The present invention relates to a liquid crystal display apparatus, and more particularly to a technique for preventing sound emission caused by vibration in a small liquid crystal display apparatus which is adopted in mobile phones, etc.
Conventionally, there is known an active matrix-type liquid crystal display apparatus including TFTs (Thin Film Transistors) as switching elements. This liquid crystal display apparatus includes a liquid crystal panel composed of two insulating glass substrates facing each other. One glass substrate of the liquid crystal panel is provided with gate bus lines (scanning signal lines) and source bus lines (video signal lines) in a grid pattern, and is provided with TFTs near the respective intersections of the gate bus lines and the source bus lines. Each TFT is composed of a gate electrode connected to a gate bus line; a source electrode connected to a source bus line; and a drain electrode. The drain electrode is connected to a corresponding one of pixel electrodes which are arranged on the glass substrate in a matrix form to form an image. The other glass substrate of the liquid crystal panel is provided with an electrode (this electrode is called a “common electrode”, “counter electrode”, etc., but is hereinafter called a “common electrode”) for applying a voltage between the pixel electrodes and the common electrode through a liquid crystal layer. Then, based on a video signal which is received, when a gate electrode of each TFT receives an active scanning signal from a corresponding gate bus line, by a source electrode of the TFT from a corresponding source bus line, a voltage which is the difference between the potential of the video signal and a potential provided to the common electrode is applied to the liquid crystal layer. By this, the liquid crystal is driven and a desired image is displayed on a screen.
Meanwhile, liquid crystal has the property of deteriorating with continuous application of a direct voltage thereto. Hence, in a liquid crystal display apparatus, an alternating voltage is applied to a liquid crystal layer. This will be described with reference to
For a technique for implementing driving of the liquid crystal display apparatus such as that described above, a driving scheme called line reversal driving, for example, is known.
Meanwhile, in recent years, a liquid crystal display apparatus such as that described above has been adopted as a main screen of an electronic device such as a mobile phone. As one of such liquid crystal display apparatuses, there is one called a QVGA (Quarter Video Graphics Array) type having a resolution of 320×240. In such a liquid crystal display apparatus, it is pointed out that glass substrates composing a liquid crystal panel vibrate due to alternating driving such as that described above and the vibration is sensed as an annoying sound. To prevent the occurrence of such an annoying sound caused by vibration (hereinafter, referred to as “sound emission”), for example, a damping material is stuck on the liquid crystal panel, thereby attenuating the vibration.
It is known that sound emission occurs when a frequency (hereinafter, referred to as a “common electrode potential reversal frequency”) representing how often reversal of the potential of the common electrode 14 occurs (the term “reversal” as used herein refers to a change from a lower potential to a higher potential with reference to a predetermined potential or a change from a higher potential to a lower potential with reference to a predetermined potential) is in a human-audible frequency band. In a QVGA-type liquid crystal display apparatus, the common electrode potential reversal frequency is on the order of 10 kHz which is in the human-audible frequency band, and thus, the above-described sound emission remarkably appears. In view of this, Japanese Patent Application Laid-Open No. 2008-40195 discloses a technique for suppressing sound emission by bringing the common electrode potential reversal frequency out of the human-audible frequency band by reversing a common electrode signal VCOM during a predetermined period of one horizontal scanning period as shown in
[Patent Document 1] Japanese Patent Application Laid-Open No. 2008-40195
However, according to an electronic device disclosed in the above-described Japanese Patent Application Laid-Open No. 2008-40195, as shown in
An object of the present invention is therefore to provide a liquid crystal display apparatus capable of suppressing sound emission caused by alternating driving of liquid crystal while suppressing an increase in power consumption.
A first aspect of the present invention is directed to a liquid crystal display apparatus comprising:
a plurality of video signal lines for transmitting video signals representing an image to be displayed;
a plurality of scanning signal lines intersecting the plurality of video signal lines;
a video signal line drive circuit that applies the video signals to the plurality of video signal lines;
a scanning signal line drive circuit that selectively drives the plurality of scanning signal lines every horizontal scanning period;
a plurality of pixel electrodes arranged in a matrix form at respective intersection portions of the plurality of video signal lines and the plurality of scanning signal lines;
a common electrode arranged to face the plurality of pixel electrodes, so as to apply a voltage between the plurality of pixel electrodes and the common electrode; and
a common electrode drive circuit that drives the common electrode and includes a common electrode potential generating unit that generates a first potential, a second potential, a third potential group, and a fourth potential group, the first potential being a low-level side potential to be provided to the common electrode, the second potential being a high-level side potential to be provided to the common electrode, the third potential group including one or more low-level side potentials having a higher level than the first potential, to be provided to the common electrode, and the fourth potential group including one or more high-level side potentials having a lower level than the second potential, to be provided to the common electrode, wherein
the common electrode drive circuit:
According to a second aspect of the present invention, in the first aspect of the present invention,
the liquid crystal display apparatus further comprises a frequency control unit for externally controlling a frequency of a second period potential instruction signal indicating whether a potential to be provided to the common electrode at an arbitrary point in time during the second period of each horizontal scanning period is a low-level side potential or a high-level side potential, wherein
during the second period, the common electrode drive circuit provides the potentials included in the third potential group and the potentials included in the fourth potential group to the common electrode, based on the second period potential instruction signal.
According to a third aspect of the present invention, in the first aspect of the present invention,
the liquid crystal display apparatus further comprises
during the second period, the common electrode drive circuit provides the potential selected by the third potential selecting unit and the potential selected by the fourth potential selecting unit to the common electrode.
According to a fourth aspect of the present invention, in the first aspect of the present invention,
the liquid crystal display apparatus further comprises
during the second period, the common electrode drive circuit provides the potential selected by the third potential selecting unit and the potential selected by the fourth potential selecting unit to the common electrode, based on the second period potential instruction signal.
According to a fifth aspect of the present invention, in the first aspect of the present invention,
the common electrode drive circuit includes:
According to a sixth aspect of the present invention, in the fifth aspect of the present invention,
the liquid crystal display apparatus further comprises a frequency control unit for externally controlling a frequency of the second period potential instruction signal.
According to a seventh aspect of the present invention, in the fifth aspect of the present invention,
the liquid crystal display apparatus further comprises
during the second period, the common electrode drive circuit provides the potential selected by the third potential selecting unit and the potential selected by the fourth potential selecting unit to the common electrode.
According to an eighth aspect of the present invention, in the fifth aspect of the present invention,
the liquid crystal display apparatus further comprises
during the second period, the common electrode drive circuit provides the potential selected by the third potential selecting unit and the potential selected by the fourth potential selecting unit to the common electrode, based on the second period potential instruction signal.
According to a ninth aspect of the present invention, in the first aspect of the present invention,
a period during which any of the plurality of scanning signal lines is selected by the scanning signal line drive circuit is the first period, and a period during which none of the plurality of scanning signal lines is selected by the scanning signal line drive circuit is the second period.
A tenth aspect of the present invention is directed to a drive circuit for a liquid crystal display apparatus including a plurality of video signal lines for transmitting video signals representing an image to be displayed; a plurality of scanning signal lines intersecting the plurality of video signal lines; a plurality of pixel electrodes arranged in a matrix form at respective intersection portions of the plurality of video signal lines and the plurality of scanning signal lines; and a common electrode arranged to face the plurality of pixel electrodes, so as to apply a voltage between the plurality of pixel electrodes and the common electrode, the drive circuit comprising:
a video signal line drive circuit that applies the video signals to the plurality of video signal lines;
a scanning signal line drive circuit that selectively drives the plurality of scanning signal lines every horizontal scanning period; and
a common electrode drive circuit that drives the common electrode and includes a common electrode potential generating unit that generates a first potential, a second potential, a third potential group, and a fourth potential group, the first potential being a low-level side potential to be provided to the common electrode, the second potential being a high-level side potential to be provided to the common electrode, the third potential group including one or more low-level side potentials having a higher level than the first potential, to be provided to the common electrode, and the fourth potential group including one or more high-level side potentials having a lower level than the second potential, to be provided to the common electrode, wherein
the common electrode drive circuit:
In addition, variants that are grasped by referring to the embodiment and the drawings in the tenth aspect of the present invention are considered to be means for solving the problems.
A nineteenth aspect of the present invention is directed to a drive method for a liquid crystal display apparatus including a plurality of video signal lines for transmitting video signals representing an image to be displayed; a plurality of scanning signal lines intersecting the plurality of video signal lines; a plurality of pixel electrodes arranged in a matrix form at respective intersection portions of the plurality of video signal lines and the plurality of scanning signal lines; and a common electrode arranged to face the plurality of pixel electrodes, so as to apply a voltage between the plurality of pixel electrodes and the common electrode, the drive method comprising:
a video signal line driving step of applying the video signals to the plurality of video signal lines;
a scanning signal line driving step of selectively driving the plurality of scanning signal lines every horizontal scanning period;
a common electrode potential generating step of generating a first potential, a second potential, a third potential group, and a fourth potential group, the first potential being a low-level side potential to be provided to the common electrode, the second potential being a high-level side potential to be provided to the common electrode, the third potential group including one or more low-level side potentials having a higher level than the first potential, to be provided to the common electrode, and the fourth potential group including one or more high-level side potentials having a lower level than the second potential, to be provided to the common electrode; and
a common electrode driving step of driving the common electrode, wherein
in the common electrode driving step:
In addition, variants that are grasped by referring to the embodiment and the drawings in the nineteenth aspect of the present invention are considered to be means for solving the problems.
According to the first aspect of the present invention, by alternately providing a high-level potential and a low-level potential to the common electrode during the second period of each horizontal scanning period, the drive frequency of the common electrode can be brought out of the human-audible frequency band. In addition, two or more potentials are prepared as the high-level side potential of the common electrode and two or more potentials are prepared as the low-level side potential of the common electrode. A high-level side potential provided to the common electrode during the second period of each horizontal scanning period is set to a level lower than that of a high-level side potential provided to the common electrode during the first period of the horizontal scanning period. In addition, a low-level side potential provided to the common electrode during the second period of each horizontal scanning period is set to a level higher than that of a low-level side potential provided to the common electrode during the first period of the horizontal scanning period. Namely, the amplitude of a signal for driving the common electrode (common electrode signal) is smaller for the second period than for the first period. Hence, an increase in current consumption caused by charging and discharging of a liquid crystal capacitance during the second period is suppressed. By the above, a liquid crystal display apparatus is implemented that is capable of suppressing sound emission caused by alternating driving of liquid crystal while suppressing an increase in power consumption.
According to the second aspect of the present invention, the frequency of a second period potential instruction signal indicating whether a potential to be provided to the common electrode during the second period of a horizontal scanning period is a low-level side potential or a high-level side potential can be changed externally. Hence, by externally adjusting the frequency of the second period potential instruction signal, the frequency of the common electrode signal for the second period can be set to a desired frequency. Accordingly, the frequency of the common electrode signal for the second period can be set according to the drive conditions of the common electrode which vary from device to device, enabling to suppress sound emission in various devices which is caused by alternating driving of liquid crystal. In addition, by minimizing the frequency of the common electrode signal for the second period within a range in which sound emission does not occur, an increase in power consumption is suppressed.
According to the third aspect of the present invention, the high-level side potential and low-level side potential of the common electrode for the second period of a horizontal scanning period can be set externally. Hence, the amplitude of the common electrode signal for the second period of a horizontal scanning period can be set to a desired magnitude. Accordingly, the amplitude of the common electrode signal can be minimized within a range in which sound emission does not occur, enabling to suppress sound emission caused by alternating driving of liquid crystal while effectively suppressing an increase in power consumption.
According to the fourth aspect of the present invention, the frequency and amplitude of the common electrode signal for the second period of a horizontal scanning period can be set according to the device. Hence, sound emission caused by alternating driving of liquid crystal can be suppressed while an increase in power consumption is more effectively suppressed.
According to the fifth aspect of the present invention, in a liquid crystal display apparatus including a common electrode drive circuit including: a low-level side potential selecting unit that selects a low-level side potential to be provided to the common electrode; a high-level side potential selecting unit that selects a high-level side potential to be provided to the common electrode; a potential providing unit that provides the potential selected by the low-level side potential selecting unit or the high-level side potential selecting unit to the common electrode; and a potential selection signal providing unit that provides a potential selection signal indicating whether a potential to be provided to the common electrode is a low-level side potential or a high-level side potential, to the potential providing unit, the same effects as those obtained by the first aspect of the present invention are obtained.
According to the sixth aspect of the present invention, in a liquid crystal display apparatus including a common electrode drive circuit including a low-level side potential selecting unit, a high-level side potential selecting unit, a potential providing unit, and a potential selection signal providing unit, the same effects as those obtained by the second aspect of the present invention are obtained.
According to the seventh aspect of the present invention, in a liquid crystal display apparatus including a common electrode drive circuit including a low-level side potential selecting unit, a high-level side potential selecting unit, a potential providing unit, and a potential selection signal providing unit, the same effects as those obtained by the third aspect of the present invention are obtained.
According to the eighth aspect of the present invention, in a liquid crystal display apparatus including a common electrode drive circuit including a low-level side potential selecting unit, a high-level side potential selecting unit, a potential providing unit, and a potential selection signal providing unit, the same effects as those obtained by the fourth aspect of the present invention are obtained.
According to the ninth aspect of the present invention, in a liquid crystal display apparatus configured to alternately provide a high-level potential and a low-level potential to the common electrode during a horizontal flyback period, the same effects as those obtained by the first aspect of the present invention are obtained.
Embodiments of the present invention will be described below with reference to the accompanying drawings.
<1. First Embodiment>
<1.1 Overall Configuration and Operation>
The display unit 10 includes a plurality of (n) source bus lines (video signal lines) SL1 to SLn, a plurality of (m) gate bus lines (scanning signal lines) GL1 to GLm, and a plurality of (n×m) pixel formation portions provided at the respective intersections of the plurality of source bus lines SL1 to SLn and the plurality of gate bus lines GL1 to GLm. The pixel formation portions are arranged in a matrix form, thereby forming a pixel array. Each pixel formation portion is composed of a TFT 11 which is a switching element having a gate terminal connected to a gate bus line passing through a corresponding intersection and having a source terminal connected to a source bus line passing through the intersection; a pixel electrode connected to a drain terminal of the TFT 11; a common electrode 14 which is a counter electrode provided to be shared by the plurality of pixel formation portions; and a liquid crystal layer provided to be shared by the plurality of pixel formation portions, and sandwiched between the pixel electrode and the common electrode 14. By a liquid crystal capacitance formed by the pixel electrode and the common electrode 14, a pixel capacitance Cp is formed.
The display control circuit 20 receives an image signal DAT and a timing signal group TG which are sent from an external source, and outputs a digital video signal DV and a source start pulse signal SSP, a source clock signal SCK, a latch strobe signal LS, a gate start pulse signal GSP, a gate clock signal GCK, a polarity instruction signal POL, and a reversal timing control signal CTRL which are used to control the timing of image display on the display unit 10, and so forth. Note that the polarity instruction signal POL is a signal indicating the polarity of a common electrode signal VCOM (a positive or negative polarity with reference to a predetermined potential) for an active period of each horizontal scanning period. Note also that the reversal timing control signal CTRL is a signal indicating the timing at which the polarity of the common electrode signal VCOM is reversed during a non-active period of each horizontal scanning period. In other words, the reversal timing control signal CTRL is a signal indicating the polarity of the common electrode signal VCOM (a positive or negative polarity with reference to the predetermined potential) for the non-active period of each horizontal scanning period. In the present embodiment, a first period potential instruction signal is implemented by the polarity instruction signal POL, and a second period potential instruction signal is implemented by the reversal timing control signal CTRL.
The source driver 30 receives the digital video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS which are outputted from the display control circuit 20, and applies driving video signals to the source bus lines SL1 to SLn, respectively. The gate driver 40 repeats application of active scanning signals G1 to Gm to the gate bus lines GL1 to GLm in cycles of one vertical scanning period, based on the gate start pulse signal GSP and the gate clock signal GCK which are outputted from the display control circuit 20.
The switching signal generation circuit 60 receives scanning signals G1 to Gm outputted from the gate driver 40 and outputs a switching signal GLEN for switching between an active period and a non-active period.
The common electrode drive circuit 50 receives the switching signal GLEN outputted from the switching signal generation circuit 60 and the polarity instruction signal POL and the reversal timing control signal CTRL which are outputted from the display control circuit 20, and outputs a common electrode signal VCOM for providing a potential according to those signals to the common electrode 14. Note that a detailed description of the common electrode drive circuit 50 will be provided later.
In the above-described manner, driving video signals are applied to the source bus lines SL1 to SLn, respectively, scanning signals G1 to Gm are applied to the gate bus lines GL1 to GLm, respectively, and a common electrode signal VCOM is applied to the common electrode 14, whereby an image based on an image signal DAT sent from an external source is displayed on the display unit 10.
<1.2 Configuration and Operation of the Common Electrode Drive Circuit>
The MOS transistors 521 to 524 each have two conducting terminals and one control terminal. A switching signal GLEN is provided to the control terminals of the MOS transistors 521 to 524. To one conducting terminal of each of the MOS transistors 521 to 524 is provided a corresponding one of the potentials LV1 to LV4. The other conducting terminal of each of the MOS transistors 521 to 524 is connected to the selection circuit 540. Note that, at arbitrary timing, the potential LV1 is provided through the MOS transistor 521 or the potential LV3 is provided through the MOS transistor 523 to the selection circuit 540, as a low-level side potential COML. Likewise, at arbitrary timing, the potential LV2 is provided through the MOS transistor 522 or the potential LV4 is provided through the MOS transistor 524 to the selection circuit 540, as a high-level side potential COMH.
A polarity instruction signal POL is provided to one input terminal of the AND circuit 531, and a switching signal GLEN is provided to the other input terminal. Then, a signal indicating an AND of the polarity instruction signal POL and the switching signal GLEN is outputted from the AND circuit 531. A logic inverted signal of the switching signal GLEN is provided to one input terminal of the AND circuit 532, and a reversal timing control signal CTRL is provided to the other input terminal. Then, a signal indicating an AND of the logic inverted signal of the switching signal GLEN and the reversal timing control signal CTRL is outputted from the AND circuit 532. The output signal from the AND circuit 531 is provided to one input terminal of the OR circuit 533, and the output signal from the AND circuit 532 is provided to the other input terminal. Then, a signal indicating an OR of the output signal from the AND circuit 531 and the output signal from the AND circuit 532 is outputted from the OR circuit 533 as a potential selection signal VSEL.
The selection circuit 540 receives the low-level side potential COML, the high-level side potential COMH, and the potential selection signal VSEL and provides either one of the low-level side potential COML and the high-level side potential COMH to the common electrode 14 as a common electrode signal VCOM, according to the potential selection signal VSEL. Namely, the potential selected by this selection circuit 540 is provided to the common electrode 14. Now, a specific configuration of the selection circuit 540 will be described.
Note that in the present embodiment a low-level side potential selecting unit is implemented by the MOS transistors 521 and 523, a high-level side potential selecting unit is implemented by the MOS transistors 522 and 524, a potential selection signal generating unit is implemented by the AND circuits 531 and 532 and the OR circuit 533, and a potential providing unit is implemented by the selection circuit 540.
<1.3 Method of Driving the Common Electrode>
As described above, when any of the gate bus lines GL1 to GLm is in a selected state, the switching signal GLEN is at a high level, and when the gate bus lines GL1 to GLm are all in a non-selected state, the switching signal GLEN is at a low level. By this, a switching signal GELN having a waveform such as that shown in
<1.3.1 For the Active Period>
During the active period, since the switching signal GLEN is at a high level, the MOS transistors 521 and 522 are placed in an on state and thus a potential LV1 is provided to the selection circuit 540 as a low-level side potential COML and a potential LV2 is provided to the selection circuit 540 as a high-level side potential COMH. At this time, if the polarity instruction signal POL is at a high level then an output signal from the AND circuit 531 is at a high level, and if the polarity instruction signal POL is at a low level then the output signal is at a low level. An output signal from the AND circuit 532 is at a low level regardless of the logic level of the reversal timing control signal CTRL. By this, if the polarity instruction signal POL is at a high level then a potential selection signal VSEL outputted from the OR circuit 533 is at a high level, and if the polarity instruction signal POL is at a low level then the potential selection signal VSEL is at a low level. In the selection circuit 540, as described above, if the potential selection signal VSEL is at a high level then the high-level side potential COMH is selected, and if the potential selection signal VSEL is at a low level then the low-level side potential COML is selected. By the above, if the polarity instruction signal POL is at a high level, then the potential of a common electrode signal VCOM is the potential LV2 of the second power supply 512. On the other hand, if the polarity instruction signal POL is at a low level, then the potential of the common electrode signal VCOM is the potential LV1 of the first power supply 511. Therefore, as shown in
<1.3.2 For the Non-Active Period>
During the non-active period, since the switching signal GLEN is at a low level, the MOS transistors 523 and 524 are placed in an on state and thus a potential LV3 is provided to the selection circuit 540 as a low-level side potential COML and a potential LV4 is provided to the selection circuit 540 as a high-level side potential COMH. At this time, if the reversal timing control signal CTRL is at a high level then an output signal from the AND circuit 532 is at a high level, and if the reversal timing control signal CTRL is at a low level then the output signal is at a low level. An output signal from the AND circuit 531 is at a low level regardless of the logic level of the polarity instruction signal POL. By this, if the reversal timing control signal CTRL is at a high level then a potential selection signal VSEL outputted from the OR circuit 533 is at a high level, and if the reversal timing control signal CTRL is at a low level then the potential selection signal VSEL is at a low level. In the selection circuit 540, as described above, if the potential selection signal VSEL is at a high level then the high-level side potential COMH is selected, and if the potential selection signal VSEL is at a low level then the low-level side potential COML is selected. By the above, if the reversal timing control signal CTRL is at a high level, then the potential of a common electrode signal VCOM is the potential LV4 of the fourth power supply 514. On the other hand, if the reversal timing control signal CTRL is at a low level, then the potential of the common electrode signal VCOM is the potential LV3 of the third power supply 513. Therefore, as shown in
<1.4 Effects>
According to the present embodiment, since a non-active period during which polarity reversal of a common electrode signal VCOM is repeated at predetermined intervals is provided in each horizontal scanning period, the common electrode potential reversal frequency goes out of the human-audible frequency band, thereby suppressing sound emission. In addition, according to the present embodiment, two potentials LV2 and LV4 are prepared as the high-level side potential of the common electrode 14, and two potentials LV1 and LV3 are prepared as the low-level side potential of the common electrode 14. Then, for each of the high-level side and low-level side potentials of the common electrode 14, one of the two potentials is selected during an active period of a horizontal scanning period, and the other one of the two potentials is selected during a non-active period of the horizontal scanning period. Specifically, during the active period, for each of the high-level side potential and the low-level side potential, a potential having the same level as that of the conventional case is selected as a potential to be provided to the common electrode 14. On the other hand, during the non-active period, a selection of a potential to be provided to the common electrode 14 is made such that the difference between a high-level side potential and a low-level side potential is smaller than that for the active period, i.e., such that the amplitude of the common electrode signal VCOM is smaller than that for the active period.
Meanwhile, current consumption I caused by charging and discharging of a liquid crystal capacitance is represented by the following equation (1) when the capacitance value of the liquid crystal capacitance is C, the amplitude of the common electrode signal VCOM is V, and the common electrode potential reversal frequency is F:
I=C×V×F (1).
According to the present embodiment, the amplitude of the common electrode signal VCOM is made smaller for the non-active period than for the active period. Hence, comparing with a conventional configuration in which a potential with the same amplitude as that for the active period is provided to the common electrode 14 during the non-active period, too, the current consumption I caused by charging and discharging of the liquid crystal capacitance is smaller. Namely, power consumption is reduced over the conventional configuration.
As described above, according to the present embodiment, a liquid crystal display apparatus is implemented that is capable of suppressing sound emission caused by alternating driving of liquid crystal while suppressing an increase in power consumption.
<2. Second Embodiment>
<2.1 Configuration>
<2.2 Method of Driving a Common Electrode>
Meanwhile, in the present embodiment, the provision of the frequency control circuit 550 enables to externally change the frequency of the reversal timing control signal CTRL. Hence, the waveform of the reversal timing control signal CTRL can be, for example, one such as that shown in
<2.3 Effects>
According to the present embodiment, the frequency of a reversal timing control signal CTRL indicating the timing of polarity reversal of a common electrode signal VCOM for a non-active period of a horizontal scanning period can be changed externally. Hence, by externally adjusting the frequency of the reversal timing control signal CTRL, the frequency of the common electrode signal VCOM for the non-active period of the horizontal scanning period can be set to a desired frequency. Meanwhile, the frequency of the common electrode signal VCOM varies from device to device, and how sound emission (noise) occurs also varies depending on the drive conditions of the common electrode 14. Regarding this point, according to the present embodiment, since the frequency of the common electrode signal VCOM for the non-active period of the horizontal scanning period can be set to a desired frequency, the occurrence of sound emission caused by alternating driving of liquid crystal can be suppressed in various devices. In addition, by minimizing the frequency of the common electrode signal VCOM within a range in which sound emission does not occur, an increase in power consumption can be suppressed.
<3. Third Embodiment>
<3.1 Configuration>
<3.2 Method of Driving a Common Electrode>
Meanwhile, in the present embodiment, the provision of the fourth potential selecting unit 564 enables to externally change the level of a potential LV4 generated by the fourth power supply 514. Likewise, the provision of the third potential selecting unit 563 enables to externally change the level of a potential LV3 generated by the third power supply 513. By this, the potential of the common electrode signal VCOM for the non-active period of the horizontal scanning period can be changed, for example, between Va and Vb as shown in
<3.3 Effects>
According to the present embodiment, the high-level side and low-level side potentials of a common electrode signal VCOM for a non-active period of a horizontal scanning period can be set externally. Hence, the amplitude of the common electrode signal VCOM for the non-active period of the horizontal scanning period can be set to a desired magnitude. Meanwhile, as shown in the above equation (1), the current consumption I caused by charging and discharging of a liquid crystal capacitance is proportional to the amplitude of the common electrode signal VCOM. Regarding this point, according to the present embodiment, since the amplitude of the common electrode signal VCOM for the non-active period of the horizontal scanning period can be set to a desired magnitude, the amplitude of the common electrode signal VCOM can be minimized within a range in which sound emission does not occur. By this, sound emission caused by alternating driving of liquid crystal can be suppressed while an increase in power consumption is effectively suppressed.
4. Fourth Embodiment
<4.1 Configuration>
<4.2 Method of Driving a Common Electrode>
Meanwhile, in the present embodiment, the provision of the fourth potential selecting unit 564 and the third potential selecting unit 563 enables to externally change the level of a potential LV4 generated by the fourth power supply 514 and the level of a potential LV3 generated by the third power supply 513. In addition, the frequency control circuit 550 is provided and is configured to provide a reversal timing control signal CTRL outputted therefrom, to the fourth potential selecting unit 564 and the third potential selecting unit 563. Then, the fourth potential selecting unit 564 and the third potential selecting unit 563 make a potential level selection in synchronization with the reversal timing control signal CTRL. Hence, the potential of the common electrode signal VCOM for the non-active period of the horizontal scanning period can be changed, for example, between four different levels as shown in
<4.3 Effects>
According to the present embodiment, the level of a potential LV4 generated by the fourth power supply 514 and the level of a potential LV3 generated by the third power supply 513 can be changed in synchronization with a change in the potential of a reversal timing control signal CTRL outputted from the frequency control circuit 550. In addition, by externally adjusting the frequency of the reversal timing control signal CTRL, the frequency of a common electrode signal VCOM for a non-active period of a horizontal scanning period can be set to a desired frequency. By this, the frequency and amplitude of the common electrode signal VCOM for the non-active period of the horizontal scanning period can be set according to the device. As a result, sound emission caused by alternating driving of liquid crystal can be suppressed while an increase in power consumption is more effectively suppressed.
<5. Others>
Although the above-described embodiments employ a configuration in which a non-active period is provided immediately before the end of each horizontal scanning period, the present invention is not limited thereto and the configuration may be such that a non-active period is provided immediately after the start of each horizontal scanning period. Alternatively, in one frame period, for a given horizontal scanning period, a non-active period may be provided immediately before the end of the horizontal scanning period, and for another given horizontal scanning period, a non-active period may be provided immediately after the start of the horizontal scanning period.
11: TFT
14: COMMON ELECTRODE
20: DISPLAY CONTROL CIRCUIT
30: SOURCE DRIVER (VIDEO SIGNAL LINE DRIVE CIRCUIT)
40: GATE DRIVER (SCANNING SIGNAL LINE DRIVE CIRCUIT)
50: COMMON ELECTRODE DRIVE CIRCUIT
51: COMMON ELECTRODE POTENTIAL GENERATING UNIT
60: SWITCHING SIGNAL GENERATION CIRCUIT
511 to 514: FIRST TO FOURTH POWER SUPPLIES
521 to 524: MOS TRANSISTOR
531 and 532: AND CIRCUIT
533: OR CIRCUIT
540: SELECTION CIRCUIT
550: FREQUENCY CONTROL CIRCUIT
563: THIRD POTENTIAL SELECTING UNIT
564: FOURTH POTENTIAL SELECTING UNIT
CTRL: REVERSAL TIMING CONTROL SIGNAL
GLEN: SWITCHING SIGNAL
POL: POLARITY INSTRUCTION SIGNAL
VCOM: COMMON ELECTRODE SIGNAL
Number | Date | Country | Kind |
---|---|---|---|
2009-090822 | Apr 2009 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/070644 | 12/10/2009 | WO | 00 | 9/23/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/113359 | 10/7/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20050179633 | Inada | Aug 2005 | A1 |
20060132418 | Morita | Jun 2006 | A1 |
20080068321 | Kim et al. | Mar 2008 | A1 |
Number | Date | Country |
---|---|---|
2005234139 | Sep 2005 | JP |
2008040195 | Feb 2008 | JP |
Entry |
---|
International Search Report. |
Number | Date | Country | |
---|---|---|---|
20120062543 A1 | Mar 2012 | US |