masses and the areas of the stirring surfaces of the stirring members are made different from each other. However, the movement states of the stirring members may vary according to a difference in at least one of movement start time, movement speed, movement direction, movement distance, and movement trace. Further, in order to vary the movement states in such a manner, various mechanisms may be used. For example, examples of the mechanisms include a stopper or a guide mechanism that regulates the movement distances or the movement traces of the stirring members different from each other, or a mechanism that gives different movement resistance to the stirring members.
Specifically, in order to make the movement distance of one stirring member relatively long and to make the movement distance of the other stirring member relatively short, as shown in
In summary, what is necessary is that the flow of ink occurs from a position of one stirring member toward a position of the other stirring member by making the movement states of the two stirring members different from each other.
Further, as shown in
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2006-133048, filed May 11, 2006, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2006-133048 | May 2006 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3876282 | Schon et al. | Apr 1975 | A |
6823161 | Cho et al. | Nov 2004 | B2 |
20070263025 | Ohashi et al. | Nov 2007 | A1 |
20070263048 | Okito et al. | Nov 2007 | A1 |
20070291076 | Seki et al. | Dec 2007 | A1 |
20070291077 | Seki et al. | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
2004-216761 | Aug 2004 | JP |
2005-66520 | Mar 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20070263052 A1 | Nov 2007 | US |