Conventional ultrasonic laboratory measurements are performed by attaching either P or S transducers to the flat faces of cylindrical core samples. Measurements of acoustic travel time are made via a through-transmission acoustic pulse that travels through the rock from the transmitter to receiver. Various standardizations exist to properly setup the experiments and assist selection of an ideal frequency of investigation in relation to sample size [1]. The main components required are a pulse or signal generator unit, the transducers, and an oscilloscope to read and save the signals for processing.
Today, oil/gas markets are more volatile than ever, and the traditional development process hardly meets rapidly-changing industry needs.
Various aspects of the disclosure provide new techniques to analyze rock P and S-wave velocities. For instance, consider seismic refraction surveys and multiple receiver acoustic logging techniques. Both methods utilize the physics of refraction and mode conversion, which occurs at the interface between elastic media [2]. In both systems, interactions are governed by Snell's Law, which explains how the source P-wave will refract in the formation at specific angles as a function of the layer velocities and incident angle. To capitalize on the fundamentals of borehole acoustics and refraction, this work will present the development of a transducer array system that treats the sample as an inverted borehole, in which the sample is immersed in water and the transducers are external to the sample.
Pressure-coring technology, such as the HYACINTH system, allows for the study of core samples at the surface while retaining in-situ pressures and temperatures [3]. At the surface, the system measures P-wave velocity across the diameter of the cylindrical core sample using complex rolling transducers [4]. Currently, minimal standardizations exist for measuring core P-wave velocity in this fashion. As such, this type of system will also be studied to better understand the benefits and limitations. Various dry and water saturated cores are tested using both experimental systems, with results corroborated using Gassmann's equations [5].
The disclosed embodiments allow for acoustic velocity analysis of a full-core without contacting or damaging the sample. It may be used on cores within a core liner or in a pressure vessel to better preserve fluid saturations. Because the technology can analyze the entire core, it may allow easier comparison between wireline or LWD acoustic logging and core data. This system could supplement routine core analysis acoustic data and may provide service companies with a simple, non-destructive core testing protocol to characterize the P and S-wave velocities of a full-core sample with ease. It may also prove useful in highlighting local acoustic heterogeneity which conventional wireline logs or biased core plug sampling may overlook, especially in thinly bedded formations.
Typical ultrasonic analysis of rocks requires direct transducer sample contact at the flat ends of a cylindrical core sample, often under high force with a coupling gel to ensure proper bonding. Th disclosed embodiments of a system are advantageous in that the sample under investigation does not have to be rigidly connected to the transducers, which greatly simplifies testing and reduces user error.
The disclosed methods present a possibility of measuring the entire length of the core in the lab without having to cut the core into pieces, which may be used to generate a core log of acoustic velocity or slowness. Additionally, it would be feasible to rotate the sample along its axis and generate a more detailed circumferential acoustic velocity profile at each core depth to provide insight into the sample heterogeneity; compared to typical ultrasonic measurements, this proposed form of analysis may provide greater detail than the conventional entire core average.
In cases where a core sample is environmentally isolated to preserve in-situ properties, such as in pressure coring applications, the core cannot be removed and must be examined often through core liners or within pressure vessels. The disclosed system embodiments can be directly integrated into current pressure-coring technologies with ease, perhaps with multiple sensors integrated around the entire core circumference. Present pressure coring technologies use transducers that measure the P or S velocity directly across the core sample diameter, which rely on difficult to achieve sample transducer contact through a core liner.
These and other features will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings and claims.
For a more complete understanding of the present disclosure, reference is now made to the following brief description, taken in connection with the accompanying drawings and detailed description, wherein like reference numerals represent like parts.
It should be understood at the outset that although illustrative implementations of one or more embodiments are illustrated below, the disclosed tools and methods may be implemented using any number of techniques, whether currently known or in existence. The disclosure should in no way be limited to the illustrative implementations, drawings, and techniques illustrated below, but may be modified within the scope of the appended claims along with their full scope of equivalents. Use of the phrase “and/or” indicates that anyone or any combination of a list of options can be used. For example, “A, B, and/or C” means “A”, or “B”, or “C”, or “A and B”, or “A and C”, or “A and B and C”.
Disclosed and described herein are systems and methods used to analyze ultrasonic waves and nondestructively infer acoustic wave velocities and dynamic elastic properties of materials. Both methods employ the selective rotation of ultrasonic transducers immersed in a liquid (water) adjacent to the sample under study.
The above-described system is used to investigate both the compressional (P-wave) and shear (S-wave) velocity of elastic media. For the disclosed application, the focus is on rock samples because acoustic velocities are associated with rock elastic properties, density, and capacity to store hydrocarbons (porosity).
The mode of operation comprises submerging the entire assembly, including sample, in a liquid (e.g., water). The liquid acts as a couplant between the transducers and the sample, which effectively transmits ultrasonic energy. Transducer 1 (
Prior to testing, the geometry of the system is measured such that the time of flight can be appropriately modeled in MATLAB in 2D, as shown in
While the forward model is useful for understanding the data, this system and method has an added bonus of reducing the need for the detailed forward model. By comparing the waveforms arriving at transducers 2 and 3, and with a knowledge of the inter-receiver spacing, the P and S-wave velocities may be estimated by simply dividing the spacing (distance) over the difference in arrival time.
A second disclosed embodiment uses a similar method of operation. However, the purpose of this system is to probe for directly reflected waves.
This embodiment of a method relies on analysis of the amplitude of the P-wave reflections, akin to seismic analysis. This allows indirect analysis of the sample P and S-wave velocities via the Zoeppritz equations. The amplitude of reflection as a function of angle is the only pertinent variable, which greatly reduces analytical complexity. The method of analysis is as follows: 1) With knowledge of the transducer separation and sample to transducer separation, calculate the angles of incidence associated with the transducer spacing increments. 2) Dial in the appropriate angle at each transducer separation (offset) and measure the P-wave reflection. 3) After accounting for attenuation due to the water and with knowledge of the initial amplitude of the wavelet, estimate the reflection coefficient. 4) Compare the amplitude results as a function of angle to theoretical models, such as the Aki-Richards' approximation.
In this way, the method effectively estimates the sample P and S-wave velocities. Results for this are preliminarily shown in
Experimental Setup
A system of 3D printed parts hold the transducers in place and ensure their alignment when adjacent the sample. Prototype No. 1 allows the user to adjust the transducer center height and take P-wave velocity measurements across the sample diameter. Since the smallest diameter samples tested are 2 in, the default resting center height of the transducers is designed to correspond to 1 in, i.e., the sample mid-plane for a 2 in OD sample. This greatly simplifies operation, and adjustments in height are readily made via caliper. The system is easy to implement or assemble submerged in water, as is the case for all experiments. Water is used to properly couple the transducers to the outer diameter of the sample because air does not readily transmit ultrasonic energy through the sample. Prototype No. 1 is used to evaluate modern pressure-core P-wave arrival time estimation techniques. Namely, the variation in sample velocity estimation as a function of transducer height is evaluated. This is important because currently there are minimal standardizations that exist for examining acoustic velocity in this manner. This prototype will also evaluate the effectiveness of the liquid coupling.
Prototype No. 2 allows transducers to rotate adjacent to the sample and probe for refracted and converted waves. One major drawback is that the rotation joint causes the transducer center point to follow an arc during rotation. Prototype No. 3 addresses this issue, and also introduces a second receiver as dual array system. Transducer rotation occurs precisely at the transducer center point, which greatly simplifies forward modelling and testing. Prototype No. 3 can test angles up to 65° using both receivers.
All experiments were performed on the following materials: Aluminum 2024, Berea sandstone, and Texas Cream limestone. The samples of each material are approximately 2 and 4 in OD by 8 in length. The aluminum functions as an ideal homogenous, isotropic media that is used as a control. The sample length is important for testing with prototype three, but inconsequential for testing with prototype one. Namely, the transducer size and resulting size of prototype No. 3 dictate the use of relatively long samples.
The rock samples were tested dry and fully water saturated. The samples were dried in an oven for 48 hours prior to any testing or water saturation procedure. To create fully water saturated cores, the 1998 API Recommended Practices for Core Analysis liquid saturation guidelines were followed [6].
Prototype No. 1 estimates P-velocity similarly to existing pressure coring systems. To evaluate the effectiveness of this technique, experiments will change the transducer center height with respect to the sample. This height, differential will be referred to as the height offset. The experiments start with the transducer center axis aligned to the sample mid-plane, and experiments are conducted in transducer center height offset increments of 0.2 in until the transducer center axis is tangent to the top of the sample. The transducer faces are pressed against the core at each height increment, which reduces the separation distance between the transducers with increasing height.
The forward model takes into account a simplified 2D system geometry and calculates the transducer separation distance as a function of height offset. The model treats the transducer face as a collection of point sources and determines the critical incident angles at which a waveform will travel parallel to the mid-plane. Model inputs are the speed of sound (P-wave velocity) in water and the sample, and the dimensions of the physical system. The model then varies the location of the transducer face, assuming that a sample contact constraint occurs at the bottom of the transducer. A point source of sound is simulated to originate across the entire transducer face of height d, and the model solves for the corresponding 60 from each point (See
Prototype No. 2 and 3 require a similar forward modeling treatment. However, detecting P and S-waves requires observation of the entire wave train, not just the first arrival. The transducer center height is fixed at the sample mid-plane for all experiments. By assuming that both transmitter and receiver(s) are rotated at the same incident angle, the system geometry is greatly simplified.
At every point along the transducer face, in 2D, we assume a circular wave front propagates from the transducer. At all angles θ0 from 0 to 90′, there will therefore be some energy transmitted at the critical angle. The transducer x and y offset (x2 and y2) from the transducer center is calculated at each θ0 to determine the left and right sensor boundary points for the model. These boundary points determine the range of arrival times as a function of the distance traveled in the water and sample. Further, the model calculates the arrival time of a direct fluid mode propagating parallel to the sample (blue arrows). This is important to monitor for quality control purposes.
The cross-diameter P-wave measurements using prototype No. 1 suggest that there is a minimum amount of fluid required to properly couple ultrasonic energy to the sample. P-wave velocity estimates on the 4 in samples are more accurate than 2 in samples, but still underestimate the conventional acoustic velocities due to the fluid coupling. Knowledge of the thickness of fluid between the transducers and sample eliminates the underestimation. Measurements acquired on both dry and fully water saturated core samples agree with the magnitude of P-wave velocity change as predicted by Gassmann's fluid substitution theory within a 2% margin of error. Results from refracted wave tests using prototype No. 3 are ideal for all samples tested. The error in arrival time estimation is consistently under 4%, and the error in velocity estimation is under 6% (
The forward model acts as a reality check for the user to either repeat the experiment or double check the model conditions should model disagreements arise. Model utility is large ty dependent on how well the initial conditions of the experiment are measured. The forward model predictions agree with experimental results and show future potential of simultaneous P and S-wave measurement in the laboratory.
Unless otherwise noted, each of the below fully incorporated herein by reference and made a part hereof:
[6] RP 40, Recommended Practices for Core Analysis, 2nd Edition 1998, API.
In the specification and/or figures, typical embodiments have been disclosed. The present disclosure is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. Methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure. As used in the specification, and in the appended claims, the singular forms “a,” “an,” “the” include plural referents unless the context clearly dictates otherwise. The term “comprising” and variations thereof as used herein is used synonymously with the term “including” and variations thereof and are open, non-limiting terms. The terms “optional” or “optionally” used herein mean that the subsequently described feature, event or circumstance may or may not occur, and that the description includes instances where said feature, event or circumstance occurs and instances where it does not. Ranges may be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, an aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.
Those skilled in the art will also appreciate that various adaptations and modifications of the preferred and alternative embodiments described above can be configured without departing from the scope and spirit of the disclosure. Therefore, it is to be understood that, within the scope of the appended claims, the disclosure may be practiced other than as specifically described herein.
This application claims priority to and benefit of U.S. provisional patent application Ser. No. 62/545,156 filed Aug. 14, 2017, which is fully incorporated by reference and made a part hereof.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/046467 | 8/13/2018 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62545156 | Aug 2017 | US |