The present invention relates generally to electric vehicles and, more particularly, to a method and apparatus for efficiently cooling the rotor in the drive motor of an electric vehicle.
Electric motors can generate considerable heat, thereby making motor cooling difficult, especially in the traction motor of a vehicle where size and weight constraints are coupled with the need for high output. Additionally, in order to avoid excessive wear due to differential thermal expansion, it is important to cool the internal motor components (e.g., rotor) as well as the outer motor components (e.g., casing, stator). Lastly, the means used to cool the motor must not be susceptible to large variations in the operating environment as such a motor can be expected to be subjected to a wide range of ambient temperatures, humidity levels and dust/dirt levels.
A number of different approaches have been taken to meeting the cooling demands placed on a vehicle's electric motor. For example, U.S. Pat. No. 6,191,511 discloses using a closed loop, liquid cooling circuit to try and achieve a temperature balance within the motor, the cooling circuit passing the coolant through both the stator and a hollow rotor shaft. Within the hollow rotor shaft is a stationary injection tube, the injection tube fixed to the stator flange. The coolant is pumped through the injection tube to the end of the rotor shaft where it is driven back between the injection tube and the hollow rotor. The coolant then passes through a cylindrical cooling chamber extending over the length and periphery of the stator before cooling the stator structure and being returned to the injection tube.
U.S. Pat. No. 6,329,731 discloses a liquid cooled electric motor in which one of the main elements of the planetary gear drives the displacement pump of the cooling circuit. The coolant is driven through a stationary tube about which the hollow rotor shaft rotates. The coolant then passes between the stationary tube and the hollow rotor shaft before passing through a radiator incorporated into the motor and planetary gear casing.
U.S. Pat. No. 7,156,195 discloses an electric motor in which the liquid coolant is collected within the reduction gear case, not the motor case, thus avoiding deterioration and alteration of the motor magnets. The coolant from the reservoir is pumped through the end of a passage in the drive shaft where it flows toward the motor. Part of the coolant is sprayed onto the reduction gears while the rest of the coolant is pumped between the drive shaft and the reduction gear shaft and the motor output shaft.
The present invention provides an improved rotor assembly cooling system.
The present invention provides a rotor assembly cooling system and method of using same. A portion of the rotor shaft is hollow, the rotor shaft including an open end and a closed end. A coolant feed tube is rigidly attached to the rotor shaft, the feed tube being mounted within the hollow portion of the rotor shaft, thus causing the shaft and the feed tube to rotate at the same rate. Coolant is pumped through the feed tube until it exits the end of the feed tube and flows against the inside surface of the closed end of the rotor shaft causing the coolant to change direction and flow back through the coolant flow region, this region being defined as the space between the outer surface of the feed tube and the inner surface of the hollow rotor shaft.
One or more support members rigidly attach the feed tube to the inside surface of the hollowed out portion of the rotor shaft. In at least one embodiment, a plurality of support members is used in which each of the support members is comprised of a plurality of spokes. In at least one alternate embodiment, a plurality of support members is used in which each of the support members is comprised of a an inner ring attached to the outer surface of the feed tube, an outer ring attached to the inside surface of the rotor shaft, and a plurality of spokes coupling the two rings together. In at least one other alternate embodiment, a plurality of support members is used in which each of the support members is comprised of a ring, wherein the inner surface of each ring is attached to the outer surface of the feed tube, the outer surface of each ring is attached to the inside surface of the rotor shaft, and wherein each ring includes a plurality of holes or slots passing from one side of the ring to the other side of the ring. The holes or slots are either direct or slanted. In at least one other alternate embodiment, the support member is a continuous support strut that is helically wrapped around and attached to the outer surface of the coolant feed tube, wherein an outer edge of the support structure is proximate to and attached to the inner surface of the rotor shaft.
In at least one embodiment of the invention, the inner surface of the closed end of the rotor shaft is shaped, thereby promoting the directional change of the coolant from a first direction through the feed tube to a second direction through the coolant flow region between the outer surface of the feed tube and the inner surface of the rotor shaft.
A further understanding of the nature and advantages of the present invention may be realized by reference to the remaining portions of the specification and the drawings.
During operation, coolant is pumped into end 113 of feed tube 109. The coolant flows through the length of feed tube 109 until it is redirected by the inside surface of closed end 105 of shaft 103. The coolant than flows back along direction 115 towards the inlet, passing within the coolant flow region between the outer surface of feed tube 109 and the inside surface of shaft 103 thereby cooling the drive shaft and the attached rotor.
As both shaft 103 and feed tube 109 rotate, the assembly requires at least one coolant seal 117 to seal rotating shaft 103, and at least a second coolant seal 119 to seal rotating feed tube 109. It will be appreciated that seal 117 is more critical than seal 119 as coolant leaked from seal 119 will simply re-enter the coolant reservoir.
Support members 111 can take any of a variety of forms, a few of which are shown in the cross-sectional views of
In addition to using a plurality of support members to couple feed tube 109 to shaft 103, in at least one embodiment of the invention a continuous support member 601 is used, as illustrated in
In order to improve coolant flow when the coolant undergoes the directional change at the end of feed tube 109, adjacent to end 105 of feed tube 103, preferably the inside surface 701 of the end of feed tube 103 is shaped, for example as illustrated in
It should be understood that an electric motor utilizing the rotor assembly cooling system of the present invention is not limited to a specific implementation.
The other elements of electric motor 800 are the same as in a conventional electric motor. For example, motor 800 includes a stator 801, drive shaft bearings 803 and motor case 805. The rotor cooling assembly, in addition to the other elements previously described in detail, also includes a coolant reservoir 807 within a housing 809 and a coolant pump 811. In at least one embodiment, housing 809 also contains the transmission thus allowing the coolant to also be used to cool and lubricate the transmission. In at least one alternate embodiment, housing 809 is a separate housing used only for coolant containment and circulation, thus requiring the other end of the drive shaft to be coupled to the power train of the vehicle. It will be appreciated that the rotor cooling assembly of the invention can be used in conjunction with other cooling systems, for example a coolant system integrated into the motor housing.
As will be understood by those familiar with the art, the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. Accordingly, the disclosures and descriptions herein are intended to be illustrative, but not limiting, of the scope of the invention which is set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5589720 | Berger | Dec 1996 | A |
6191511 | Zysset | Feb 2001 | B1 |
6329731 | Arbanas et al. | Dec 2001 | B1 |
6626649 | Cowans | Sep 2003 | B2 |
6734585 | Tornquist et al. | May 2004 | B2 |
7009317 | Cronin et al. | Mar 2006 | B2 |
7042121 | De Filippis et al. | May 2006 | B2 |
7112901 | Soitu | Sep 2006 | B1 |
7156195 | Yamagishi et al. | Jan 2007 | B2 |
Number | Date | Country | |
---|---|---|---|
20080272661 A1 | Nov 2008 | US |