The present invention relates to the technical field of liquid crystal materials. In more particular, the present invention relates to a liquid crystal composition and a liquid crystal display element.
Applications become more and more extensive in the field of liquid crystal display, mainly in mobile phones, computers, televisions, vehicles, outdoor displays, medical devices and other display terminals. With the increasingly rapid development of sciences and technologies, the requirements for display technologies are constantly improving, and the display industry is also constantly progressing. The application and demand of liquid crystal display elements are also increasing.
In recent years, with the expansion of liquid crystal display applications in projectors and outdoor displays, these special use scenarios also put forward higher requirements for the ranges of the parameters and specifications of liquid crystal materials. Taking projector application as an example, first of all, since the working temperature of the projector panel is kept at 60° C. or higher for a long time, sometimes even higher than 80° C., the panel is required to have a high clearing point so as to maintain normal display at high temperatures. Secondly, due to the low cell thickness design of the projector to ensure the appropriate delay required for normal display, the liquid crystal material is required to have an ultra-high refractive index while maintaining a high clearing point. Thirdly, with the continuous application and popularization of high refresh rate technologies, the response time requirements for liquid crystal materials are also becoming more and more strict. In order to achieve better display effects, liquid crystal materials are required to further provide a faster response speed while having both a high clearing point and a high refractive index.
To sum up, liquid crystal materials are required to have three properties, i.e. a high clearing point, a high refractive index and a fast response, so as to better satisfy panel application scenarios such as projectors, outdoor display and LCOS (Liquid Crystal on Silicon) reflective projection display.
In order to solve one or more of the technical defects mentioned above, the present invention provides a technical solution, which has a high optical anisotropy, a high upper limit of working temperature, an appropriate dielectric anisotropy and also a relatively low rotational viscosity.
In order to achieve the above beneficial technical effects, the present invention provides a liquid crystal composition, the liquid crystal composition comprising more than or equal to 30% of a compound represented by Formula I, and one or more compounds represented by Formula II and one or more compounds represented by Formula III:
wherein in Formula II,
R1O and OR2 each independently represent an alkoxy with a carbon atom number of 1-10, a fluoro-substituted alkoxy with a carbon atom number of 1-10, an alkenoxy with a carbon atom number of 2-10, or a fluoro-substituted alkenoxy with a carbon atom number of 2-10;
in Formula III,
R3 and R4 each independently represent an alkyl with a carbon atom number of 1-10, a fluoro-substituted alkyl with a carbon atom number of 1-10, an alkoxy with a carbon atom number of 1-10, a fluoro-substituted alkoxy with a carbon atom number of 1-10, an alkenyl with a carbon atom number of 2-10, a fluoro-substituted alkenyl with a carbon atom number of 2-10, an alkenoxy with a carbon atom number of 3-8, or a fluoro-substituted alkenoxy with a carbon atom number of 3-8.
A second object of the present invention is to provide a liquid crystal display element/display. The display mode of the liquid crystal display element/display is mainly IPS, FFS, VA, PSVA, SAVA, UV2A etc.
The present invention provides a technical solution, which has a high optical anisotropy, a high upper limit of working temperature, an appropriate dielectric anisotropy and also a relatively low rotational viscosity. The liquid crystal composition of the present invention is mainly applied to FFS and VA display modes, to liquid crystal displays working at high temperatures, and to the fields of projectors, vehicles, outdoor display, etc.
The present invention provides a liquid crystal composition, the liquid crystal composition comprising more than or equal to 30% by mass of a compound represented by Formula I, and one or more compounds represented by Formula II, and one or more compounds represented by Formula III:
wherein in Formula II,
R1O and OR2 each independently represent an alkoxy with a carbon atom number of 1-10, a fluoro-substituted alkoxy with a carbon atom number of 1-10, an alkenoxy with a carbon atom number of 2-10, or a fluoro-substituted alkenoxy with a carbon atom number of 2-10;
in Formula III,
R3 and R4 each independently represent an alkyl with a carbon atom number of 1-10, a fluoro-substituted alkyl with a carbon atom number of 1-10, an alkoxy with a carbon atom number of 1-10, a fluoro-substituted alkoxy with a carbon atom number of 1-10, an alkenyl with a carbon atom number of 2-10, a fluoro-substituted alkenyl with a carbon atom number of 2-10, an alkenoxy with a carbon atom number of 3-8, or a fluoro-substituted alkenoxy with a carbon atom number of 3-8.
As for the liquid crystal composition of the present invention, preferably, the compound represented by Formula II in the above-mentioned liquid crystal composition is selected from the group consisting of compounds represented by Formula II-A, II-B, II-C, II-D, II-E and II-F:
As for the liquid crystal composition of the present invention, preferably, the mass content of the compound represented by Formula II in the above-mentioned liquid crystal composition is 1-20%, further preferably 5-10%.
As for the liquid crystal composition of the present invention, preferably, the compound represented by Formula III in the liquid crystal composition is selected from the group consisting of compounds represented by Formulas III-A, III-B, III-D and III-E:
As for the liquid crystal composition of the present invention, preferably, the mass content of the compound represented by Formula III in the above-mentioned liquid crystal composition is 1-20%, further preferably 3-15%.
The liquid crystal composition of the present invention preferably further comprises one or more compounds represented by Formula IV:
wherein in Formula IV,
R5 represents an alkyl with a carbon atom number of 1-10 or an alkenyl with a carbon atom number of 2-10; OR6 represents an alkoxy with a carbon atom number of 1-10 or an alkenoxy with a carbon atom number of 2-10; and
represents
As for the liquid crystal composition of the present invention, preferably, the above-mentioned compound represented by Formula IV is selected from the group consisting of compounds represented by Formula IV-A, IV-B, IV-C, IV-D, IV-E, IV-F and IV-G:
As for the liquid crystal composition of the present invention, preferably, the mass content of the compound represented by Formula IV in the above-mentioned liquid crystal composition is 1-15%.
The liquid crystal composition of the present invention preferably further comprises one or more compounds represented by Formula V:
wherein in Formula V,
R7 represents an alkyl with a carbon atom number of 1-10 or an alkenyl with a carbon atom number of 2-10; OR8 represents an alkoxy with a carbon atom number of 1-10 or an alkenoxy with a carbon atom number of 2-10; and
each independently represent
As for the liquid crystal composition of the present invention, preferably, the above-mentioned compound represented by Formula V is selected from the group consisting of compounds represented by Formulas V-A, V-B, V-C, V-D, V-E, V-F, V-G, V-H, V-J, V-K, V-L, and V-M:
As for the liquid crystal composition of the present invention, preferably, the mass content of the compound represented by Formula V in the above-mentioned liquid crystal composition is 1-55%, further preferably 20-50%.
As for the liquid crystal composition of the present invention, preferably, the above-mentioned liquid crystal composition further comprises one or more compounds represented by Formulas VI-A, VI-B, VI-C, VI-D, VI-E, VI-F and VI-G:
As for the liquid crystal composition of the present invention, preferably, the mass content of the compound represented by Formula VI is 1-10%, further preferably 3-8%.
The liquid crystal composition of the present invention preferably further comprises one or more compounds represented by Formula VII:
wherein in Formula VII,
R9 and R10 each independently represent an alkyl with a carbon atom number of 1-10, an alkoxy with a carbon atom number of 1-10 or an alkenyl with a carbon atom number of 2-10; and
represents
As for the liquid crystal composition of the present invention, preferably, the above-mentioned compound represented by Formula VII is selected from the group consisting of compounds represented by Formulas VII-A, VII-B, VII-C, VII-D, VII-E, VII-F, and VII-G:
As for the liquid crystal composition of the present invention, preferably, the mass content of the compound represented by Formula VII is 1-15%, further preferably 5-10%.
The liquid crystal composition of the present invention preferably further comprises one or more compounds represented by Formula VIII:
wherein in Formula VIII,
R11 and R12 represent an alkyl with a carbon atom number of 1-10, a fluoro-substituted alkyl with a carbon atom number of 1-10, an alkoxy with a carbon atom number of 1-10, a fluoro-substituted alkoxy with a carbon atom number of 1-10, an alkenyl with a carbon atom number of 2-10, a fluoro-substituted alkenyl with a carbon atom number of 2-10, an alkenoxy with a carbon atom number of 3-8, or a fluoro-substituted alkenoxy with a carbon atom number of 3-8, and one or more nonadjacent —CH2— in the group can be replaced by cyclopentylene or cyclopropylene; and
X represents O or S.
As for the liquid crystal composition of the present invention, preferably, the above-mentioned compound represented by Formula VIII is selected from the group consisting of compounds represented by the following Formulas VIII-A, VIII-B, VIII-C, VIII-D, VIII-E, VIII-F, VIII-G, and VIII-H:
As for the liquid crystal composition of the present invention, preferably, the mass content of the compound represented by Formula VIII is 1-15%, further preferably 3-10%.
As for the liquid crystal composition of the present invention, preferably, various functional dopants may also be added to the above-mentioned liquid crystal composition.
As for the liquid crystal composition of the present invention, preferably, the above-mentioned dopants are mainly antioxidants, light stabilizers, etc.
As for the liquid crystal composition of the present invention, preferably, the added amount of the above-mentioned dopants is preferably between 0.01% and 1% of the mass of the above-mentioned liquid crystal composition.
[Liquid Crystal Display Element or Liquid Crystal Display]
The present invention further relates to a liquid crystal display element or liquid crystal display comprising any one of the above-mentioned liquid crystal compositions; and the display element or display is an active matrix display element or display.
The above-mentioned active matrix display element or display can be specifically exemplified by, for example, IPS-TFT or FFS-TFT or VA-TFT liquid crystal display elements or other TFT displays, especially liquid crystal display elements or liquid crystal displays in which FFS-TFT mode is applied.
The liquid crystal display element or liquid crystal display of the present invention comprises the liquid crystal composition disclosed in the present invention. The liquid crystal display element or liquid crystal display of the present invention is mainly used in the fields of projectors, vehicles, outdoor information display, etc.
In order to explain the present invention more clearly, the present invention will be further explained below in conjunction with preferred examples. A person skilled in the art should understand that the following detailed description is illustrative rather than restrictive, and should not limit the scope of protection of the present invention.
In the present invention, the preparation methods are all conventional methods unless otherwise specified, the raw materials used can all be obtained from open commercial channels unless otherwise specified, the percentages all refer to mass percentages, the temperatures are degrees Celsius (° C.), and the specific meanings and test conditions of the other symbols are as follows:
Tni represents the clearing point (° C.) of a liquid crystal, as measured by DSC quantitative method;
An represents optical anisotropy, with Δn=ne−no, wherein no is the refractive index of ordinary light and ne is the refractive index of extraordinary light, and the test conditions are 25±2° C. and 60±2° C., 589 nm, and Abbe refractometer test;
Δε represents dielectric anisotropy, Δε=ε//#−ε⊥, wherein ε// is the dielectric constant parallel to the molecular axis, and ε⊥ is the dielectric constant perpendicular to the molecular axis, and the test conditions are 25±0.5° C., 20 μm antiparallel cell, and INSTEC:ALCT-IR1 test;
γ1 represents rotational viscosity (mPa·s), and the test conditions are 25° C.±0.5° C., 20 μm vertical cell, and INSTEC:ALCT-IR1 test;
The preparation method for the liquid crystal composition involves: weighing various liquid crystal monomers at a certain ratio and putting the liquid crystal monomers into a stainless steel beaker, placing the stainless steel beaker containing these liquid crystal monomers on a magnetic stirring instrument for heating and melting, adding a magnetic rotor to the stainless steel beaker when most of the liquid crystal monomers in the stainless steel beaker have melted, uniformly stirring the mixture, and cooling the mixture to room temperature to obtain the liquid crystal composition.
The structures of the liquid crystal monomers in the examples of the present invention are represented by codes, and the code representation method for liquid crystal ring structures, terminal groups and linker groups is shown in Tables 1 and 2 below.
For example:
the code of which is CC-Cp-V1;
the code of which is PPY-3-O2;
the code of which is CPY-2-O2;
the code of which is CCY-3-O2;
the code of which is COY-3-O2;
the code of which is CCOY-3-O2;
the code of which is CLY-3-O2;
the code of which is Sb-CpO-04;
the code of which is Sc-CpO-04;
the code of which is PGP-Cpr1-2;
the code of which is B-2O-O4;
the code of which is B-CpO-O4;
the code of which is CY-3-O2;
the code of which is PP-1-2V;
the code of which is PGP-5-2.
The following specific examples are used to illustrate the present invention:
The formula and corresponding properties of the liquid crystal compositions were as shown in Table 3 below.
The formula and corresponding properties of the liquid crystal compositions were as shown in Table 4 below.
The formula and corresponding properties of the liquid crystal compositions were as shown in Table 5 below.
The formula and corresponding properties of the liquid crystal compositions were as shown in Table 6 below.
The formula and corresponding properties of the liquid crystal compositions were as shown in Table 7 below.
The formula and corresponding properties of the liquid crystal compositions were as shown in Table 8 below.
The formula and corresponding properties of the liquid crystal compositions were as shown in Table 9 below.
The formula and corresponding properties of the liquid crystal compositions were as shown in Table 10 below.
The formula and corresponding properties of the liquid crystal compositions were as shown in Table 11 below.
The formula and corresponding properties of the liquid crystal compositions were as shown in Table 12 below.
Compared with Example 1, the refractive index of Comparative Example 1 decreased greatly and could not reach 0.140 or higher, and Tni was also slightly lost.
The formula and corresponding properties of the liquid crystal compositions were as shown in Table 13 below.
Compared with Example 2, both the Tni and refractive index of Comparative Example 2 could be maintained; however, the rotational viscosity was increased by 15 mPa·s than that of Comparative Example 2, and the response time became slow.
The formula and corresponding properties of the liquid crystal compositions were as shown in Table 14 below.
Compared with Example 3, the refractive index of Comparative Example 3 decreased slightly and the dielectric coefficient also decreased, which could lead to an increase in the required driving voltage, causing increased power consumption.
The formula and corresponding properties of the liquid crystal compositions were as shown in Table 15 below.
Compared with Example 6, although the refractive index at 25° C. and Tni of Comparative Example 4 reached consistent levels, the refractive index at high temperature was lower than that of Example 6, and the rotational viscosity was also higher, which could lead to a slow response.
In summary, by comparing the above experimental data, the liquid crystal composition of the present invention has a higher clearing point, which can achieve a higher working temperature, a refractive index of 0.140 or higher, which can meet the requirements of low cell thickness and high delay, and a better refractive index at high temperature; in addition, the present invention realizes adjustment in a wider range of dielectric constant while maintaining the above two characteristics, and can adapt to various Vop applications, and the characteristic of a lower rotational viscosity can realize a faster response.
Obviously, the above examples of the present invention are only to clearly illustrate the instances of the present invention, rather than defining the embodiments of the present invention. For those of ordinary skill in the art, other different forms of changes or variations can also be made on the basis of the above description. It is impossible to exhaustively list all the embodiments here, and all obvious changes or variations that are derived from the technical solution of the present invention are still within the scope of protection of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
202111508980.2 | Dec 2021 | CN | national |
202211346845.7 | Oct 2022 | CN | national |