The present disclosure relates to a manufacturing method of a liquid-crystal antenna device and a liquid-crystal antenna device manufactured by the method.
Liquid-crystal molecules can possess both solid and liquid physical properties at the same time, and they have special optical properties and are sensitive to electromagnetic fields. Therefore, liquid-crystal molecules are widely used in various display devices. In recent years, liquid-crystal molecules have also been applied in tunable microwave devices, such as a liquid-crystal antenna device.
Specifically, a liquid-crystal antenna device can generate different dielectric coefficients by adjusting the electric field to control the rotation direction of the liquid-crystal molecules, which possess the characteristics of dual-dielectric coefficients. The liquid-crystal antenna device can control the arrangement of liquid-crystal molecules in each liquid-crystal antenna unit via an electrical signal so as to alter the dielectric parameter of each liquid-crystal antenna unit. Therefore, the phase or amplitude of the microwave signal in the liquid-crystal antenna device can be controlled so as to adjust the radiation direction of the microwave signal.
However, the requirement of the liquid-crystal antenna device on the injection amount of liquid-crystal molecules is stricter than the conventional liquid-crystal display. The liquid-crystal molecules are slowly absorbed into the device through the capillary principle in the traditional liquid-crystal injection method. The traditional liquid-crystal injection method is more time-consuming and may waste more liquid-crystal materials.
On the other hand, the rectangular layout is mostly used for alignment, bonding, assembly and cutting of the traditional liquid-crystal substrates. Although the cutting process can be simplified, the utilization rate of the substrate is not satisfactory.
Therefore, developing a method that can further improve the manufacturing quality and efficiency of the liquid-crystal antenna device is still one of the topics that the industry is devoted to researching.
In accordance with some embodiments of the present disclosure, a method for manufacturing a liquid-crystal antenna device is provided. The method includes the following steps: (a) providing a first mother substrate, the first mother substrate includes a first region and a second region, the first region has a plurality of first sides, wherein an extension line of at least one of the plurality of first sides divides the second region into a first part and a second part: (b) forming a first electrode layer on the first region and the second region; and (c) cutting the first mother substrate along the plurality of first sides of the first region.
In accordance with some embodiments of the present disclosure, a method for manufacturing a liquid-crystal antenna device is provided. The method includes the following steps: (a) providing a first mother substrate, the first mother substrate includes a first region, and the first region has a plurality of first sides; (b) forming a first electrode layer on the first region; (c) disposing a first sealing member on the first region of the first mother substrate to define an active area; (d) dripping a liquid-crystal molecule in the active area; (e) providing a second mother substrate, wherein the first sealing member is disposed between the first mother substrate and the second mother substrate; and (f) cutting the first region of the first mother substrate and the second mother substrate along the plurality of first sides of the first region.
In accordance embodiments of the present disclosure, a liquid-crystal antenna device is provided. The liquid-crystal antenna device includes a first substrate having a plurality of first sides; a second substrate disposed opposite to the first substrate; a first electrode layer disposed on the first substrate; a second electrode layer disposed on the second substrate; a first sealing member disposed between the first substrate and the second substrate, and the first sealing member, the first substrate and the second substrate define an active area; a liquid-crystal layer filled into the active area; and a second sealing member, wherein a part of the second sealing member protrudes from one of the plurality of first sides, and the second sealing member connects to the first sealing member.
A detailed description is given in the following embodiments with reference to the accompanying drawings.
The disclosure may be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
The manufacturing method of a liquid-crystal antenna device of the present disclosure and the liquid-crystal antenna device manufactured by the method are described in detail in the following description. In the following detailed description, for purposes of explanation, numerous specific details and embodiments are set forth in order to provide a thorough understanding of the present disclosure. The specific elements and configurations described in the following detailed description are set forth in order to clearly describe the present disclosure. It will be apparent, however, that the exemplary embodiments set forth herein are used merely for the purpose of illustration, and the inventive concept may be embodied in various forms without being limited to those exemplary embodiments. In addition, the drawings of different embodiments may use like and/or corresponding numerals to denote like and/or corresponding elements in order to clearly describe the present disclosure. However, the use of like and/or corresponding numerals in the drawings of different embodiments does not suggest any correlation between different embodiments. In addition, in this specification, expressions such as “first material layer disposed on/over a second material layer”, may indicate the direct contact of the first material layer and the second material layer, or it may indicate a non-contact state with one or more intermediate layers between the first material layer and the second material layer. In the above situation, the first material layer may not be in direct contact with the second material layer.
It should be noted that the elements or devices in the drawings of the present disclosure may be present in any form or configuration known to those with ordinary skill in the art. In addition, the expressions “a layer overlying another layer”, “a layer is disposed above another layer”, “a layer is disposed on another layer” and “a layer is disposed over another layer” may indicate that the layer is in direct contact with the other layer, or that the layer is not in direct contact with the other layer, there being one or more intermediate layers disposed between the layer and the other layer.
In addition, in this specification, relative expressions are used. For example, “lower”, “bottom”, “higher” or “top” are used to describe the position of one element relative to another. It should be appreciated that if a device is flipped upside down, an element that is “lower” will become an element that is “higher”.
It should be understood that, although the terms first, second, third etc. may be used herein to describe various elements, components, regions, layers, parts and/or sections, these elements, components, regions, layers, parts and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer, part or section from another region, layer or section. Thus, a first element, component, region, layer, part or section discussed below could be termed a second element, component, region, layer, part or section without departing from the teachings of the present disclosure.
It should be understood that this description of the exemplary embodiments is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. The drawings are not drawn to scale. In addition, structures and devices are shown schematically in order to simplify the drawing.
The terms “about” and “substantially” typically mean +/−20% of the stated value, more typically +/−10% of the stated value, more typically +/−5% of the stated value, more typically +/−3% of the stated value, more typically +/−2% of the stated value, more typically +/−1% of the stated value and even more typically +/−0.5% of the stated value. The stated value of the present disclosure is an approximate value. When there is no specific description, the stated value includes the meaning of “about” or “substantially”.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It should be appreciated that, in each case, the term, which is defined in a commonly used dictionary, should be interpreted as having a meaning that conforms to the relative skills of the present disclosure and the background or the context of the present disclosure, and should not be interpreted in an idealized or overly formal manner unless so defined.
In addition, in some embodiments of the present disclosure, terms concerning attachments, coupling and the like, such as “connected” and “interconnected,” refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise.
The manufacturing method of the liquid-crystal antenna device provided by the present disclosure may control the injection amount of the liquid-crystal more accurately and further improve the problem of the liquid-crystal cell gap so as to improve the performance of the liquid-crystal antenna device. In addition, compared with the conventional liquid-crystal injection method that utilizes the capillary principle, the manufacturing method of the liquid-crystal antenna device of the present disclosure may greatly shorten the manufacturing time and improve the manufacturing efficiency.
In addition, the present disclosure also provides various aspects of the arrangement of liquid-crystal antenna devices on the mother substrate during the manufacturing process. By using the method of staggered arrangement, the utilization rate of the mother substrate may also be improved efficiently.
First, referring to
In some embodiments, the material of the first mother substrate 100 may include, but is not limited to, glass, polyimide (PI), liquid-crystal polymers (LCP), or a combination thereof. The first mother substrate 100 may be formed of rigid substances or elastic substances. In addition, it should be understood that although the shape of the first region 101 is rectangular in the embodiment shown in
Next, referring
The first electrode layer 102 may be formed by using one or more deposition, photolithography and etching processes. In some embodiments, the deposition process may include, but is not limited to, a chemical vapor deposition process, a physical vapor deposition process, an electroplating process, an electroless plating process, any other suitable processes, or a combination thereof. The chemical vapor deposition may include, but is not limited to, low-pressure chemical vapor deposition (LPCVD), low-temperature chemical vapor deposition (LTCVD), rapid thermal chemical vapor deposition (RTCVD), plasma enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD), or any other suitable method. The physical vapor deposition process may include, but is not limited to, sputtering, evaporation, pulsed laser deposition (PLD), or any other suitable processes. In addition, in some embodiments, the photolithography process may include, but is not limited to, photoresist coating (e.g., spin-on coating), soft baking, hard baking, mask aligning, exposure, post-exposure baking, developing the photoresist, rinsing, drying, or any other suitable processes. The etching process may include dry etching process, wet etching process, or any other suitable etching processes.
Next referring to
The first sealing member 104 may be formed of adhesive materials. The first mother substrate 100 and a second mother substrate 108 (as shown in
It should be noted that the first sealing member 104 includes a protruding part 104p in accordance with some embodiments. As shown in
Next, referring to
Next, referring to
In some embodiments, the material of the second mother substrate 108 may include, but is not limited to, glass, polyimide (PI), liquid-crystal polymers (LCP) or a combination thereof. The material of the first mother substrate 100 is the same as that of the second mother substrate 108 in accordance with some embodiments. The material of the first mother substrate 100 is different from that of the second mother substrate 108 in accordance with some other embodiments.
Moreover, the size of the second mother substrate 108 is larger than the size of the first mother substrate 100 in the embodiment shown in
Additionally, a second electrode layer 114 may be formed on a side of the second mother substrate 108 that is close to the first mother substrate 100 (as shown in
The second electrode layer 114 may be formed by using one or more deposition, photolithography and etching processes. In some embodiments, the deposition process may include, but is not limited to, a chemical vapor deposition process, a physical vapor deposition process, an electroplating process, an electroless plating process, any other suitable processes, or a combination thereof. The chemical vapor deposition may include, but is not limited to, low-pressure chemical vapor deposition (LPCVD), low-temperature chemical vapor deposition (LTCVD), rapid thermal chemical vapor deposition (RTCVD), plasma enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD), or any other suitable method. The physical vapor deposition process may include, but is not limited to, sputtering, evaporation, pulsed laser deposition (PLD), or any other suitable processes. In addition, in some embodiments, the photolithography process may include, but is not limited to, photoresist coating (e.g., spin-on coating), soft baking, hard baking, mask aligning, exposure, post-exposure baking, developing the photoresist, rinsing, drying, or any other suitable processes. The etching process may include dry etching process, wet etching process, or any other suitable etching processes.
After the alignment and assembly of the first mother substrate 100 and the second mother substrate 108 are completed, referring to
In some embodiments, the first cutting process 22c may include, but is not limited to, a mechanical cutting process, a laser cutting process, any other suitable cutting processes, or a combination thereof. In addition, the first mother substrate 100 and the second mother substrate 108 may be cut by the same cutting process in accordance with some embodiments. For example, both the first mother substrate 100 and the second mother substrate 108 may be cut by the first cutting process 22c. In some other embodiments, the first mother substrate 100 and the second mother substrate 108 may be cut by different cutting processes, and the second mother substrate 108 may be cut to form the second substrate 108′ that corresponds to the first region 101 (not illustrated). On the other hand, in some embodiments, after the first cutting process 22c is performed, the first region 101 is defined as the first substrate 101′. The sidewalls of the first substrate 101′ are substantially aligned with the sidewalls of the second substrate 108′. However, in some other embodiments, after the first cutting process 22c is performed, the size of the first substrate 101′ is different from the size of the second substrate 108′. That is, the sidewalls of the first substrate 101′ and the sidewalls of the second substrate 108′ may be not aligned with each other.
Next, referring to
As described above, the second cutting process 24c may include, but is not limited to, a mechanical cutting process, a laser cutting process, any other suitable cutting processes, or a combination thereof.
Next, in some embodiments, after step 24, excess liquid-crystal molecules 106 in the active region AA may be discharged through the opening 110. Accordingly, the resulting liquid-crystal antenna device may have an optimum amount of liquid crystal. In some embodiments, the liquid-crystal molecules 106 can be discharged through the opening 110 by the way of squeezing, but it is not limited thereto.
Next, referring to
As shown in
As described above, the manufacturing method of the liquid-crystal antenna device 10 includes two cutting processes, the first cutting process 22c and the second cutting process 24c. First, a slight excess of liquid-crystal molecules 106 are filled into the liquid-crystal antenna device 200 and the shape of the liquid-crystal antenna device 200 is roughly defined by the first cutting process 22c. Then, the excess liquid-crystal molecules 106 in the liquid-crystal antenna device 200 may be discharged by the second cutting process 24c so as to have the amount of liquid-crystal more optimized or reduce the generation of a liquid-crystal gap. In addition, the two cutting processes may control the cutting position of the opening for discharging the excess liquid crystal, and may further control the amount of liquid-crystal that is filled into the liquid-crystal antenna device 200.
Referring to
Next, referring to
As shown in
Moreover, the second electrode layer 114 may be disposed on the second substrate 108′, and the second electrode layer 114 may also be patterned by photolithography, etching process, and so on. In some embodiments, the patterned second electrode layer 114 includes a plurality of parts that are separated from each other, and at least a part thereof corresponds to the opening 116 of the first electrode layer 102.
In some embodiments, the first electrode layer 102 or the second electrode layer 114 may be electrically connected to a corresponding functional circuit (not illustrated). In some embodiments, the functional circuit may be disposed on the second substrate 108′ and may be located outside the active area AA that is defined by the first sealing member 104. Specifically, the functional circuit may apply a voltage to the second electrode layer 114 to Change the electric field between the second electrode layer 114 and the first electrode layer 102 and therefore change the arrangement direction (refractive index) of the quid-crystal molecules 106 that are disposed between the second electrode layer 114 and the first electrode layer 102. On the other hand, the functional circuit may also apply another voltage to the second electrode layer 114 to transmit the electromagnetic signal through the opening 116. Moreover, the direction of the electromagnetic signal may be adjusted by the arrangement direction of the liquid-crystal molecules 106. In some embodiments, the first electrode layer 102 may be electrically floating, grounded, or connected to other circuits (not illustrated). The first electrode layer 102 may be used to shield the electromagnetic signal so that the electromagnetic signal may face toward the opening 116 and enhance the signal/noise ratio of the electromagnetic signal of the liquid-crystal antenna device.
However, it should be understood that one with ordinary skill in the art can adjust the amount, the shape or the arrangement (from the top view perspective) of the first electrode layer 102, the second electrode layer 114 and the corresponding openings 116 according to practical needs, and they are not limited to the aspects shown in
In addition, the first sealing member 104 is disposed between the first substrate 101′ and the second substrate 108′. The first sealing member 104, the first substrate 101′ and the second substrate 108′ define an active area AA. In some embodiments, the first sealing member 104 connects the first substrate 101′ to the second substrate 108′. More specifically, the first sealing member 104 connects the first electrode layer 102 to the second electrode layer 114. The projection of the first sealing member 104 on the first substrate 101′ at least partially overlaps the first electrode layer 102 and also at least partially overlaps the second electrode layer 114.
Moreover, as described above, the liquid-crystal antenna device 200 may further include the second sealing member 112 (as shown in
In addition, the liquid-crystal antenna device 200 may further include at least a spacer element 118 in accordance with some embodiments. The spacer element 118 is disposed between the first substrate 101′ and the second substrate 108′, and the spacer element 118 may be disposed in the liquid-crystal layer 106s. The spacer 118 may be used to reinforce the structural strength of the liquid-crystal antenna device 200. In some embodiments, the spacer elements 118 extend along a direction that is substantially perpendicular to the first substrate 101′ or the second substrate 108′.
The spacer elements 118 may be a ring structure in accordance with some embodiments. In some other embodiments, the spacer element 118 may include a plurality of columnar structures and the columnar structures may be arranged in parallel. In addition, the spacer element 118 may be formed of an insulating material or a conductive material. In some embodiments, the material of the spacer element 118 may include, but is not limited to, copper, silver, gold, copper alloys, silver alloys, gold alloys, or a combination thereof. In some embodiments, the spacer element 118 may be formed of a single material or composite materials. For example, in other embodiments, the material of the spacer element 118 may include, but is not limited to, polyethylene terephthalate (PET), polyethylene (PE), polyethersulfone (PES), polycarbonate (PC), polymethylmethacrylate (PMMA), glass, any other suitable materials, or a combination thereof. In some embodiments, the spacer element 118 may be adhesive.
Next, referring to
Specifically, as shown in
Next, referring to
In some embodiments, the minimum distance d2 between the second side 201a′ of the second region 201 and the first region 101 is in a range from about 0.5 mm to about 30 mm. It should be noted that, if the minimum distance d2 between the second side 201a′ of the second region 201 and the first region 101 is too small (for example, less than 0.5 mm), the distance between the first region 101 and the second region 201 may be too close. This may make the subsequent cutting process of the substrate become more difficult, or even result in cracks of the substrate.
In addition, the first region 101 and the second region 201 may have any suitable shape, as long as at least one side of the shape may form an obtuse angle with the two adjacent sides. As shown in
Compared with the commonly used rectangular arrangement, the manufacturing method of the liquid-crystal antenna device as described above can effectively improve the utilization rate of the substrate by using the non-rectangular and staggered arrangement. More specifically, the utilization rate of the substrate can be increased by about 30% to about 100%.
In summary, the method for manufacturing the liquid-crystal antenna device provided in the present disclosure may have both advantages of the traditional liquid-crystal injection method and the one drop filling (ODF) method. The amount of liquid-crystal injected can be precisely controlled so as to achieve the optimum amount of liquid-crystal or reduce the generation of a liquid-crystal gap. The performance of the liquid-crystal antenna device can be enhanced accordingly. In addition, the present disclosure also provides multiple arrangements of the liquid-crystal antenna device during the process. The non-rectangular staggered arrangement can effectively improve the utilization of the substrate.
Although some embodiments of the present disclosure and their advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the appended claims. For example, it will be readily understood by one of ordinary skill in the art that many of the features, functions, processes, and materials described herein may be varied while remaining within the scope of the present disclosure. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the present disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
Number | Date | Country | Kind |
---|---|---|---|
2018 1 0146977 | Feb 2018 | CN | national |
This application claims priority of U.S. Provisional Patent Application No. 62/542,369, filed on Aug. 8, 2017 and Chinese Patent Application No. 201810146977.2, filed on Feb. 12, 2018, the entirety of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
7595857 | Yang et al. | Sep 2009 | B2 |
9229280 | Fan | Jan 2016 | B2 |
20070146622 | Yang | Jun 2007 | A1 |
20140085579 | Fan | Mar 2014 | A1 |
20160259214 | Liu | Sep 2016 | A1 |
20170221927 | Li | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
1987584 | Jun 2007 | CN |
102854651 | Jan 2013 | CN |
103439816 | Dec 2013 | CN |
105044960 | Nov 2015 | CN |
Entry |
---|
Chinese language office action dated Dec. 27, 2019, issued in application No. CN 201810146977.2. |
Chinese language office action dated Aug. 3, 2020, issued in application No. CN 201810146977.2. |
Number | Date | Country | |
---|---|---|---|
20190051979 A1 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
62542369 | Aug 2017 | US |