Description of the Related Art
Paragraphs [0002] through [0004] of application Ser. No. 10/964,344 are incorporated here by reference.
A number of approaches have been implemented to address processor heating. Initial approaches focused on air-cooling. These techniques may be separated into three categories: 1) cooling techniques which focused on cooling the air outside of the computing system; 2) cooling techniques that focused on cooling the air inside the computing system; and 3) a combination of the cooling techniques (i.e., 1 and 2).
Many of these conventional approaches are elaborate and costly. For example, one approach for cooling air outside of the computing system involves the use of a cold room. A cold room is typically implemented in a specially constructed data center, which includes air conditioning units, specialized flooring, walls, etc., to generate and retain as much cooled air within the cold room as possible.
Cold rooms are very costly to build and operate. The specialized buildings, walls, flooring, air conditioning systems, and the power to run the air conditioning systems all add to the cost of building and operating the cold room. In addition, an elaborate ventilation system is typically also implemented and in some cases additional cooling systems may be installed in floors and ceilings to circulate a high volume of air through the cold room. Further, in these cold rooms, computing equipment is typically installed in specialized racks to facilitate the flow of cooled air around and through the computing system. However, with decreasing profit margins in many industries, operators are not willing to incur the expenses associated with operating a cold room. In addition, as computing systems are implemented in small companies and in homes, end users are unable and unwilling to incur the cost associated with the cold room, which makes the cold room impractical for this type of user.
The second type of conventional cooling technique focused on cooling the air surrounding the processor. This approach focused on cooling the air within the computing system. Examples of this approach include implementing simple ventilation holes or slots in the chassis of a computing system, deploying a fan within the chassis of the computing system, etc. However, as processors become more densely populated with circuitry and as the number of processors implemented in a computing system increases, cooling the air within the computing system can no longer dissipate the necessary amount of heat from the processor or the chassis of a computing system.
Conventional techniques also involve a combination of cooling the air outside of the computing system and cooling the air inside the computing system. However, as with the previous techniques, this approach is also limited. The heat produced by processors has quickly exceeded beyond the levels that can be cooled using a combination of the air-cooling techniques mentioned above.
Paragraphs [0010] through [0015] of application Ser. No. 10/964,344 are incorporated here by reference.
Thus, there is a need in the art for a method and apparatus for cooling computing systems. There is a need in the art for a method and apparatus for cooling processors deployed within a computing system. There is a need in the art for an optimal, cost-effective method and apparatus for cooling processors, which also allows the processor to operate at the marketed operating capacity. There is a need for a method or apparatus used to dissipate processor heat which can be deployed within the small footprint available in the case or housing of a computing system, such as a laptop computer, standalone computer, cellular telephone, etc.
Paragraphs [0017] through [0025] of application Ser. No. 10/964,344 are incorporated here by reference.
In another embodiment the liquid cooling system is arranged such that one or more heat transfer systems have an interconnect system for enabling or disabling liquid communication with a heat exchange system and the heat transfer system(s) are liquidly connected in parallel, in series or in a combination of parallel and serial.
Paragraphs [0027] of application Ser. No. 10/964,344 is incorporated here by reference.
Paragraphs [0028] through [0064] of application Ser. No. 10/964,344 are incorporated here by reference.
While the present invention is described herein with reference to illustrative embodiments for particular applications, it should be understood that the invention is not limited thereto. Those having ordinary skill in the art and access to the teachings provided herein will recognize additional modifications, applications, and embodiments within the scope thereof and additional fields in which the present invention would be of significant utility.
Paragraphs [0067] through [0265] of application Ser. No. 10/964,344 are incorporated here by reference.
The liquid cooling system 2160 may comprise a cooling system of any of the types described with respect to FIGS. I to 5 incorporating heat transfer systems of any of the types described with respect to FIGS. 6 to 19. The liquid cooling system may also be of an arrangement similar to those described with respect to any of FIGS. 20 to 23. The liquid cooling system 2160 comprises at least one heat exchange system 2170 and a plurality of heat transfer systems 2180, the heat transfer systems 2180 being associated with respective heat generating components (not shown) on at least one or more of the cards 2130. The heat exchange system 2170 is connected to the plurality of heat transfer systems 2180 by a liquid transport system 2190 which conveys cooled liquid from the heat exchange system 2170 towards the heat transfer systems 2180 and conveys heated liquid from the heat transfer systems 2180 towards the heat exchange system 2170 for removal of thermal energy from such heated liquid to provide a supply of cooling liquid for the system 2160.
The liquid transport system 2190 comprises a first conduit 2190A for conveying cooling liquid towards the heat transfer systems 2180 on the card(s) 2130 and a second conduit 2190B for collecting heated liquid from the heat transfer systems 2180 and conveying it towards the heat exchange system 2170 for cooling. The heat transfer systems 2180 may be arranged in series, in parallel or a combination of series and parallel on the cards 2130.
The liquid transport system 2190 may include a harness 2230 for attaching conduits 2190A and 2190B to the chassis 2110 of the data processing system or the communication system. Disposed within liquid transport system 2190 and within the harness 2230 are a series of liquid switches or interconnects 2200; one for each slot 2120 in the system 2100 which will receive card(s) 2130 having heat transfer system(s) 2180 thereon. The liquid switches 2200 may be any one of a number of different types available. Each switch will have receptacles 2240 for receiving cooled liquid from conduit 2190A and transferring heated liquid to conduit 2190B. Each switch shall also have receptacles 2250 for detachably transferring cooled liquid from conduit 2190A to liquid feed 2190C and on to the heat transfer system(s) 2180 on a card 2130 and for detachably transferring heated liquid from the heat transfer systems on such card 2130 on liquid feed 2190D to conduit 2190B. The liquid switch 2200 can then be operated to enable or disable the flow of cooled liquid to and heated liquid from the heat transfer system(s) 2180 on a selected card 2130, thereby permitting the connection to or extraction from the bay 2140 in the backplane or rack 2150 of any card 2130 having heat transfer system(s) 2180 thereon and without having to turn off the system 2100. This mechanism allows additional cards 2130 to be added to the system 2100 on line and for removal of cards 2130 from the system for upgrading, service or repair.
The liquid switch 220 may be configured to allow connection between or detachment from liquid feed conduits 2190C and 2190D and receptacles 2250 only when the liquid switch is in the off position which prevents the flow of liquid from conduits 2190A and 2190B to liquid feed conduits 2190C and 2190B, respectively, and thereby preventing the spillage of liquid therefrom. The receptacles 2250 may be further configured and combined with mating receptacles attached to liquid feed conduits 2190C and 2190D such that liquid in the liquid feed conduits 2190C and 2190D is contained in a closed loop whenever the liquid feed conduits 2190C and 2190D are not connected to a switch 2200. This shall ensure that there is no spillage when disconnecting a card 2130 and will enable the maintenance of the proper volume of liquid in the entire liquid transport system 2190 at all times and irrespective of the number of cards 2130 connected at any one time. The switch 2200 should also be a secure type so as only to permit operation by an authorized technician.
Thus, the present invention has been described herein with reference to a particular embodiment for a particular application. Those having ordinary skill in the art and access to the present teachings will recognize additional modifications, applications, and embodiments within the scope thereof.
It is, therefore, intended by the appended claims to cover any and all such applications, modifications, and embodiments within the scope of the present invention.
The present application is a continuation application of application Ser. No. 10/964,344 filed on Oct. 13, 2004 entitled “Liquid Cooling System” which is incorporated herein by reference. The priority date of application Ser. No. 10/964,344 is claimed. Reference is also made to U.S. patent application Ser. No. 11/361,943 entitled Cooling System and filed on Feb. 27, 2006.
Number | Date | Country | |
---|---|---|---|
Parent | 10964344 | Oct 2004 | US |
Child | 11486943 | Jul 2006 | US |