1. Technical Field
The present disclosure relates to liquid crystal displays (LCDs), and more particularly, to an LCD capable of limiting residual image occurrence, and a method for driving the LCD.
2. Description of Related Art
LCDs have the advantages of portability, low power consumption, and low radiation, and has been widely used in various portable information products such as notebooks, personal digital assistants (PDAs), video cameras and the likes.
An LCD generally includes a liquid crystal panel and a backlight module for illuminating the liquid crystal panel. The liquid crystal panel includes a plurality of pixel units, each of which includes a liquid crystal capacitor cooperatively formed by a pixel electrode, a common electrode, and a liquid crystal layer sandwiched therebetween. In operation, the pixel electrode and the common electrode receive a gray-scale voltage and a common voltage respectively. Due to a voltage difference between the gray-scale voltage and the common voltage, an electric field is generated therebetween. The electric field controls an amount of light beams transmit through the pixel unit, such that the pixel unit is driven to display a color with a desired gray-scale level, with gray level of the color is retained by a capacitor structure (i.e., the liquid crystal capacitor).
When the LCD is powered off, residual charges within the liquid crystal capacitors can not be released, and thus the electric fields remain for an extended time period. During this time period, light beams may still transmit through the pixel unit, and a so-called residual image occurs.
What is needed, therefore, is an LCD which can overcome the described limitations, and a method for driving the LCD.
The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of at least one embodiment. In the drawings, like reference numerals designate corresponding parts throughout the various views.
Reference will now be made to the drawings to describe specific exemplary embodiments of the present disclosure in detail.
The liquid crystal panel 110 includes n rows of parallel scanning lines 102 (where n is a natural number), m columns of parallel data lines 104 perpendicular to the scanning lines 102 (where m is also a natural number), and a plurality of pixel units (not labeled) cooperatively defined by the crossing scanning lines 102 and data lines 104. The scanning lines 102 are electrically coupled to the scanning circuit 134 for receiving the scanning signals, and the data lines 104 are electrically coupled to the data circuit 136 for receiving the gray-scale voltage signals.
Each pixel unit includes a thin film transistor (TFT) 106 and a liquid crystal capacitor 108. The liquid crystal capacitor 108 may be formed by a pixel electrode, an opposite common electrode, and a liquid crystal layer sandwiched between the pixel electrode and the common electrode. A gate electrode of the TFT 106 is electrically coupled to a corresponding one of the scanning lines 102, and a source electrode of the TFT 106 is electrically coupled to a corresponding one of the data lines 104. Further, a drain electrode of the TFT 106 is electrically coupled to the liquid crystal capacitor 108.
The timing controller 132 may receive image data set from an external video source (not shown). The image data set is typically transmitted in a format of low voltage differential signal (LVDS), and hereinafter, the image data is named as LVDS data. The LVDS data may include timing signals and RGB (red, green, blue) data, in particular, the timing signals include a data enable signal (DENA signal), a horizontal synchronous signal (Hsync signal), and a vertical synchronous signal (Vsync signal). Each of the DENA signal, the Hsync signal, and the Vsync signal is typically a periodical square-wave pulse formed by a high level signal (i.e., “1”) and a low level signal (i.e., “0”) alternating with each other. The DENA signal corresponds to valid RGB data, and indicates a time period for activating a pixel unit. Moreover, the Hsync signal indicates a time period for scanning a row of pixel units, and the Vsync signal indicates a timing period for scanning a frame of pixel units.
Referring also to
In one embodiment, when the control unit 145 determines that the DENA signal presents as a continuous low voltage signal over a predetermined time period, rather than a periodical square-wave pulse signal, the control unit 145 may determine that the DENA signal is abnormal. The predetermined time period can be set according to a configuration of the liquid crystal panel 110, for example, when the liquid crystal panel 110 has a physical resolution of 1366*768 and a refresh frequency of 60 Hz, the predetermined time period can be set as from about 2.4 ms to about 3.0 ms, or preferable, about 2.8 ms. In an exemplary embodiment, the predetermined time period is desired to be greater than a time period corresponding to invalid RGB data in a frame period as well as a time period corresponding to invalid RGB data between two sequent frame period.
When the LCD 100 is in a normal working state, the power supply circuit 150 provides the power voltage to the driving circuit 120. The LVDS data is received by the timing controller 132, and the control unit 145 of the timing controller 132 detects that DENA signal is a normal square-wave pulse signal and thereby controlling the signal generator 147 to maintain an output (i.e., the reset control signal) as an invalid high voltage signal. Moreover, the timing controller 132 also generates a timing control signal according to the DENA signal, the Hsync signal, and the Vsync signal, and outputs the timing control signal to the scanning circuit 134 and the data circuit 136. In addition, the timing controller 132 also output the RGB data to the data driver 136 after converting the LVDS-formatted RGB data into reduced swing differential signaling (RSDS) format.
Upon receiving the timing control signal, the scanning circuit 134 generates and applies scanning signals to the scanning line 102, so as to switch on the TFTs 106 of the pixel units and thereby activating the pixel units row by row. The data circuit 136 converts the received RGB data into gray-scale voltages signals and output the gray-scale voltages signals to charge the liquid crystal capacitors 108 of the activated pixel units. Accordingly, each pixel unit is driven to a color with a desire gray-scale level, and the aggregation of colors displayed by all the pixel units of the liquid crystal panel 110 simultaneously constitutes an image viewed by a user of the LCD 100.
Moreover, when the LCD 100 enters a power-off state (e.g., such power-off state may be triggered by a user by use of a power button of the LCD 100), the DENA signal may be invalid and the RGB data has disappeared. The power-off state may include a powering-off period greater than that of a period of the scanning signal, and a powered-off period after the powering-off period. In the powering-off period, the power circuit 150 retains to provide the power voltage signal, i.e., the power voltage signal is delayed for cutting off in the power-off period, and the timing controller 132 may detect that the timing signals in the LVDS data is abnormal, for example, the control unit 145 of the timing controller 132 detects that the DENA signal is a continuous low voltage signal over a predetermined time period, thus, the control unit 145 of the timing controller 132 generates and outputs a valid reset control signal (e.g., a low voltage signal) to the reset terminal 135 of the scanning circuit 134. In response to the reset control signal, the scanning circuit 134 may provide a reset signal to all the scanning lines 102, so as to switch all row of pixel units on simultaneously. As such, residual charges within the liquid crystal capacitors 108 can be released in the power-off period for a short time, and the residual image phenomenon that might otherwise exist can be weakened or even eliminated.
Furthermore, after the powering-off period, the powered-off period starts and the power circuit 150 stops the provision of the power voltage signal, and the LCD 100 is powered off completely.
It is noted, generally, the power circuit 150 includes energy accumulating elements such as capacitors or inductors, which are capable of storing electrical energy. Due to the energy accumulating elements, the power voltage signal may be retained for a short time period when power supply is interrupted, that is, when the power circuit 150 starts to stop providing the power voltage signal, the energy accumulating elements can delay the power voltage signal for being removed. Therefore, in an alternative embodiment, the power circuit 150 may stop supply of the power voltage signal immediately when the LCD 100 enters the power-off state, with the stored electrical energy in the energy accumulating elements, the power voltage signal can be maintained in the power-off period.
Moreover, when the LCD 100 is powered off, the Hsync signal and the Vsync signal are terminated and may also become low voltage signals. Accordingly, in another alternative embodiment, the timing controller 132 may generate and output the reset control signal to the scanning circuit 134 upon detecting that the Hsync signal is abnormal, for example, the Hsync signal represents as a continuous low voltage signal over another reference time period. In yet another alternative embodiment, the timing controller 132 may generate and output the reset control signal to the scanning circuit 134 upon detecting that the Vsync signal is abnormal, for example, the Vsync signal represents as a continuous low voltage signal over yet another reference time period. Both of these two alternative embodiment can also enable the residual charges within the liquid crystal capacitors 108 to be released in the power-off period and thereby limit or even eliminate the residual image occurrence.
Further, referring to
Details of Steps S1-S4 can be found in the above description on the operation of the LCD 100. For example, in one embodiment, the image data received by the timing controller is LVDS data including RGB data and the at least one timing signal, the at least one timing signal comprises a data enable signal, a horizontal synchronous signal, and a vertical synchronous signal.
Moreover, step S2 may include the following sub-steps: the timing controller decoding the LVDS data to separate the at least one timing signal from the RGB data; the timing controller detecting whether the at least one timing signal represents as a continuous low voltage signal over a predetermined time period, and if so, the timing controller determining that the liquid crystal display enters a power-off state. In addition, the predetermined time period is greater than a time period corresponding to invalid RGB data in a frame period as well as a time period corresponding to invalid RGB data between two sequential frame periods.
Furthermore, the power-off state of the liquid crystal display may include a powering-off period and a powered-off period, and during the powering-off period, a power supply circuit may retain to provide a power voltage signal to both the timing controller and the scanning circuit.
It is believed that the present embodiments and their advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the invention or sacrificing all of its material advantages, the examples hereinbefore described merely being preferred or exemplary embodiments of the invention.
Number | Date | Country | Kind |
---|---|---|---|
201010146906.6 | Apr 2010 | CN | national |