1. Field of the Invention
The present invention relates to liquid-crystal display apparatuses, and more particularly, to liquid-crystal display apparatuses employing an active-matrix addressing method.
2. Description of the Related Art
In color liquid-crystal display (hereinafter called LCD in some cases) apparatuses which employ an active-matrix addressing method, a plurality of color pixels, each showing one color by combining a number of basic colors, are arranged in a matrix. The color pixels are matrix-addressed with scanning lines (gate buses) and signal lines (source buses).
A technology has been proposed for such LCD apparatuses, in which a combination of basic colors, such as the three primary colors, red (R), green (G), and blue (B), is repeatedly arranged in a direction along each signal line. The number of the signal lines is set to the number of the basic colors multiplied by the number of pixels in the direction along a signal line. The number of the basic colors is typically set to three. A scanning line method employing such a structure is generally referred to as a “tripled scanning line method.” In conjunction with tripled scanning line method, another method, referred to as 3:1 interlaced driving, is sometimes employed. In 3:1 interlaced driving, only one in every third line of a display is scanned at a time.
In a tripled scanning line method, the number of gate drivers is three times as large as that used in a conventional scanning line method. However, source drivers consume more power and are more expensive than the gate drivers. Therefore, the power consumption of using a tripled scanning line method is cut to one-third the power consumption of using a single scanning line method and the cost of the LCD apparatus is commensurately reduced.
The use of the 3:1 interlaced driving also reduces the power consumption of a LCD apparatus. In 3:1 interlaced driving, the frame frequency (frequency at which one entire screen is rewritten) is cut to one-third compared to using conventional interlaced driving.
There are some drawbacks, however, of using 3:1 interlaced driving methods. Due to the reduced frame frequency, for example, movement becomes less smooth in some cases when moving images are displayed. This display unevenness is referred to as “line crawling.”
In general, liquid-crystal polarity inversion driving methods include dot inversion methods, which emphasize image quality, and common inversion methods, which emphasize power reduction. Dot inversion methods reduce line crawling by reducing the distance D between lines when dots having the same primary color (such as G among R, G, and B) being driven by the same-polarity driving voltage are connected to each other. For example, in a LCD apparatus that has a viewing distance of 30 cm, the line distance D is preferably 260 μm or shorter. In this example, line crawling can be reduced when dot inversion driving is used,.
A system which employs the tripled scanning line method and interlaced driving, described above, is suited to portable terminals and other devices where power reduction and low cost are of concern but motion-image display performance is less of a concern. In such a system, it is preferred that the common inversion method be used since it is more effective for reducing power than the dot inversion method.
The use of common inversion driving, however, can be problematic in some cases when it is employed in conjunction with 3:1 interlaced driving and tripled-scanning-line-methods. For example, problems can occur if the distance D between a plurality of lines obtained when dots having the same basic color and being driven by the same-polarity driving voltage are connected to each other in their vicinities is 6P (where P indicates the pitch of color pixels each formed of three dots).
The color pixel pitch P is, for example, 127 μm at a pixel density of 200 pixel per inch (ppi), which is generally said to be a high definition. The corresponding line distance D is D=6P=762 μm. The line distance D is long enough to visually recognize line crawling. In a 3.5-inch QVGA (320 by 240 pixels) display unit, which is popular for current portable terminals, P is 223.5 μm and D=6P=1,341 μm, which will undoubtedly result in recognized line crawling. Conversely, to set the line distance D to 260 μm or shorter, the color pixel pitch needs to be 43 μm or less, which is currently difficult to produce in the making of high-pixel-density display units.
In other words, when common inversion driving is employed together with the conventional tripled-scanning line method, it is difficult to apply a sufficient countermeasure to line crawling.
When dot inversion driving is employed, which reduces line crawling, adjacent dots arranged in each row horizontally have opposite polarities as shown in
The present invention has been made to solve the foregoing issues. It is an object of the present invention to provide a liquid-crystal display apparatus having a good image quality by making use of a plural-fold scanning line method and by substantially reducing line crawling. Further, it is another object of the present invention to provide a liquid-crystal display apparatus having the above qualities and which is capable of reducing power consumption.
When common inversion driving is employed, the spatial frequency of flicker becomes low. As a countermeasure against line crawling caused by the reduced spatial frequency, a technology has been proposed in which the arrangement of R (red); G (green), and B (blue) color filters is changed from a horizontal stripe to a horizontal mosaic to make the spatial frequency of flicker higher, so that line crawling is difficult to visually recognize. With this technology, line crawling is reduced, but a black straight horizontal line has ridges and it is not visually recognized as a straight line.
The present invention has been made to solve the foregoing issue, and it is an object of the present invention to provide a liquid-crystal display apparatus having a low power consumption by the use of technologies such as common inversion driving and a plural-fold scanning line method, having line crawling (flicker) which is difficult to visually recognize, and having neither ridges nor steps on a black straight line.
The foregoing objects are achieved in a first aspect of the present invention by providing a liquid-crystal display apparatus characterized in that liquid crystal is sandwiched between a pair of substrates oppositely disposed, a plurality of signal lines and a plurality of scanning lines are provided in a matrix manner on one of the pair of substrates, and a plurality of pixels each having a plurality of different basic colors. Each pixel has the same number of dots as the number of the basic colors, enclosed by adjacent signal lines and adjacent scanning lines. Each dot has a switching device electrically connected to a scanning line and a signal line, and a first electrode electrically connected to the switching device. Each pixel is provided with the same number of second electrodes as the number of the basic colors, the second electrodes being formed on an insulation layer which covers the first electrodes and being electrically connected to the first electrodes through contact holes passing through the insulation layer. Each of the second electrodes is disposed over the same number of the first electrodes as the number of the basic colors. Each of the second electrodes is electrically connected to only one of the same number of the first electrodes as the number of the basic colors, and each of the first electrodes is electrically connected to only one of the second electrodes.
In the liquid-crystal display apparatus according to the first aspect of the present invention, since the first electrodes are electrically connected to the signal lines through the switching devices, and the first electrodes and the second electrodes disposed thereabove are electrically connected to the signal lines through the contact holes, image signals are written into the second electrodes from the first electrodes through the contact holes, and the second electrodes drive the liquid crystal. In other words, the second electrodes drive the liquid crystal to directly contribute to displaying. In this structure, when the positions where the contact holes are made are appropriately selected, second electrodes to which image signals are written at the same time by the same scanning line are selected, and basic colors written at the same time when interlaced driving is performed are selected. In other words, timing at which a signal is written into each dot and the planar arrangement of displayed basic colors can be independently determined. As a result, basic-color arrangement does not need to be a complicated arrangement, such as mosaic arrangement, and an effective countermeasure against line crawling can be applied. When non-interlaced (progressive) driving is performed, which does not cause line crawling, if second electrodes to which signals are written at the same time by the same scanning line are set to have the same basic color, it becomes easy to apply image processing such as image interpolation and contour emphasis.
In the liquid-crystal display apparatus according to the first aspect of the present invention, it is preferred that one frame be divided into at least the same number of fields as the number of the basic colors, interlaced driving be performed, and the rates of the basic colors corresponding to second electrodes to which signals are written in each field be substantially the same.
Since the basic structure according to the present invention described above has an increased effect on reducing line crawling, when the ratio of the interlaced scanning is increased to a level where line crawling is tolerable, and the frame frequency is reduced to a minimum level where line crawling is tolerable, a reduction in power consumption is made maximum. If color balance in one field brakes, flicker may be seen in the entire screen. This flicker in the entire screen can be prevented from occurring by making the rates of the basic colors corresponding to second electrodes to which signals are written in each field almost the same to hold color balance.
It is also preferred that the rates of the basic colors corresponding to second electrodes electrically connected to the same scanning line be almost the same. It is further preferred that the basic colors corresponding to adjacent second electrodes electrically connected to the same scanning line be different from each other.
With these structures, an enhanced effect on reducing line crawling is obtained. Especially, the latter structure is more preferred.
In the liquid-crystal display apparatus according to the first aspect of the present invention, it is preferred that common inversion driving be employed. In addition, it is preferred that the liquid-crystal display apparatus is a reflective liquid-crystal display apparatus.
With the user of common inversion driving, power saving, which is a feature obtained when a plural-fold scanning-line method and interlaced driving are used, is further enhanced. In a reflective liquid-crystal display apparatus, since a backlight is not required, power saving is promoted. These structures are very suitable for portable terminals and others.
It is preferred that the basic colors are three primary colors, red, green, and blue.
With this structure, color reproduction is enhanced with the least necessary number of basic colors.
It is preferred that the basic colors be arranged in a stripe manner.
With this structure, no adverse effects are obtained on displaying. A horizontal or vertical straight line does not have ridges, and a displayed pattern does not have subtle coloring at ends. The structure is suited to display on the screen of a personal computer.
The foregoing objects are achieved in a second aspect of the present invention through the provision of a liquid-crystal display apparatus characterized in that liquid crystal is sandwiched between a pair of substrates oppositely disposed, a plurality of signal lines and a plurality of scanning lines are provided in a matrix manner on one of the pair of substrates, and a plurality of pixels each having a plurality of different basic colors is provided; each pixel has the same number of dots as the number of the basic colors, enclosed by adjacent signal lines and adjacent scanning lines, and each dot has a switching device electrically connected to a scanning line and a signal line, and a first electrode electrically connected to the switching device; each pixel is provided with the same number of second electrodes as the number of the basic colors, the second electrodes being formed on an insulation layer which covers the first electrodes and being electrically connected to the first electrodes through contact holes passing through the insulation layer, each of the second electrodes is disposed over the same number of the first electrodes as the number of the basic colors, each of the second electrodes is electrically connected to only one of the same number of the first electrodes as the number of the basic colors, and each of the first electrodes is electrically connected to only one of the second electrodes; and the switching devices and the second electrodes are not stacked over one another in the process layer stack of the apparatus.
In the liquid-crystal display apparatus according to the first aspect of the present invention, among second electrodes, some second electrodes overlap with switching devices vertically. At some positions, switching devices exist below second electrodes. Therefore, the capacitances of the parasitic capacitors formed between second electrodes and switching devices vary among the second electrodes. Consequently, the offset voltage varies among a plurality of second electrodes. The dispersion of the offset voltage does not cause a large problem when the apparatus is designed such that the permittivity of an inter-layer insulation film formed between the second electrodes and the switching devices is reduced or the film thickness is thickened to reduce the capacitances of the parasitic capacitors to suppress the absolute value of the dispersion of the capacitors of the parasitic capacitors, or such that the capacitance of a holding capacitor is increases to make the absolute value of the dispersion of the capacitances of the parasitic capacitors fall in a tolerable range for the capacitance of the holding capacitor. When an attempt is made to increase a pixel density, however, it is difficult to have the above-described design conditions. In some cases, flicker or burning occurs.
In the liquid-crystal display apparatus according to the second aspect of the present invention, since the switching devices and the second electrodes are disposed so as not to overlap vertically, the capacitances of the parasitic capacitors formed by the second electrodes and the switching devices are reduced, and the dispersion of the offset voltages for the plurality of second electrodes is reduced. As a result, display problems such as flicker and burning are alleviated while design flexibility is maintained. Specific example liquid-crystal display apparatuses in applications already filed and specific example liquid-crystal display apparatuses according to the present invention will be described in Description of the Preferred Embodiments.
The foregoing objects are achieved in a third aspect of the present invention through the provision of a liquid-crystal display apparatus characterized in that liquid crystal is sandwiched between a pair of substrates oppositely disposed, a plurality of signal lines and a plurality of scanning lines are provided in a matrix manner on one of the pair of substrates, and a plurality of pixels each having a plurality of different basic colors is provided; each pixel has the same number of dots as the number of the basic colors, enclosed by adjacent signal lines and adjacent scanning lines, and each dot has a switching device electrically connected to a scanning line and a signal line, and a first electrode electrically connected to the switching device; each pixel is provided with the same number of second electrodes as the number of the basic colors, the second electrodes being formed on an insulation layer which covers the first electrodes and being electrically connected to the first electrodes through contact holes passing through the insulation layer, each of the second electrodes is disposed over the same number of the first electrodes as the number of the basic colors, each of the second electrodes is electrically connected to only one of the same number of the first electrodes as the number of the basic colors, and each of the first electrodes is electrically connected to only one of the second electrodes; and in each pixel, at least one of a plurality of switching devices and one of the plurality of second electrodes are disposed so as to overlap vertically, and the number of switching devices which overlap with each second electrode is the same for all the second electrodes.
The liquid-crystal display apparatus according to the third aspect of the present invention differs from the liquid-crystal display apparatus according to the second aspect of the present invention in that one of the plurality of switching devices and one of the plurality of second electrodes overlap vertically in each pixel. Since the number of switching devices which overlap with each second electrode is the same for all second electrodes, the dispersion of the capacitances of the parasitic capacitors formed by the second electrodes and the switching devices is suppressed, and hence, the dispersion of the offset voltages is also suppressed. As a result, the same advantages as in the liquid-crystal display apparatus according to the second aspect of the present invention are obtained, in which display problems such as flicker and burning are alleviated while design flexibility is maintained.
Since it is necessary to arrange the switching devices and the second electrodes so as not to overlap with each other in the liquid-crystal display apparatus according to the second aspect of the present invention, the distance between adjacent second electrodes varies between areas where switching devices exist and areas where no switching devices exist, which means there are color areas having a long distance and color areas having a short distance. As a result, interference with threads of a light guide plate causes moiré in cases such as a case in which a front light is placed on the upper surface of the liquid-crystal display apparatus to make the apparatus have an unattractive appearance. In addition, since places where switching devices are disposed cannot contribute to displaying, an area (aperture ratio) for display becomes small, and an image is darkened. Contrarily, in the liquid-crystal display apparatus according to the third aspect of the present invention, since the structure is used in which the switching devices and the second electrodes overlap, the portions sandwiched by the second electrodes, which cannot be used for display, can be narrowed to have the same width. Therefore, an attractive-looking, bright image can be displayed.
It is preferred that the signal lines in the liquid-crystal display apparatus according to the third aspect of the present invention have, for example, one of the following three forms.
(1) In each dot, a signal sub-line branched from each signal line and extending to an end of the dot in the direction in which the scanning lines are extended is provided, and the switching device provided for the dot is electrically connected to the signal sub-line.
With this structure, since all the second electrodes have almost the same area where each second electrode overlap with the signal sub-line, the dispersion of the capacitances of the parasitic capacitors are further suppressed to improve display quality more.
(2) In each pixel, a signal sub-line extending over a plurality of dots in the pixel like stairs is provided, and a plurality of switching devices provided for the pixel is electrically connected to the signal sub-line.
Also with this structure, in the same way as described above, since all the second electrodes have almost the same area where each second electrode overlap with the signal sub-line, the dispersion of the capacitances of the parasitic capacitors are further suppressed to improve display quality more. In addition, with the present structure, the area where each second electrode overlap with the signal sub-line is made smaller than in the above-described structure because the signal sub-line has a shape like stairs. Therefore, the absolute values of the capacitances of the parasitic capacitors is further reduced.
(3) The same number of signal lines as the number of the basic colors are provided in parallel, the signal lines corresponding to the same number of dots as the number of the basic colors, which constitute one pixel, and ends of the same number of signal lines as the basic colors are electrically connected. In other words, the signal line corresponding to one pixel is divided at its root into the same number of lines as the number of the basic colors.
With this structure, all parasitic capacitors related to the second electrodes, including not only those caused by the switching devices and signal sub-line but also those formed by the signal main lines and the second electrodes, are made to have the same capacitance. Therefore, the dispersion of the capacitances of the parasitic capacitors is minimum among the three forms of the signal line.
The foregoing objects are achieved in a fourth aspect of the present invention through the provision of a liquid-crystal display apparatus characterized in that liquid crystal is sandwiched between a pair of substrates oppositely disposed, a plurality of signal lines and a plurality of scanning lines are provided on one of the pair of substrates, the plurality of scanning lines is divided into a plurality of scanning-line groups each formed of a plurality of scanning lines, and a plurality of pixels each having a plurality of different basic colors is provided; each pixel has the same number of dots as the number of the basic colors, enclosed by adjacent signal lines and adjacent scanning lines, and each dot has a thin-film transistor driven by one of the signal lines and a plurality of scanning lines constituting a scanning-line group, a dot electrode electrically connected to the thin-film transistor, and a selection circuit having a plurality of inputs and one output, connected between the thin-film transistor and the scanning-line group; the plurality of inputs of the selection circuit are respectively connected to different scanning lines of the plurality of scanning lines constituting the scanning-line group, and the output of the selection circuit is connected to the gate electrode of the thin-film transistor; and the thin-film transistor of one dot and the thin-film transistor of a dot adjacent thereto are scanned in different periods.
The foregoing objects are achieved in a fifth aspect of the present invention through the provision of a liquid-crystal display apparatus characterized in that liquid crystal is sandwiched between a pair of substrates oppositely disposed, a plurality of signal lines and a plurality of scanning lines are provided on one of the pair of substrates, the plurality of scanning lines is divided into a plurality of scanning-line groups each formed of a plurality of scanning lines, and a plurality of pixels each having a plurality of different basic colors is provided; each pixel has the same number of dots as the number of the basic colors, enclosed by adjacent signal lines and adjacent scanning lines, and each dot has a thin-film-transistor set driven by one of the signal lines and one of a plurality of scanning lines constituting a scanning-line group, and a dot electrode electrically connected to the thin-film-transistor set; the thin-film-transistor set in each dot includes a plurality of thin-film transistors connected in series between the signal line and the dot electrode, the number of the plurality of thin-film transistors being smaller than the number of scanning lines constituting a scanning-line group, the gate electrodes of the plurality of thin-film transistors are respectively connected to different scanning lines of the plurality of scanning lines constituting the scanning-line group, and a combination of the connections between the gate electrodes of the plurality of thin-film transistors and the plurality of scanning lines constituting the scanning-line group differs between adjacent dots; and the thin-film transistor of one dot and the thin-film transistor of a dot adjacent thereto are scanned in different periods.
The foregoing objects are achieved in a sixth aspect of the present invention through the provision of a liquid-crystal display apparatus characterized in that liquid crystal is sandwiched between a pair of substrates oppositely disposed, a plurality of signal lines and a plurality of scanning lines are provided on one of the pair of substrates, and a plurality of pixels each having a plurality of different basic colors is provided; each pixel has the same number of dots as the number of the basic colors, enclosed by signal lines and scanning lines, and each dot has a thin-film transistor driven by one of the signal lines and one of the scanning lines, and a dot electrode electrically connected to the thin-film transistor; each scanning line has a each scanning line has section that runs parallel to the signal lines; and the thin-film transistor of one dot and the thin-film transistor of a dot adjacent thereto are scanned in different periods.
The foregoing objects are achieved in a seventh aspect of the present invention through the provision of a liquid-crystal display apparatus characterized in that liquid crystal is sandwiched between a pair of substrates oppositely disposed, a plurality of signal lines and a plurality of scanning lines are provided on one of the pair of substrates, the plurality of scanning lines is divided into a plurality of scanning-line groups each formed of a plurality of scanning lines, and a plurality of pixels each having a plurality of different basic colors is provided; each pixel has the same number of dots as the number of the basic colors, enclosed by adjacent signal lines and adjacent scanning lines, and each dot has a thin-film transistor driven by one of the signal lines and one of a plurality of scanning lines constituting a scanning-line group, and a dot electrode electrically connected to the thin-film transistor; among the plurality of scanning lines constituting a scanning-line group, the thin-film transistor of one dot and the thin-film transistor of a dot adjacent thereto are connected to different scanning lines, and each scanning line constituting a scanning-line group is electrically connected to the corresponding scanning lines in the plurality of scanning-line groups; and the thin-film transistor of one dot and the thin-film transistor of a dot adjacent thereto are scanned in different periods.
The liquid-crystal display apparatuses according to the fourth to seventh aspects of the present invention are so called multiple-fold scanning-line method liquid-crystal display apparatuses, in which a plurality of signal lines and a plurality of scanning lines are provided on one of a pair of substrates, and each pixel has the same number of dots as the number of basic colors, the dots being enclosed by adjacent signal lines and adjacent scanning lines (or scanning-line groups). A feature common to the liquid-crystal display apparatuses according to the first to fourth aspects of the present invention is a structure in which the thin-film transistor (TFT) of a dot constituting a pixel and the TFT of a dot adjacent thereto are scanned in different periods, although their specific structures differ. In the above description, “a dot adjacent thereto” means that a dot adjacent thereto in any direction, to the right, left, up, or down.
In conventional general active-matrix liquid-crystal display apparatuses, when the common inversion driving method is employed, horizontal line inversion is required. According to a structure of the present invention, since the TFTs of adjacent dots are scanning in different periods, even if common inversion driving is used, adjacent dots are made to have polarities reverse to each other, and the same result as that obtained by dot inversion driving is obtained. Therefore, the time frequency of flicker is made larger than in conventional cases because dot inversion is virtually implemented while the multiple-fold scanning-line method and common inversion driving are employed to save power consumption, and line crawling (flicker) is made difficult to visually recognize. In addition, a black straight line is displayed without ridges and steps at high quality because the colors R, G, and B are arranged in a horizontal stripe manner.
Differences among the liquid-crystal display apparatuses according to the fourth to seventh aspects of the present invention will be described below.
In the liquid-crystal display apparatuses according to the fourth and fifth aspects, selection circuits or TFTs used for scanning the TFTs of adjacent dots in different periods are added in each dot to a general structure of an active-matrix substrate.
The liquid-crystal display apparatus according to the fourth aspect uses selection circuits. The selection circuits are mounted in a pixel layout area, so that the number of scanning lines within the one substrate (TFT array substrate) does not need to be increased greatly. On the other hand, the liquid-crystal display apparatus according to the fifth aspect uses TFTs connected in series. With this structure, complicated selection circuits do not need to be added, and the TFTs are just added. Since the off resistance of the TFTs is higher than that of a TFT, the voltage applied to a dot electrode is maintained more stably.
The liquid-crystal display apparatuses according to the sixth and seventh aspects have a structure in which wiring of scanning lines is modified or the number of scanning lines is increased to drive the TFTs of adjacent dots by different scanning lines to scan the TFTs of the adjacent dots in different periods. With these structures, the TFTs of adjacent dots are scanned in different periods without adding active devices, which may cause a shift in a threshold voltage and a reduction in reliability.
The liquid-crystal display apparatus according to the sixth aspect is implemented by the minimum number of scanning lines and the minimum number of devices. In the apparatus, each scanning line weaves through pixel electrodes so as to have portions that run parallel to the signal lines. The liquid-crystal display apparatus according to the fourth aspect has an increased number of scanning lines, and has a smaller number of the intersections of wires as the liquid-crystal display apparatus according to the third aspect. Therefore, the occurrence probability of defects caused by short-circuits at wire intersections is reduced.
It is preferred in the structure of the liquid-crystal display apparatus according to the fourth aspect that each scanning-line group be formed of two scanning lines, and each selection circuit have two inputs and one output.
With this structure, the advantages of the liquid-crystal display apparatus according to the fourth aspect are obtained by the minimum number of scanning lines and the minimum number of selection circuits.
It is preferred in the structure of the liquid-crystal display apparatus according to the fifth aspect that each scanning-line group be formed of three scanning lines, and two TFTs connected in series are used.
With this structure, the advantages of the liquid-crystal display apparatus according to the fifth aspect are obtained by the minimum number of scanning lines and the minimum number of TFTs.
It is preferred in the structure of the liquid-crystal display apparatus according to the seventh aspect that each scanning-line group be formed of three scanning lines, and the corresponding scanning lines of the three scanning-line groups are electrically connected.
With this structure, in addition to the advantages of the liquid-crystal display apparatus according to the seventh aspect, an advantage is obtained in which R, G, and B image signals can be collectively handled. Therefore, the image signals can be easily handled.
As described above in detail, according to a structure of the present invention, a liquid-crystal display apparatus having a good image quality is obtained by making a good use of a plural-fold scanning line method and by sufficiently reducing line crawling, and power saving is also achieved at the same time. Further, the dispersion of the capacitances of parasitic capacitors formed by second electrodes and switching devices is suppressed, and hence, the dispersion of offset voltages is suppressed. Therefore, display problems such as flicker and burning are alleviated while design flexibility is maintained.
In addition, a black straight line is displayed without ridges and steps at high quality.
A liquid-crystal display apparatus according to a first embodiment of the present invention will be described below by referring to
The liquid-crystal display apparatus of the present embodiment is an active-matrix liquid-crystal display apparatus in which liquid crystal is sandwiched by an active-matrix-substrate and an opposing substrate disposed oppositely. On the active-matrix substrate, a plurality of signal lines and a plurality of scanning lines are provided in a checker-pattern manner, and a great number of color pixels each having three basic colors, R, G, and B are provided in a matrix manner.
It can be appreciated to those skilled in the art that “basic colors” can include any basic color models suitable for displaying colors on a liquid-crystal display. That is, the current invention is not limited to the use of primary colors (red (R), green (g) and blue (b)) and other basic color models such as CYMK or other color models may be employed.
Further, an insulation layer (not shown) which covers the dot electrodes 6A, 6B, and 6C is provided. As shown in
The R, G, and B colored layers (not shown) of a color filter are provided corresponding to the display electrodes 8R, 8G, and 8B. For example, the display electrode 8R, disposed at the left-hand side of each color pixel 1 corresponds to red (R), the display electrode 8G, disposed at the center, corresponds to green (G), and the display electrode 8B, disposed at the right-hand side, corresponds to blue (B). The colored layers are arranged periodically through a plurality of color pixels 1, and the arrangement in the entire color filter forms a so-called vertical stripe.
The arrangement of the contact holes 7 differ between color pixels 1. In other words, the connections between the dot electrodes and the display electrodes differ between color pixels 1. For example, referring to the upper left-hand-side pixel 1 of
Contact holes 7 in color pixels 1 (not shown) further disposed horizontally in the first row are arranged repeatedly by the pattern used in the above three color pixels. The arrangement of contact holes in each color pixel in a second row is the same as that in the first row. In other words, the same pattern is repeated when color pixels are viewed vertically.
It is understood from the above that the positions of the contact holes 7 determine the display electrodes 8R, 8G, and 8B into which image signals are written at the same time by the same scanning lines 3A, 3B, and 3C, and the colors R, G, and B corresponding to the display electrodes 8R, 8G, and 8B. For Example, in the case shown in
In the present embodiment, as described above, the interval D is much smaller than 6P (see
A liquid-crystal display apparatus according to a second embodiment of the present invention will be described below by referring to
In the first embodiment, 3:1 interlaced common-inversion driving is used. In the present embodiment, 4:1 interlaced common-inversion driving is performed. Since the basic structure of the liquid-crystal display apparatus is the same as in the first embodiment, a description thereof is omitted.
A liquid-crystal display apparatus according to a third embodiment of the present invention will be described below by referring to
In the present embodiment, 5:1 interlaced common-inversion driving is performed. Since the basic structure of the liquid-crystal display apparatus is the same as in the first embodiment, a description thereof is omitted.
A liquid-crystal display apparatus according to a fourth embodiment of the present invention will be described below by referring to
In the present embodiment, 6:1 interlaced common-inversion driving is performed. Since the basic structure of the liquid-crystal display apparatus is the same as in the first embodiment, a description thereof is omitted.
The minimum line intervals D in the first to fourth embodiments will be summarized below. The interval D is 1.7P (when P is 90 μm, D is 153 μm) in 3:1 interlaced driving, the interval D is 2.55P (when P is 90 μm, D is 230 μm) in 4:1 interlaced driving, the interval D is 2.8P (when P is 90 μm, D is 252 μm) in 5:1 interlaced driving, and the interval D is 2.4P (when P is 90 μm, D is 216 μm) in 6:1 interlaced driving. In all of the above cases, D is shorter than 260 μm at a color-pixel pitch P of 90 μm (280 ppi), which means that line crawling can be improved to a desirable level. Contrarily, even at such a minute color-pixel pitch, D=6P is 540 μm in common inversion driving at the conventional structure, which is not practical.
A liquid-crystal display apparatus according to a fifth embodiment of the present invention will be described below by referring to
Since the basic structure of the liquid-crystal display apparatus is the same as in the first embodiment, a description thereof is omitted.
In the present embodiment, switching devices 5 and display electrodes 8R, 8G, and 8B do not overlap with each other vertically in the process layer stack of the apparatus. Therefore, the switching devices 5 are covered by an insulation layer, but the display electrodes 8R, 8G, and 8B are not disposed above the switching devices 5.
In the liquid-crystal display apparatus shown in the first embodiment, the switching devices 5 and a part of the display electrodes overlap vertically in the process layer stack of the apparatus. Whereas switching devices 5 and all display electrodes 8R corresponding to R (red) overlap, switching device 5 and all display electrodes 8G and 8B corresponding to G (green) and B (blue) do not overlap. In such a structure, since parasitic capacitors generated by the display electrodes 8R, 8G, and 8B and the switching devices 5 do not have the same capacitance between those corresponding to the display electrodes 8R and those corresponding to the display electrodes 8G and 8B, the offset voltages vary, and display problems such as flicker and burning occur in some cases.
Contrarily, in the liquid-crystal display apparatus according to the present embodiment, the switching devices 5 and the display electrodes 8R, 8G, and 8B do not overlap vertically in the process layer stack, as shown in
A liquid-crystal display apparatus according to a sixth embodiment of the present invention will be described below by referring to
The basic structure of the liquid-crystal display apparatus according to the present embodiment is almost the same as in the fifth embodiment.
Whereas all the switching devices 5 and any display electrodes 8R, 8G, and 8B do not overlap with each other vertically in the process layer stack in the liquid-crystal display apparatus according to the fifth embodiment, three switching devices 5A, 5B, and 5C in one color pixel 1 and three display electrodes 8R, 8G, and 8B in the color pixel 1 overlap vertically in the process layer stack, respectively, in the liquid-crystal display apparatus according to the present embodiment, as shown in
In a lower-layer structure, as shown in
Unlike the liquid-crystal display apparatus according to the fifth embodiment, the liquid crystal display apparatus according to the present-embodiment has a structure in which the switching devices 5A, 5B, and 5C and the display electrodes 8R, 8G, and 8B overlap vertically in the process layer stack. Since the numbers of the switching devices 5A, 5B, and 5C which overlap with the display electrodes 8R, 8G, and 8B are equal for all the display electrodes 8R, 8G, and 8B, however, the dispersion of the capacitances of the parasitic capacitors formed by the display electrodes 8R, 8G, and 8B and the switching devices 5A, 5B, and 5C are suppressed, and the dispersion of the offset voltage is also suppressed. As a result, the same advantage as that in the fifth embodiment is obtained, in which display problems such as flicker and burning are alleviated while design flexibility is maintained.
Since it is required in the fifth embodiment to arrange the switching devices 5 and the display electrodes 8R, 8G, and 8B so as not to overlap with each other, the distances between the adjacent display electrodes 8R, 8G, and 8B differ between a location where there is no switching device 5 and a location where there is a switching device 5. For example, the distance between the display electrode 8R and the display electrode 8G and the distance between the display electrode 8G and the display electrode 8B are short whereas the distance between the display electrode 8B and the display electrode 8R is long. As a result, interference with threads of a light guide plate causes moiré in cases such as a case in which a front light is placed on the upper surface of the liquid-crystal display apparatus, and problems such as unattractive appearance occur. In addition, since a black matrix is usually disposed at a position where a switching device 5 is disposed, the position cannot be used for display, an area (aperture ratio) for display becomes small, and an image is darkened. Contrarily, in the liquid crystal display apparatus according to the present embodiment, since the structure is used in which the switching devices 5 and the display electrodes 8R, 8G, and 8B overlap, the portions sandwiched by the display electrodes 8R, 8G, and 8B, which cannot be used for display, can be narrowed to have the same width irrespective of their positions. Therefore, an attractive-looking, bright image can be displayed.
A liquid-crystal display apparatus according to a seventh embodiment of the present invention will be described below by referring to
The basic structure of the liquid-crystal display apparatus according to the present embodiment is almost the same as in the fifth and sixth embodiments.
Whereas all the switching devices 5 and any display electrodes 8R, 8G, and 8B do not overlap with each other vertically in the process layer stack in the liquid-crystal display apparatus according to the fifth embodiment, three switching devices 5A, 5B, and 5C in one color pixel 1 and three display electrodes 8R, 8G, and 8B in the color pixel 1 overlap vertically in the process layer stack, respectively, in the liquid-crystal display apparatus according to the present embodiment in the same way as in the sixth embodiment, as shown in
The liquid-crystal display apparatus according to the present embodiment differs from the liquid-crystal display apparatus according to the sixth embodiment in that the orientation of the switching devices is rotated by 90 degrees. More specifically, whereas the direction in which the sources, gates, and drains of the TFTs serving as the switching devices 5A, 5B, and 5C are arranged is the direction in which the scanning lines 3A, 3B, and 3C are extended in the sixth embodiment, the direction in which the sources, gates, and drains of the TFTs are arranged is the direction in which the signal line 2 is extended in the present embodiment, as shown in
The liquid-crystal display apparatus according to the present embodiment also has a structure in which the numbers of the switching devices 5A, 5B, and 5C Which overlap with the display electrodes 8R, 8G, and 8B are equal for all of the display electrodes 8R, 8G, and 8B, the dispersion of the capacitances of the parasitic capacitors formed by the display electrodes 8R, 8G, and 8B and the switching devices 5A, 5B, and 5C are suppressed, and therefore, the dispersion of the offset voltage is also suppressed. As a result, the same advantage as that in the sixth embodiment is obtained, in which display problems such as flicker and burning are alleviated while design flexibility is maintained.
Since the lengths of the signal sub-lines 12A, 12B, and 12C differ depending on the dots 4A, 4B, and 4C in the sixth embodiment, the capacitances of the parasitic capacitors formed by the display electrodes 8R, 8G, and 8B and the signal sub-lines 12A, 12B, and 12C differ depending on the dots 4A, 4B, and 4C. Contrarily, in the present embodiment, the lengths of the signal sub-lines 12A, 12B, and 12C are equal in all of the dots 4A, 4B, and 4C, and the areas where the display electrodes 8R, 8G, and 8B and the signal sub-lines 12A, 12B, and 12C overlap are equal for all of the dots 4A, 4B, and 4C. Therefore, the dispersion of the capacitances of the parasitic capacitors can be further suppressed to further improve display quality.
A liquid-crystal display apparatus according to an eighth embodiment of the present invention will be described below by referring to
The basic structure of the liquid-crystal display apparatus according to the present embodiment is almost the same as in the fifth to seventh embodiments.
In the liquid-crystal display apparatus according to the present embodiment, in the same way as in the sixth and seventh embodiments, three switching devices 5A, 5B, and 5C in one color pixel 1 and three display electrodes 8R, 8G, and 8B in the color pixel 1 overlap vertically in the process layer stack, respectively, as shown in
The liquid-crystal display apparatus according to the present embodiment differs from the liquid-crystal display apparatus according to the seventh embodiment in that, whereas the signal sub-lines 12A, 12B, and 12C are provided in the dots 4A, 4B, and 4C, one for each, and are extended to ends of the dots in the direction in which the scanning lines 3A, 3B, and 3C are extended in the seventh embodiment, as shown in
Since the liquid-crystal display apparatus according to the present embodiment also has a structure in which the numbers of the switching devices 5A, 5B, and 5C which overlap with the display electrodes 8R, 8G, and 8B are equal for all of the display electrodes 8R, 8G, and 8B, the dispersion of the capacitances of the parasitic capacitors formed by the display electrodes 8R, 8G, and 8B and the switching devices 5A, 5B, and 5C are suppressed, and therefore, the dispersion of the offset voltage is also suppressed. As a result, the same advantage as that in the sixth and seventh embodiments is obtained, in which display problems such as flicker and burning are alleviated while design flexibility is maintained.
Whereas the three signal sub-lines 12A, 12B, and 12C intersect with each of the display electrodes 8R, 8G, and 8B in the seventh embodiment, only the one signal sub-line 120 intersects with each of the display electrodes 8R, 8G, and 8B in the present embodiment because the one signal sub-line 120 has a stairs shape. Therefore, the area where the signal sub-line 120 and the display electrodes 8R, 8G, and 8B overlap is reduced, compared with the seventh embodiment. Not only the dispersion of the capacitances of the parasitic capacitors but also the capacitances themselves can be reduced. A driving circuit can be designed simply, flicker and burning are suppressed, and cross talk is also suppressed.
A liquid-crystal display apparatus according to a ninth embodiment of the present invention will be described below by referring to
The basic structure of the liquid-crystal display apparatus according to the present embodiment is almost the same as in the fifth to eighth embodiments.
The liquid-crystal display apparatus according to the present embodiment has, as shown in
The liquid-crystal display apparatus according to the present embodiment differs from the liquid-crystal display apparatus according to the sixth embodiment in terms of the structure of signal lines 2. The signal sub-lines 12A, 12B, and 12C branched from a signal line 2 and having different lengths are provided in dots 4A, 4B, and 4C, as shown in
Since the liquid-crystal display apparatus according to the present embodiment also has a structure in which the numbers of the switching devices 5A, 5B, and 5C which overlap with the display electrodes 8R, 8G, and 8B are equal for all of the display electrodes 8R, 8G, and 8B, the dispersion of the capacitances of the parasitic capacitors formed by the display electrodes 8R, 8G, and 8B and the switching devices 5A, 5B, and 5C are suppressed, and therefore, the dispersion of the offset voltage is also suppressed. As a result, the same advantage as that in the sixth to eighth embodiments is obtained, in which display problems such as flicker and burning are alleviated while design flexibility is maintained. In addition, according to the structure of the present embodiment, the capacitances of parasitic capacitors which include not only those formed between the switching devices 5A, 5B, and 5C and the signal sub-lines, and the display electrodes 8R, 8G, and 8B but also those formed between the signal lines 2R, 2G, and 2B and the display electrodes 8R, 8G, and 8B are made equal. The dispersion of the capacitances of the parasitic capacitors is reduced to the minimum among all embodiments to improve display quality.
A liquid-crystal display apparatus according to a tenth embodiment of the present invention will be described below by referring to
As shown in
Each dot includes a TFT 11 driven by one of the signal lines S1, S2, . . . and the plurality of scanning lines Ga0, Ga1, Gb0, Gb1, Gc0, Gc1, . . . constituting one set of scanning-line groups Ga, Gb, and Gc; and a dot electrode 12 electrically connected to the TFT 11. In this TFT array substrate, one pixel 10 is formed of three dots vertically arranged and corresponding to the R, G, and B basic colors, among the dots R(1) to R(3), G(1) to G(3), and B(1) to B(3). The TFT array substrate is used by the tripled scanning line method.
Selection circuits 13 each having two inputs and one output are provided between the TFTs 11 and one set of scanning-line groups Ga, Gb, and Gc corresponding to the dots R(1) to R(3), G(1) to G(3), and B(1) to B(3), each set of dots arranged in line horizontally. The two inputs of a selection circuit 13 are connected to different scanning lines among the pairs of scanning lines Ga0, Ga1, Gb0, Gb1, Gc0, and Gc1 constituting one set of scanning-line groups Ga, Gb, and Gc, and the output of the selection circuit 13 is connected to the gate electrode of the corresponding TFT 11. In the present embodiment, specifically, the selection circuits 13 are formed of NAND logical circuits. For example, selection circuits 13a shown in
In the three scanning-line groups Ga, Gb, and Gc shown in
For example, among the dots R(1), R(2), and R(3) arranged horizontally in the uppermost row in
With the above-described structure, the TFT 11 of one of the dots R(1) to R(3), G(1) to G(3), and B(1) to B(3) is scanned at a period different from that for the TFT 11 of a dot adjacent to the one dot in the liquid-crystal display apparatus according to the present embodiment. This point will be described below by referring to
As described above, for example, since signals G1_SEL0 and G1_SEL1 are input as they are into the selection circuits 13 of the dots R(1), G(1), and B(1) having (1), the TFTs 11 are on only when signals G1_SEL0 and G1_SEL1 are both high, and are off in the other cases. Since signal G1_SEL1 and the signal obtained by inverting the polarity of signal G1_SEL0 are input to the selection circuits 13 of the dots R(2), G(2), and B(2) having (2), the TFTs 11 are on only when signal G1_SEL0 is low and signal G1_SEL1 is high, and are off in the other cases. Since signal G1_SEL0 and the signal obtained by inverting the polarity of signal G1_SEL1 are input to the selection circuits 13 of the dots R(3), G(3), and B(3) having (3), the TFTs 11 are on only when signal G1_SEL0 is high and signal G1_SEL1 is low, and are off in the other cases.
Therefore, when signals G1_SEL0 and G1_SEL1 are both high, the TFTs 11 of the dots R(1), G(1), and B(1) are turned on and image signals are written. When signal G1_SEL0 is low and signal G1_SEL1 is high, the TFTs 11 of the dots R(2), G(2), and B(2) are turned on and image signals are written. When signal G1_SEL0 is high and signal G1_SEL1 is low, the TFTs 11 of the dots R(3), G(3), and B(3) are turned on and image signals are written. Consequently, signals are written into the entire screen in three scanning periods. In the present embodiment, the TFTs of adjacent dots are scanned at different periods in this way.
According to the liquid-crystal display apparatus according to the present embodiment, since the TFTs 11 of adjacent dots are scanned at different periods, driving is achieved such that adjacent dots have different polarities even with the common inversion driving method. As a result, dot inversion driving is implemented. Therefore, while the tripled scanning line method and the common inversion driving method are employed to reduce power consumption, dot inversion driving is achieved in terms of display. Consequently, the time frequency of flicker is made larger than in conventional cases, and line crawling (flicker) is made difficult to visually recognize. In addition, a black straight line is displayed without ridges and steps at high quality.
Especially in the present embodiment, since the selection circuits 13 are located in pixel areas, the number of scanning lines in the TFT array substrate does not need to be increased greatly. Further, since a pair of scanning lines is used as a set, and the selection circuits each having two inputs and one output are employed, the above-described advantages are obtained with the minimum number of scanning lines and the minimum number of selection circuits. The scale of the selection circuits is also reduced.
A liquid-crystal display apparatus according to an eleventh embodiment of the present invention will be described below by referring to
As shown in
In each of the dots R(1) to R(3), G(1) to G(3), and B(1) to B(3), a dot electrode 12 and TFTs for writing an image signal into the dot electrode 12 are provided. The TFTs are two (less than the number (three in the present embodiment) of scanning lines which constitute a scanning-line group) TFTs 15 and 16 connected in series between the signal line and the dot electrode. The gate electrodes of the two TFTs 15 and 16 in each of the dots R(1) to R(3), G(1) to G(3), and B(1) to B(3) are connected to different scanning lines among three scanning lines Ga0 to Ga2, Gb0 to Gb2, or Gc0 to Gc2 constituting scanning-line groups Ga, Gb, or Gc. The connections between the gate electrodes of the two TFTs 15 and 16 and the three scanning lines Ga0 to Ga2, Gb0 to Gb2, or Gc0 to Gc2 differ between adjacent dots.
For example, among the dots R(1), R(2), and R(3) arranged horizontally in the uppermost row in
With the above-described structure, the TFTs 15 and 16 of one dot are scanned at periods different from those for the TFTs 15 and 16 of a dot adjacent to the one dot in the liquid-crystal display apparatus according to the present embodiment. This point will be described below by referring to
Therefore, when signal G1_SEL0 is high, signal G1_SEL1 is high, and signal G1_SEL2 is low, the dots R(1), G(1), and B(1) having (1) are turned on and image signals are written; the dots R(2), G(2), and B(2) having (2) are off; and the dots R(3), G(3), and B(3) having (3) are off. When signal G1_SEL0 is low, signal G1_SEL1 is high, and signal G1_SEL2 is high, the dots R(2), G(2), and B(2) having (2) are turned on and image signals are written; the dots R(1), G(1), and B(1) having (1) are off; and the dots R(3), G(3), and B(3) having (3) are off. When signal G1_SEL0 is high, signal G1_SEL1 is low, and signal G1_SEL2 is high, the dots R(3), G(3), and B(3) having (3) are turned on and image signals are written; the dots R(1), G(1), and B(1) having (1) are off; and the dots R(2), G(2), and B(2) having (2) are off. Consequently, signals are written into the entire screen in three scanning periods. In the present embodiment, the TFTs of adjacent dots are scanned in different periods in this way.
Also in the liquid-crystal display apparatus according to the present embodiment, while the tripled scanning line method and the common inversion driving method are employed to reduce power consumption, the same advantages as in the tenth embodiment is obtained, in which line crawling (flicker) is made difficult to visually recognize, and a black straight line is displayed without ridges and steps at high quality.
In addition, in the present embodiment, the above-described structure is implemented only with TFTs without adding complicated selection circuits such as those used in the tenth embodiment. In addition, since the off resistance of the TFTs is higher than that of one TFT, the potential applied to the dot electrode is maintained more successfully. Further, since one scanning-line group is formed of three scanning lines, and two TFTs connected in series are provided for a dot, the above-described advantages are obtained with the minimum number of scanning lines and the minimum number of TFTs.
A liquid-crystal display apparatus according to a twelfth embodiment of the present invention will be described below by referring to
The liquid-crystal display apparatus according to the present embodiment uses neither selection circuits such as those shown in the tenth embodiment nor a plurality of TFTs connected in series in one dot, such as those shown in the eleventh embodiment. One of scanning lines G1, G2, and G3 and one TFT 17 correspond to each of dots R(1) to R(3), G(1) to G(3), and B(1) to B(3). The TFT 17 is driven by one of signal lines S1, S2, . . . and on eof the scanning lines G1, G2, and G3. A dot electrode 12 electrically connected to the TFT 17 is provided. The wiring patterns of the scanning lines G1, G2, and G3 differ from those in a conventional TFT array substrate. More specifically, whereas scanning lines G1, G2; and G3 are extended horizontally in a straight-line manner in a conventional TFT array substrate which employs the tripled scanning line method, shown in
Whereas dots arranged horizontally are scanned by the same scanning line in a TFT array substrate shown in
Also in the liquid-crystal display apparatus according to the present embodiment, while the tripled scanning line method and the common inversion driving method are employed to reduce power consumption, the same advantages as in the tenth and eleventh embodiments are obtained, in which line crawling (flicker) is made difficult to visually recognize, and a black straight line is displayed without ridges and steps at high quality.
Further, since the present embodiment does not need to add selection circuits, unlike the tenth embodiment, an occupied area is not increased. Since the present embodiment does not need to add TFTs, unlike the eleventh embodiment, a reduction in reliability caused by a shift of a threshold voltage is smaller in the present embodiment than in the eleventh embodiment. The wiring pattern of the scanning lines is just required to be changed to implement the apparatus. The number of scanning lines does not need to be increased.
A liquid-crystal display apparatus according to a thirteenth embodiment of the present invention will be described below by referring to
As shown in
In each of the dots R(1) to R(3), G(1) to G(3), and B(1) to B(3), a dot electrode 12 and a TFT 18 for writing an image signal into the dot electrode 12 are provided. The gate electrode of the TFT 18 in each of the dots R(1) to R(3), G(1) to G(3), and B(1) to B(3) is connected to one of the scanning lines Ga1 to Ga3, Gb1 to Gb3, and Gc1 to Gc3 constituting a set of the scanning-line groups Ga, Gb, and Gc. The TFTs 18 of adjacent dots are connected to different scanning lines. In the scanning-line groups Ga, Gb, and Gc, first scanning lines Ga1, Gb1, and Gc1 from the top of the scanning-line groups are electrically connected to each other, second scanning lines Ga2, Gb2, and Gc2 from the top of the scanning-line groups are electrically connected to each other, and third scanning lines Ga3, Gb3, and Gc3 from the top of the scanning-line groups are electrically connected to each other. For the scanning-line groups Ga, Gb, and Gc, an image signal is sent to the first scanning lines Ga1, Gb1, and Gc1 from the top, another image signal is sent to the second scanning lines Ga2, Gb2, and Gc2 from the top, and still another image signal is sent to the third scanning lines Ga3, Gb3, and Gc3 from the top.
For example, among the dots R(1), R(2), and R(3) arranged horizontally in the uppermost row in
Therefore, when a signal sent to the scanning lines G1 is high, the dots R(1), G(1), and B(1) having (1) are turned on and image signals are written. When a signal sent to the scanning lines G2 is high, the dots R(2), G(2), and B(2) having (2) are turned on and image signals are written. When a signal sent to the scanning lines G3 is high, the dots R(3), G(3), and B(3) having (3) are turned on and image signals are written.; the dots R(1), G(1), and B(1) having (1) are off; and the dots R(2), G(2), and B(2) having (2) are off. Consequently, signals are written into the entire screen in three scanning periods. In the present embodiment, the TFTs of adjacent dots are scanned in different periods in this way.
Also in the liquid-crystal display apparatus according to the present embodiment, while the tripled scanning line method and the common inversion driving method are employed to reduce power consumption, the same advantages as in the tenth to twelfth embodiments are obtained, in which line crawling (flicker) is made difficult to visually recognize, and a black straight line is displayed without ridges and steps at high quality.
In addition, the present embodiment is similar to the twelfth embodiment in that a selection circuit or a TFT does not need to be added. Since the liquid-crystal display apparatus according to the present embodiment has a lower number of intersections of wires than the liquid-crystal display apparatus according to the third embodiment, a defect-occurrence probability caused by a short-circuit at a wire intersection is reduced. Further, since one scanning-line group is formed of three scanning lines, and the corresponding scanning lines in the three scanning-line groups are electrically connected to each other as described above, R, G, and B image signals can be handled collectively, which produces easy handling of the image signals.
In
The technical scope of the present invention is not limited to the above-described embodiments. Various modifications are possible within the range of the gist of the present invention. For example, the descriptions have been made in the above embodiments without mentioning the types of the liquid-crystal display apparatuses, a transmissive type of a reflective type. The present invention is effective for both types as a countermeasure against line crawling, but it may be more easily applied to the reflective type, which has no restriction on the aperture ratio. In addition, since the reflective type does not need a backlight, a reduction in power consumption, produced by common inversion driving is made further large.
In the color-pixel section, dot electrodes can also be used as accumulation capacitors Cs for holding signal voltages. For example, common electrodes for the accumulation capacitors can be formed below the dot electrodes in parallel to the scanning lines to produce the accumulation capacitors through gate insulation films by the common electrodes and the dot electrodes. In this case, a Cs-on-common structure is formed, not a so-called Cs-on-gate structure, and it is suited to common inversion driving. Since the capacitances of capacitors added to the scanning lines are reduced in this structure, when gate drivers are made on the substrate by TFTs, a load is reduced. Therefore, it is advantageous in designing the gate drivers.
In the fifth embodiment, the advantage of the countermeasure against line crawling has been shown only for common inversion driving at 3:1 interlaced scanning. In addition to 3:1 interlaced scanning, 4:1 interlaced scanning, 5:1 interlaced scanning, and others can also be applied.
In addition to the arrangement of the contact holes, described in the above embodiments, appropriately modified arrangement can be used, and the arrangement can, for example, be linked to that of the switching devices.
Number | Date | Country | Kind |
---|---|---|---|
2002-135712 | May 2002 | JP | national |
2002-137630 | May 2002 | JP | national |
2002-195828 | Jul 2002 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5805250 | Hatano et al. | Sep 1998 | A |
6232938 | Tsuchida et al. | May 2001 | B1 |
6249326 | Hebiguchi | Jun 2001 | B1 |
6323871 | Fujiyoshi et al. | Nov 2001 | B1 |
6335778 | Kubota et al. | Jan 2002 | B1 |
6529180 | Ito et al. | Mar 2003 | B1 |
6756953 | Tokioka et al. | Jun 2004 | B1 |
6768482 | Asano et al. | Jul 2004 | B2 |
20020075206 | Takeda et al. | Jun 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20030210218 A1 | Nov 2003 | US |