This application claims the benefit of Korean Patent Application No. 10-2009-0095813 filed on Oct. 8, 2009, which is hereby incorporated by reference for all purposes as if fully set forth herein.
1. Field of the Invention
The present invention relates to a liquid crystal display (LCD) device, and more particularly, to an LCD device and method of driving a scanning backlight thereof.
2. Discussion of the Related Art
Liquid crystal display (LCD) devices are now commonly used in a wide variety of applications because of their characteristics, such as lightweight, thinness, and low power consumption. LCD devices are being used for office automation devices, audio/video devices, indoor/outdoor advertising display devices, and portable computers such as notebook computers. Typical transmission-type LCD devices display images by modulating light incident from a backlight by controlling an electric field applied to a liquid crystal layer.
A viewer may notice blurring of moving images due to a retention characteristic of liquid crystal when moving images are displayed on an LCD device. A scanning backlight driving technology may reduce the blurring of moving images by providing a similar effect as an impulsive driving method used in cathode ray tubes (CRTs) in such a way as to sequentially turn on and off the light sources of the backlight in the scanning direction of the display lines.
The scanning backlight driving technology is, however, disadvantageous in that the screen becomes darker because the light sources of the backlight are turned off for a certain period of time during every frame interval. In order to solve this problem, a method of controlling the turn-off time according to the brightness or luminance of an LCD device may be considered. In such a case, the turn-off time is shortened or the turn-off time does not exist in bright screens, which counters the improvement on blurring phenomenon of the scanning backlight driving technology.
Accordingly, the present invention is directed to a liquid crystal display (LCD) device and method of driving a scanning backlight thereof that substantially obviates one or more of the problems due to limitations and disadvantages of the related art.
An advantage of the present invention is to provide an LCD device and method of driving a scanning backlight thereof that is capable of reducing a motion blur phenomenon with minimized reduction in the brightness or luminance of the LCD device caused by the scanning backlight driving.
Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. This and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described, a liquid crystal display (LCD) device may, for example, include a liquid crystal display panel; a plurality of backlight sources configured to provide light to the liquid crystal display panel; a scanning backlight controller configured to generate a pulse width modulation (PWM) signal for controlling a turn-on time and a turn-off time of the light sources and a current control signal for controlling a driving current of the backlight light sources; and a plurality of light source drivers configured to turn on and off the backlight sources in response to the PWM signal and control the driving current of the backlight sources in response to the current control signal.
In another aspect of the present invention, a scanning backlight driving method for a liquid crystal display (LCD) device may, for example, include analyzing an input video signal; generating a pulse width modulation (PWM) signal to control a turn-on time of a backlight source based on a result of the analyzing an input video signal; and adjusting a driving current of the backlight source in an inverse proportion to a duty ratio of the PWM signal.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.
In the drawings:
Reference will now be made in detail to an embodiment of the present invention, example of which is illustrated in the accompanying drawings. The same reference numbers may be used throughout the drawings to refer to the same or like parts.
An embodiment of the present invention is described below with reference to
Referring to
The LCD panel 10 has a liquid crystal layer between two sheets of glass substrates. The data lines 14 and the gate lines 15 cross each other on a lower substrate of the LCD panel 10. A matrix of liquid crystal cells Clc are arranged in the LCD panel 10 with the data lines 14 and the gate lines 15 crossing each other and form a pixel array as illustrated in
A black matrix, a color filter and a common electrode are typically formed on a upper substrate of the LCD panel 10. The common electrode is formed on the upper substrate in LCD devices that utilize a vertical electric field, such as a twisted nematic (TN) mode and a vertical alignment (VA) mode. On the other hand, the common electrode is formed on the lower substrate together with the pixel electrodes in LCD devices that utilize a horizontal electric field, such as an in-plane switching (IPS) mode and a fringe field switching (FFS) mode. A polarization plate is attached to each of the upper and lower glass substrates of the LCD panel 10. An orientation film for setting the pretilt angle of liquid crystal is formed on inner surfaces of the glass substrates that come into contact with the liquid crystal layer.
The source driver 12 includes a number of source drive ICs. The source driver 12 latches digital video data R′G′B′ under the control of the timing controller 11. The source driver 12 converts the digital video data R′G′B′ into positive-polarity/negative-polarity analog data voltages using positive-polarity/negative-polarity gamma compensation voltages and supplies them to the data lines 14.
The gate driver 13 includes a number of gate drive ICs. The gate driver 13 is provided with a shift register, a level shifter for converting an output signal of the shift register into a signal having a swing width suitable for driving the TFTs of the liquid crystal cells, an output buffer, etc. The gate driver 13 sequentially outputs gate pulses or scan pulses having a pulse width of about one horizontal period to the gate lines 15.
The timing controller 11 receives digital video data RGB and timing signals Vsync, Hsync, DE and DCLK from an external system board. The timing signals include the vertical sync signal Vsync, the horizontal sync signal Hsync, the data enable signal DE and the dot clock signal DCLK. The timing controller 11 generates timing control signals DDC and GDC based on the timing signals Vsync, Hsync, DE and DCLK to control timings of the source driver 12 and the gate driver 13. The timing controller 11 supplies the video data RGB to the scanning backlight controller 23 and also supplies to the source driver 12 the video data R′G′B′ modulated by the scanning backlight controller 23. The timing controller 11 is capable of inserting an interpolation frame between the frames of the video data received at a frame frequency of 60 Hz, multiplying the source timing control signal DDC and the gate timing control signal GDC, and controlling the operations of the source driver 12 and the gate driver 13 at a frame frequency of 60×N Hz (where N is a positive integer equal to or greater than 2).
The backlight may be either a direct type or an edge type. The backlight illustrated in
The scanning backlight controller 23 controls the light sources 21 in a pulse width modulation (PWM) manner under the control of the timing controller 11 so that the light sources 21 are sequentially driven in the data scanning direction of the LCD panel 10. To do so, the scanning backlight controller 23 analyzes the input video data RGB, controls the duty ratio of a PWM signal according to results of the analysis, and adjusts a driving current of the light sources 21 by controlling the light source drivers 22. In addition, the scanning backlight controller 23 modulates the input video data RGB in order to compensate for a variation in the brightness or luminance of the backlight caused by the driving current of the light sources 21 and supplies the modulated video data R′G′B′ to the timing controller 11. It should be appreciated that the scanning backlight controller 23 may be embedded in the timing controller 11 in accordance with the principles of the present invention.
The light source drivers 22 sequentially drive the respective light sources 21 under the control of the scanning backlight controller 23, as illustrated in
Referring to
The data modulation unit 32 receives the gain value G from the input image analysis unit 31 and modulates the video data RGB input to the LCD panel 10 by, for example, expanding a dynamic range of the video data RGB. An upward modulation width of the data may increase as the gain value G from the input image analysis unit 31 increases, and a downward modulation width of the data may decrease as the gain value G decreases. The modulated video data R′G′B′ is controlled according to the driving current of the light source 21 so that the brightness or luminance of the LCD device does not change abruptly. The data modulation in the data modulation unit 32 may be implemented using a look-up table.
The duty generation unit 33 determines the duty ratio of the PWM signal based on the gain value G from the input image analysis unit 31. The duty ratio (%) of the PWM signal is determined in proportion to the gain value G.
The current control unit 34 outputs a current control signal A which varies in response to the duty ratio of the PWM signal from the duty generation unit 33. The current control signal A may be an analog signal or a digital signal.
The light source driver 22 includes a static current source 44, an input voltage controller 41, a switch element SW, an operational amplifier 42 and a transistor 43. The static current source 44 receives an input voltage (Vin) and generates a constant light source driving voltage (VLED). The input voltage controller 41 is electrically coupled between the output terminal of the static current source 44 and a ground voltage source. The input voltage controller 41 controls a discharge amount of the light source driving voltage (VLED) in response to the current control signal A. The input voltage controller 41 controls the light source driving voltage (VLED) in an inverse proportion to the duty ratio of the PWM signal, as shown in
The light source driving voltage (VLED) is supplied to the non-inverting input terminal of the operational amplifier 42 in response to the PWM signal through the switch element SW. The non-inverting input terminal of the operational amplifier 42 is electrically coupled to the output terminal of the switch element SW, and the inverting input terminal of the operational amplifier 42 is electrically coupled to the drain terminal of the transistor 43. The output terminal of the operational amplifier 42 is electrically coupled to the gate terminal of the transistor 43. The operational amplifier 42 controls a gate terminal voltage of the transistor 43 according to a feedback voltage from the drain terminal of the transistor 43.
The transistor 43 controls a driving current of the light source 21 under the control of the operational amplifier 42. When the light source 21 is implemented with an LED, the source terminal of the transistor 43 is electrically coupled to the anode electrode of the LED. A driving current (ILED) of the light source 21 is controlled in proportion to the light source driving voltage (VLED) that is controlled by the input voltage controller 41 and is also controlled in inverse proportion to the duty ratio of the PWM signal in accordance with Equation 1:
ILED=n×1/D (Equation 1)
wherein ‘D’ indicates the duty ratio (%) of the PWM signal, and ‘n’ is a constant.
As illustrated in
As described above, a driving current of the light sources increases as the turn-off time OFF of the light sources 21 are lengthened during a scanning backlight of an LCD device. As a result, a reduction in brightness or luminance of the LCD device caused by the scanning backlight is minimized, and an effective impulsive driving can be obtained.
It will be apparent to those skilled in the art that various modifications and variation can be made in the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2009-0095813 | Oct 2009 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
6445143 | Min | Sep 2002 | B1 |
6593709 | Lee et al. | Jul 2003 | B2 |
6812916 | Hwang | Nov 2004 | B2 |
7113158 | Fujiwara et al. | Sep 2006 | B1 |
7321206 | Kang et al. | Jan 2008 | B2 |
7323832 | Fukumoto | Jan 2008 | B2 |
7348959 | Kim | Mar 2008 | B2 |
7439945 | Awalt et al. | Oct 2008 | B1 |
7531971 | Weng | May 2009 | B2 |
7764266 | Ho et al. | Jul 2010 | B2 |
7781979 | Lys | Aug 2010 | B2 |
7903082 | Sakurai | Mar 2011 | B2 |
8110997 | Muramatsu | Feb 2012 | B2 |
20050001801 | Kim | Jan 2005 | A1 |
20050007325 | Kim et al. | Jan 2005 | A1 |
20050104837 | Baik et al. | May 2005 | A1 |
20060158393 | Fukumoto et al. | Jul 2006 | A1 |
20070018919 | Zavracky et al. | Jan 2007 | A1 |
20070216636 | Lo | Sep 2007 | A1 |
20080001911 | Kim | Jan 2008 | A1 |
20080042953 | De Haan et al. | Feb 2008 | A1 |
20080042968 | Oh | Feb 2008 | A1 |
20080231621 | Chang et al. | Sep 2008 | A1 |
20080290933 | Thandi et al. | Nov 2008 | A1 |
20090091265 | Song et al. | Apr 2009 | A1 |
20090091528 | Hong | Apr 2009 | A1 |
Number | Date | Country |
---|---|---|
2006189806 | Jul 2006 | JP |
20040107559 | Dec 2004 | KR |
20080017280 | Feb 2008 | KR |
Number | Date | Country | |
---|---|---|---|
20110084987 A1 | Apr 2011 | US |