1. Field of the Invention
The present invention relates to a liquid crystal (LC) display apparatus of a so-called VA (vertical aligned) mode, in which optical changes take place responsive to the application of an electric field for causing LC molecules which were originally oriented in a vertical alignment to be realigned in a horizontal alignment. In particular, the present invention relates to a high-contrast and fast-response LC display apparatus which ensures that LC molecules will tilt in asymmetrical directions, unlike in conventional liquid crystal display apparatuses in which LC molecules are controlled so as to tilt in symmetrical directions to control discontinuities in LC orientation (disclination). Moreover, the present invention relates to a high-contrast and fast-response LC display apparatus in which a tilt direction of LC molecules is controlled so as to be in one direction in portions of the display corresponding to pixels, whereas the LC molecules in any portions other than the pixels are placed in a horizontal alignment realized through a uniaxial alignment treatment, whereby a gradually changing LC orientation can be obtained at boundaries between pixel portions and non-pixel portions, while preventing disclination.
2. Description of the Related Art
The alignment treatment applied to the alignment films 1509 and 1510 places molecules of the LC 1513 in a uniform alignment. The electrodes 1503 and 1504 have external lead portions, via which an arbitrary signal waveform field can be applied to the LC 1513. The LC molecules change their orientation in accordance with the applied field so as to polarize and modulate light which passes through the LC layer. The LC display apparatus 1500 can perform a displaying function with, as necessary, a polarizer for rendering the polarization and modulation of light visible to eyesight. In order to allow light to pass through the LC layer, at least one of the electrodes 1503 and 1504 must be a transparent electrode, which may be formed of ITO or the like.
Owing to its simple structure, a simple matrix type LC display apparatus is relatively easy to produce. However, since a simple matrix type LC display apparatus lacks switching elements dedicated for respective pixels, all the pixels are coupled via the capacitance of the LC. Thus, a simple matrix type LC display apparatus is inherently associated with the problem of so-called crosstalk; i.e., the threshold values for respective pixels become less defined as the pixels increase in number, resulting in unclear displayed images. In addition, an ITO or nesa film used as a transparent electrode has a resistance value which is about 100 to 1000 times higher than those of metals, although generally conductive. Thus, as the display apparatus becomes larger in size and information capacity, the problem of distorted signal waveforms due to the resistance of the transparent electrodes (“electrode resistance”) become more pronounced.
Accordingly, attempts have been made to reduce the electrode resistance by providing transparent electrodes and metal wiring in a parallel arrangement. However, such attempts have led to decreased luminance due to a reduced aperture ratio, and/or less facility of production, thereby detracting from the advantages associated with a simple matrix type LC display apparatus.
On the other hand, an active matrix type LC display apparatus features a switching element for each pixel. Therefore, although an active matrix type LC display apparatus may not be as easy to produce as a simple matrix type LC display apparatus, the problem of crosstalk is substantially eliminated because each pixel can be independently driven, thereby making for much clearer displayed images than those provided by a simple matrix type LC display apparatus. Moreover, the problem of distorted signal waveforms due to electrode resistance is almost negligible in an active matrix type LC display apparatus because signal lines which do not contribute to light transmission can be formed of a metal such as Ti or Al, and an opposing transparent electrode may be in the form of an unpatterned bulk sheet. Thus, an active matrix type LC display apparatus can be relatively easily produced in a large size with a large information capacity.
An attempt to solve the problem of crosstalk has been made by using ferroelectric LC for a simple matrix type LC display apparatus, and making use of the relatively simple structure of a simple matrix type LC display apparatus [N. Itoh et al., Proceedings of The Fifth International Display Workshops (IDW'98)(1998) p. 205 “17″ Video-Rate Full Color FLCD”]. Since ferroelectric LC has memory properties and a quick response on the order of microseconds [N. Clark et al., Apply. Phys. Lett., 36(1980), p. 899 “Submicrosecond bistable electro-optic switching in liquid crystals”], it is possible to adopt a different line sequential driving method from that adopted in conventional simple matrix modes utilizing nematic LC, which does not have memory properties. Specifically, the line sequential driving method adapted for a ferroelectric simple matrix type LC display apparatus involves sequentially writing display information in each scanning line with a high speed, and retaining the display information thus written until an “overwrite” signal is input. As a result, it is possible to display as clear an image as that provided by an active matrix type LC display apparatus, while preventing crosstalk.
However, the problem associated with electrode resistance cannot be solved even by using ferroelectric LC in a simple matrix type LC display apparatus. The problem of distorted signal waveforms which is induced by electrode resistance is not only an obstacle to realizing a large display apparatus with a large information capacity, but is also detrimental to realizing a “fast” signal waveform. Especially in applications utilizing ferroelectric LC having a fast response, the aforementioned technique of providing transparent electrodes and metal wiring in a parallel arrangement is essential; however, this leads to decreased luminance due to a reduced aperture ratio, and/or less facility of production, thereby detracting from the advantages associated with a simple matrix type LC display apparatus. In addition, electrode resistance also increases power consumption and induces heating of the LC panel.
From the above perspective, the active matrix mode (except for that used in some lower-performance display apparatuses) is advantageous for display apparatuses which are intended to display moving images with a high resolution. Among others, a TFT (thin film transistor) mode is superior to a MIM (metal-insulator-metal) mode or other modes because a TFT has three terminals whereas a MIM element has two terminals. A large number of practical applications are based on the TFT mode.
Currently, a 20″ liquid crystal TV which combines the TFT mode with nematic LC has been realized. It may even appear that the field of flat display apparatuses has come to full development with the current TFT-nematic LC technique, while only leaving larger size and large information capacity to be pursued.
However, LC display apparatuses are still plagued with some critical problems concerning display quality, and these problems must be solved before LC display apparatuses can rival and eventually replace CRTs (cathode ray tubes), which represent the mainstream in the field of display apparatuses. While CRTs have their own problems of bulkiness and heaviness, liquid crystal has a critical problem of slow response to signal waveform fields, among other problems. Hereinafter, the relationship between response speed and display quality of LC will be discussed.
Blurring artifacts are perceived when moving images are displayed by current TFT-nematic LC display apparatuses (hereinafter simply referred to as “LCDs”), which presents a major problem. The mechanism which creates such blurring artifacts in LCDs is fully described in [Kurita, 1998 LCD forum: “How can LCDs make their way into the CRT monitor market—from the perspective of moving image display—”, p. 1 “Display modes of hold type displays and display quality when displaying moving images”].
With a hold type display as described above, in the presence of a perfect pursued eye movement (i.e., a concurrent movement of right and left eyes to substantially similarly follow a moving object in a smooth manner), which plays the most important role in moving image perception among other types of eyeball movements, and in the presence of a full time quadrature or integration effect in eyesight, then only an average brightness of a number of pixels will be perceived by a viewer, so that image fractions that are expressed in different pixels may be completely lost.
The pursued eye movement accounts for a smaller portion of eyeball movements as the speed of movement increases. However, it is assumed that any movement which is within about 4 to 5 degrees/second can be sufficiently followed by pursued eye movement alone. The maximum followable speed over a short period of time is supposed to be about 30 degrees/second. As for the time quadrature effect, it is assumed that optical stimuli occurring over a short period of time on the order of tens of milliseconds or less can be substantially completely integrated, even under a limited luminance. Since many of the actually displayed moving images are within such angular velocity constraints and luminance constraints, a hold type display mode may present blurred moving images which are associated with “eye tracking”.
Therefore, in order to eradicate blurring of moving images in an LCD, it is necessary to perform an impulse type display function as in the case of a CRT. This can be achieved either by using a shutter to feign impulse emission, or causing the backlight to quickly flash, rather than keeping the backlight on constantly as is currently practiced. In either case, it is necessary to substantially improve the response speed of LC from the present levels.
The above problem will be described with reference to the graphs of
The vertical axis of
By activating the backlight (or causing the backlight to emit light) after an LC portion corresponding to the nth line has responded after the turning on of the last gate line, i.e., nth gate line, as shown in
According to [Kurita, 1998 LCD forum: “How can LCDs make their way into the CRT monitor market—from the perspective of moving image display—”, p. 1 “Display modes of hold type displays and display quality when displaying moving images”], a light emission period ratio (compaction ratio) for a backlight which would be effective to attain an impulse type display function is about 25% of the duration of one field, i.e., 16.7 ms. From this, it follows that T must be about 4 ms. Now, n can be considered to be around 1000 in the context of high-vision broadcasting utilizing 1025 scanning lines. Then, the LC response time τr must be equal to or less than 16.7 ms−t×n−T.
Currently, the gate ON time t of a TFT is about 10 μs for amorphous silicon (αSi)-TFTs, with which a large (20″) liquid crystal display device has already been realized, and about 3 μs for polysilicon (PSi)-TFTs, which is not suitable for implementation in a large size display but has a high electron mobility. Thus, it can be seen that an LC response time which is required for realizing full-specification moving images free from blurring artifacts will be about 2.5 ms or less for a Si-TFTs and about 9.7 ms or less for PSi-TFTs, if it is at all possible to employ PSi-TFTs. The high processing temperature of about 1000° C. or more that is required to produce PSi-TFTs makes it difficult to employ usual glass substrates; instead, quartz glass substrates must be used. This presents an obstacle to producing a large size display apparatus, and there is little feasibility for producing a display apparatus which can realize full-specification high-vision broadcast.
The response time of well-known TN liquid crystal is about 15 ms, as mentioned earlier with reference to rising response. Even if an impulse type backlight system is adopted, it would be difficult to realize full-specification moving images without blurring artifacts by using αSi-TFTs with a response time 2.5 ms or less. The falling response is even slower, and could take tens of milliseconds.
Thus, there has been plenty of work undertaken to solve the problems associated with response speed of TN liquid crystal. For example, research on using a bend cell or a pi cell to attain fast response is well known [Miyashita et al., 1998 LCD forum: “How can LCDs make their way into the CRT monitor market—from the perspective of moving image display—”, p. 7 “A field sequential full-color liquid crystal display utilizing quick response characteristics of OCB liquid crystal”]. It has been reported that the response time of a bend orientation cell is reduced to about 2 ms from the 15-ms response time of a conventional TN orientation cell. This enhanced response is realized by controlling the flow of LC within the cell that occurs during the response action of the LC. This flow is very substantial in a twisted orientation state, such as the TN orientation, presenting a major cause for slow response speed. Thus, any mode which is free from twisting during switching may make for a faster response speed as in the case of a bend cell.
A bend cell, which is effective for realizing a fast response is critically disadvantageous for displaying high-quality TV images, in that a bend cell is used in combination with a phase difference plate method, i.e., a phase difference plate is required for optical compensation in order to obtain a practical level of contrast, as described in [Miyashita et al., 1998 LCD forum: “How can LCDs make their way into the CRT monitor market—from the perspective of moving image display—”, p. 7 “A field sequential full-color liquid crystal display utilizing quick response characteristics of OCB liquid crystal”].
The phase difference plate method, which comes into play when a mere combination of an LC cell and polarization plates cannot provide a dark display state, utilizes a phase difference plate having a similar level of phase difference to a residual phase difference of an LC cell to eliminate the phase difference, thereby attaining a dark display state. Even with this method, which in theory would attain a perfect dark display state and a relatively high contrast, it is very difficult to attain a high contrast level over 200:1 in practice. The main reason is the difficulty in producing a phase difference plate in a uniform manner while matching the wavelength dependency of the phase differences (so-called wavelength dispersion) of an LC cell and a phase difference plate.
In general, the phase difference of a phase difference plate as an industrial product, which by definition is defined at the maximum luminosity wavelength, i.e., 550 nm, will have some wavelength dispersion in practice. On the part of the LC cell as well, residual phase difference will have some wavelength dispersion due to the wavelength dispersion associated with the birefringent property of LC. If the LC cell and the phase difference can be perfectly matched in terms of wavelength dispersion of phase difference, then the phase difference in the entire visible spectrum will be eliminated, thereby resulting in an excellent dark display state and high contrast. However, since such wavelength dispersion is associated with the birefringence of LC materials and materials for producing phase difference plates, in practice, it is very difficult to solve this problem insofar as quite different materials are used for the LC and the phase difference plate.
Furthermore, it is difficult to produce a phase difference plate having a perfectly uniform phase difference over a large area. In fact, a phase difference variation (local) of ±5 nm in a central portion, and a phase difference variation (global) of ±5 nm in an area of about 10″, would be inevitable in practice. For such reasons, the phase difference plate method is presumably not suitable for the purpose of displaying high-quality TV images.
A liquid crystal display apparatus according to the present invention includes: a pair of substrates opposing each other; a liquid crystal layer interposed between the pair of substrates, the liquid crystal layer containing liquid crystal molecules having a negative dielectric anisotropy; at least one electrode provided on each of the pair of substrates, the at least one electrode being used for applying an electric field across the liquid crystal layer; and at least one volume excluding member, wherein: one of the at least one volume excluding member is provided on the at least one electrode on at least one of the pair of substrates, the volume excluding member being provided so as to be on at least a portion of one side edge of the at least one electrode; a side of each of the pair of substrates facing the liquid crystal layer is subjected to a vertical alignment treatment; and the liquid crystal molecules are tilted in a uniform direction from the at least one side edge of the at least one electrode to an opposite edge when a voltage is applied to the at least one electrode.
In one embodiment of the invention, the volume excluding member comprises at least one of a protrusion and a concave stepped portion.
In another embodiment of the invention, the volume excluding member is provided along the entirety of the at least one side edge of the at least one electrode.
Alternatively, a liquid crystal display apparatus according to the present invention includes: a pair of substrates opposing each other; a liquid crystal layer interposed between the pair of substrates, the liquid crystal layer containing liquid crystal molecules having a negative dielectric anisotropy; at least one electrode provided on each of the pair of substrates, the at least one electrode being used for applying an electric field across the liquid crystal layer; and a plurality of volume excluding members provided on the at least one electrode on at least one of the pair of substrates, each of the plurality of volume excluding members being provided so as to be on at least a portion of each of an opposing pair of side edges of the at least one electrode but so as not to oppose each other, wherein: a side of each of the pair of substrates facing the liquid crystal layer is subjected to a vertical alignment treatment; and the liquid crystal molecules are tilted in a uniform direction from the at least one side edge of the at least one electrode to an opposite edge when a voltage is applied to the at least one electrode.
In one embodiment of the invention, the at least one electrode on the at least one of the pair of substrates includes a first side edge and a second side edge; and the plurality of volume excluding members are provided along a portion of the first side edge and along a portion of the second side edge.
In another embodiment of the invention, a non-conductive window portion is formed in the at least one electrode on the at least one of the pair of substrates.
Alternatively, a liquid crystal display apparatus according to the present invention includes: a pair of substrates opposing each other; a liquid crystal layer interposed between the pair of substrates, the liquid crystal layer containing liquid crystal molecules; and at least one electrode provided on at least one of the pair of substrates, the at least one electrode being used for applying an electric field across the liquid crystal layer, wherein: the liquid crystal layer includes at least one pixel portion and a non-pixel portion, the at least one pixel portion corresponding to the at least one electrode; and when voltage is not applied to the at least one electrode, the liquid crystal molecules in the at least one pixel portion are oriented in a vertical alignment and the liquid crystal molecules in the non-pixel portion are oriented in a uniaxial horizontal alignment.
In one embodiment of the invention, the liquid crystal molecules in the at least one pixel portion are oriented in a horizontal alignment so as to be tilted in a uniform direction when a voltage is applied to the at least one electrode.
In another embodiment of the invention, a volume excluding member is formed on a portion of the at least one electrode.
In still another embodiment of the invention, the volume excluding member comprises at least one of a protrusion and a concave stepped portion.
In still another embodiment of the invention, a side of the at least one of the pair of substrates facing the liquid crystal layer is subjected to a rubbing treatment.
In still another embodiment of the invention, the at least one electrode comprises a comb electrode.
In still another embodiment of the invention, the liquid crystal molecules in the non-pixel portion are oriented in a uniaxial horizontal alignment by at least one method selected from the group consisting of: subjecting a horizontal alignment film to a rubbing treatment; subjecting a vertical alignment film to a selective chemical modification treatment followed by a rubbing treatment: subjecting a vertical alignment film to a selective irradiation of ultraviolet rays followed by a rubbing treatment; and subjecting a vertical alignment film to an irradiation of selectively polarized ultraviolet rays.
In still another embodiment of the invention, a direction of the horizontal alignment of the liquid crystal molecules in the at least one pixel portion is substantially identical to a direction of uniaxial horizontal alignment of the liquid crystal molecules in the non-pixel portion.
Hereinafter, the effects of the present invention will be described.
According to one embodiment of the present invention, in a VA mode in which application of an electric field causes an LC material which is originally oriented in a vertical alignment to be realigned in a horizontal alignment, where the LC material has a negative dielectric anisotropy, a protrusion or a concave stepped portion is provided on a side of at least one substrate facing an LC layer, so as to be along a side edge of each pixel region. As a result, when an electric field is applied, LC molecules are tilted in a uniform direction from that edge to an opposite edge so as to take a horizontal alignment. Thus, high contrast and fast response can be achieved without allowing disclination to occur. Such protrusions or concave stepped portions may be provided on both substrates.
According to another embodiment of the present invention, in a VA mode, protrusions or concave stepped portions are provided on a side of at least one substrate facing the LC layer, so as to be along two opposite side edges of each pixel region without opposing each other. As a result, when an electric field is applied, LC molecules are tilted in a uniform direction from one edge to an opposite edge so as to take a horizontal alignment. Thus, high contrast and fast response can be achieved without allowing disclination to occur. Such protrusions or concave stepped portions may be provided on both substrates.
According to still another embodiment of the present invention, in a VA mode, protrusions or concave stepped portions are provided on a side of at least one substrate facing the LC layer, so as to be along a side edge of each subpixel region that is partitioned by a window portion. As a result, when an electric field is applied, LC molecules are tilted in a uniform direction from that edge to an opposite edge so as to take a horizontal alignment. Thus, high contrast and fast response can be achieved without allowing disclination to occur. Such protrusions or concave stepped portions may be provided on both substrates. Alternatively, such protrusions or concave stepped portions may be provided on one substrate, while window portions may be provided on the other substrate.
Thus, the invention described herein makes possible the advantages of providing a liquid crystal display apparatus which can provide high contrast and fast response and which can reproduce high-quality images free from blurring artifacts associated with moving images.
These and other advantages of the present invention will become apparent to those skilled in the art upon reading and understanding the following detailed description with reference to the accompanying figures.
As discussed earlier, any mode which is free from twisting during switching could make for a fast response speed. A VA mode is known as a mode which does not require any phase difference plates but which only requires polarization plates to attain an excellent dark state and high contrast without causing twisting. According to a VA mode, an LC material having a negative dielectric anisotropy Δε, which is originally oriented in a vertical alignment, may be realigned in a horizontal alignment responsive to an electric field applied between the substrates. Alternatively, an LC material having a positive dielectric anisotropy Δε, which is originally oriented in a vertical alignment, may be realigned in a horizontal alignment responsive to an electric field applied in a direction parallel to the substrate surfaces;
According to a VA mode, birefringence is substantially completely eliminated because the LC material takes a vertical alignment in an initial state. Thus, an excellent dark display state, similar to that obtained through a pair of cross-nicol polarization plates alone, can be easily attained, thereby providing for high contrast display. A report has been made on the achievement of a very high contrast of 700:1 or above [H. D. Liu et al., Euro Display 99 Late news papers, (1999) p. 31 “A Wide Viewing Angle Back Side Exposure MVA TFT LCD with Novel Structure and Simple Process”].
The VA mode, which is highly advantageous in terms of contrast, is susceptible to disclination. As illustrated in FIG. 3 of C. K. Wei et al., SID 98 DIGEST (1998) p. 1081 “A Wide Viewing Angle Polymer Stabilized Homeotropic Aligned LCD”, disclination can be explained as a phenomenon in which random discontinuities in orientation (i.e., “disclination”) arise in response to an applied electric field causing LC molecules to be tilted in an omnidirectional manner. Disclination, which may typically occur in a structure in which an LC material is merely pre-oriented in a vertical alignment between a pair of opposing substrates placed in a parallel arrangement, can hinder uniform display. There has been plenty of research performed on the problem of disclination. As described in the above publication, the technique of controlling the tilting direction of LC molecules by means of protrusions formed on substrates has been established. Other than forming protrusions, a method is known from Japanese Laid-Open Patent Publication No. 7-199190 involving forming an opening in each pixel electrode and providing another electrode around the pixel electrode for orientation controlling purposes, whereby disclination can be controlled.
Thus, there are known techniques for solving display uniformity problems associated with the VA mode. However, known VA mode structures are still slower in terms of response speed than bend cell-based structures (see above), and may even be as slow as conventional TN mode structures. In fact, the slow response speed of the VA mode is also ascribable to disclination. A report has been made which describes an experiment directed to various shapes of disclination (Table 1), indicating that cells having disclination controlled to be in a one-dimensional shape exhibit much faster response speed than cells having disclination controlled to be in a two-dimensional shape as described in the above publication [K. Ohmuro et al., SID 97 DIGEST (1997) p. 845 “Development of Super High Image Quality Vertical Alignment Mode LCD”, disclination].
According to K. Ohmuro et al., SID 97 DIGEST (1997) p. 845 “Development of Super High Image Quality Vertical Alignment Mode LCD”, supra, a rising response time of 8 ms and a falling response time of 5 ms have been realized with one-dimensional disclination.
Now, referring to
The detailed mechanism of how disclination affects response speed is not clear. However, one presumable reason is that, as shown in
In order to attain further enhancement of response speed, it is necessary to realize a switching mode which is free from disclination. Accordingly, Japanese Laid-Open Patent Publication No. 11-44885 discloses a method which involves orienting LC molecules with a pretilt angle of several degrees from a completely vertical alignment, which may be implemented by, for example, providing slanted portions in a substrate as described in Japanese Laid-Open Patent Publication No. 2-190825, or subjecting a vertical alignment film to a rubbing treatment as described in Japanese Patent No. 2907228. However, these methods detract from an excellent dark display state which would otherwise be attained by a vertical alignment.
Therefore, according to the present invention, there is provided a mode of switching which retains a substantially perfect vertical alignment in an initial state and which can prevent disclination, in order to make full use of the high contrast and fast response potentials of the VA mode.
The protrusions 114 can be formed by using a photosensitive resin.
Alternatively, as in an LC display apparatus 200 illustrated in
The LC molecules tilt in one direction due to excluded volume effects provided by the protrusions 114 or the concave stepped portions 216 (hence such protrusions or concave stepped portions may hereinafter be referred to as “volume excluding members”). Due to the continuous nature of LC, such a tilt of the LC molecules uniformly continues from a side edge along which the protrusion 114 or a concave stepped portion 216 to an opposite side edge.
Alternatively, such protrusions 114 or concave stepped portions 216 may be provided on a counter substrate, or on both substrates.
Furthermore, viewing angle characteristics are also important for obtaining high-quality displayed images. In the case of the two-dimensional disclination of the LC display apparatus 2100 shown in
Accordingly, as shown in
In such an embodiment as well, such protrusions 414 or concave stepped portions may be provided on a counter substrate, or on both substrates.
Furthermore, the viewing angle characteristics around 360° can be improved while maintaining fast response. For example, as seen from
Alternatively, such window portions, protrusions, and/or concave stepped portions may be provided on a counter substrate, or on both substrates. Alternatively, such protrusions or concave stepped portions may be provided on one substrate, while window portions may be provided on the other substrate.
It should be noted that although an apparently similar structure is disclosed in Japanese Laid-Open Patent Publication No. 7-199190, as seen from
Hereinafter, the present invention will be further described by way of illustrative examples; however, the scope of the present invention is not limited to such specific examples.
As Example 1 of the present invention, an LC display apparatus 100 shown in
A transparent electrode (counter electrode) of ITO (thickness: 1000 Å) was formed on another glass substrate to form a counter substrate.
A vertical alignment film JALS-204 (Japan Synthetic Rubber Co., Ltd.) was formed on the side of each substrate on which the electrode(s) was(were) formed. The two substrates were attached to each other to obtain a cell thickness of 3 μm. Nematic liquid crystal MJ95955 (Merck & Co., Inc.) was injected into the cell, whereby an LC cell according to Example 1 was completed. This LC material has a dielectric anisotropy of −3.3.
The resultant LC cell was interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage, whereby a very excellent dark display state was exhibited. The amount of transmitted light was measured using a backlight (10000 cd/m2) for irradiating the LC cell. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nicol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in a cross-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount. Next, a rectangular wave electric field (120 Hz) was applied. As a result, the pixel portions began to brighten up in the neighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. A contrast of 800 or more was obtained.
An observation with a microscope revealed absence of disclination, which would always be observed in a conventional VA mode. As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode.
The viewing angle characteristics of this LC display apparatus 100 were measured, which revealed that the contrast decreases to 50 or less in any direction at 20° away from the frontal direction, and 5 or less at 50° away from the frontal direction, indicative of insufficient viewing angle characteristics.
As Example 2 of the present invention, an LC display apparatus 700 shown in
The resultant LC cell was interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage, whereby a very excellent dark display state was exhibited. The amount of transmitted light was measured using a backlight (10000 cd/m2) for irradiating the LC cell. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nicol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in a cross-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount. Next, a rectangular wave electric field (120 Hz) was applied. As a result, the pixel portions began to brighten up in the neighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. A contrast of 800 or more was obtained.
An observation with a microscope revealed absence of disclination, which would always be observed in a conventional VA mode. As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode.
The viewing angle characteristics of this LC display apparatus 700 were measured, which revealed that the contrast decreases to 50 or less in any direction at 20° away from the frontal direction, and 5 or less at 50° away from the frontal direction, indicative of insufficient viewing angle characteristics.
As Example 3 of the present invention, an LC display apparatus 200 shown in
The resultant LC cell was interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage, whereby a very excellent dark display state was exhibited. The amount of transmitted light was measured using a backlight (10000 cd/m2) for irradiating the LC cell. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nicol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in a cross-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount. Next, a rectangular wave electric field (120 Hz) was applied. As a result, the pixel portions began to brighten up in the neighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. A contrast of 800 or more was obtained.
An observation with a microscope revealed absence of disclination, which would always be observed in a conventional VA mode. As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode.
The viewing angle characteristics of this LC display apparatus 200 were measured, which revealed that the contrast decreases to 50 or less in any direction at 20° away from the frontal direction, and 5 or less at 50° away from the frontal direction, indicative of insufficient viewing angle characteristics.
As Example 4 of the present invention, an LC display apparatus 400 shown in
The resultant LC cell was interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage, whereby a very excellent dark display state was exhibited. The amount of transmitted light was measured using a backlight (10000 cd/m2) for irradiating the LC cell. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nicol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in a cross-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount. Next, a rectangular wave electric field (120 Hz) was applied. As a result, the pixel portions began to brighten up in the neighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. A contrast of 800 or more was obtained.
An observation with a microscope revealed absence of disclination, which would always be observed in a conventional VA mode. As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode.
The viewing angle characteristics of this LC display apparatus 500 were measured, which revealed that the contrast decreases to 50 or less in any direction (other than the longitudinal direction of the protrusions 414 or the short side direction of the concave stepped portions) at 20° from the frontal direction, and 5 or less at 50° from the frontal direction, indicative of insufficient viewing angle characteristics. However, in the longitudinal direction of the protrusions 414 or the short side direction of the concave stepped portions, there was a high contrast of 500 or more even at 50° from the frontal direction, and a somewhat lesser contrast of 200 or more at 70° from the frontal direction, indicative of a high contrast over a sufficiently broad range of viewing angles.
As Example 5 of the present invention, an LC display apparatus 500 shown in
The resultant LC cell was interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage, whereby a very excellent dark display state was exhibited. The amount of transmitted light was measured using a backlight (10000 cd/m2) for irradiating the LC cell. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nicol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in a cross-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount. Next, a rectangular wave electric field (120 Hz) was applied. As a result, the pixel portions began to brighten up in the neighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. A contrast of 800 or more was obtained.
An observation with a microscope revealed absence of disclination, which would always be observed in a conventional VA mode. As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode.
The viewing angle characteristics of this LC display apparatus 500 were measured, which revealed that there was a high contrast of 500 or more even at 50° from the frontal direction, and a somewhat lesser contrast of 200 or more at 70° from the frontal direction, indicative of a high contrast over a sufficiently broad range of viewing angles.
According to Example 6, the present invention is applied to various simple matrix type LC display apparatuses as shown in
Although the contrast of the resultant LC display apparatuses was reduced to about 150 due to crosstalk, an excellent display quality was obtained as compared with that provided by a conventional simple matrix type LC display apparatus. The LC display apparatuses had as good an LC response speed and viewing angle characteristics as attained in Examples 1 to 5.
According to Example 7, the present invention is applied to various simple matrix type LC display apparatuses as shown in
Although the contrast of the resultant LC display apparatuses was reduced to about 150 due to crosstalk, as in Example 6, an excellent display quality was obtained as compared with that provided by a conventional simple matrix type LC display apparatus. The LC display apparatuses had as good an LC response speed and viewing angle characteristics as attained in Examples 1 to 6.
Examples 1 to 7, described above, are directed to embodiments in which LC molecules in the non-pixel portions are oriented in a vertical alignment.
As shown in
In the structure shown in
Hereinafter, Examples 8 to 11 of the present invention will be generally described first, and then described in detail as to their possible variants. Each of Examples 8-11 has six variants as indicated by the suffixes −1 to −6. Sub-examples indicated by the suffixes −1 to −6 correspond to FIGS. 8A/8B, 10A/10B, 11A/11B, 12A/12B, 13A/13B, and 14A/14B, respectively.
Similar effects can be obtained with protrusions 1015 provided in an LC display apparatus 1000 shown in
There has been a long history of attempts of applying different alignment treatments for pixel portions and non-pixel portions. For example, as described in Japanese Laid-Open Patent Publication Nos. 59-78318, 5-93912, and 6-3675, it is well-known to introduce a horizontal alignment in pixel portions and a vertical alignment in non-pixel portions. However, these techniques are directed to LC display apparatuses which perform a display function in cooperation with a pair of polarizing plates in a cross-nicol state, where a vertical alignment is introduced in the non-pixel portions for the sole purpose of improving the quality of a dark display state.
In contrast, according to the present invention, a vertical alignment is introduced to LC molecules in the pixel portions, whereas a horizontal alignment is introduced to LC molecules in the non-pixel portions with a uniaxial alignment, with a view to further enhancing the response speed of a VA mode. According to the present invention, the non-pixel portions no longer serve to display a dark state, which in itself might appear to be detrimental to the display quality. However, in actual implementation, a black matrix can be conveniently employed to prevent reflection from a TFT array 1706 and/or wiring 1705 (
There are several methods for maintaining a uniaxial horizontal alignment of LC molecules in the non-pixel portions. The simplest method is to selectively form horizontal alignment films in the non-pixel portions and apply a usual rubbing treatment thereto. A method which does not involve selective formation of horizontal alignment films is to form a vertical alignment film over the entire substrate surface and selectively modify the non-pixel portions through a chemical process. Examples of applicable chemical processes include: an acid process or an alkali process using a resist for protecting the pixel portions; and selective ultraviolet ray irradiation through a photomask. While such chemical processes can destroy vertical alignment and provide horizontal alignment, it is difficult to impart a uniaxial arrangement to the horizontal alignment. Therefore, it is desirable to also use rubbing. A method which does not involve rubbing treatments is to irradiate ultraviolet rays which have been linearly polarized in a particular direction. With this method, it is possible to impart uniaxialness in accordance with the polarization direction of the ultraviolet rays.
Hereinafter, the variants, indicated by the suffixes −1 to −6, of Examples 8 to 11 of the present invention will be specifically described.
As an example of the present invention, an LC display apparatus was produced as follows. TFT elements were formed on a glass substrate. A transparent electrode film of ITO (thickness: 1000 Å) was formed so as to be in contact with the glass substrate, thereby forming a matrix electrode substrate. The ITO film was patterned into pixel electrodes sized 300 μm×300 μm each. A piece of photosensitive resin BPR107 (Japan Synthetic Rubber Co., Ltd.), having a width of 10 μm and a thickness of 1 μm, was formed as a protrusion 815 in the central portion of each ITO pixel in the manner shown in
A horizontal alignment film LQT-120 (Hitachi Chemical Co., Ltd.) was formed on the side of each substrate on which the electrode(s) was(were) formed, and a rubbing treatment was applied to both substrates in parallel directions to each other. The rubbing direction was perpendicular to the longitudinal direction of the protrusions. Upon this, a vertical alignment film JALS-955 (Japan Synthetic Rubber Co., Ltd.) was formed, and a positive type photoresist was further formed thereon. Thereafter, exposure and development were carried out by using a photomask for shielding the pixel portions only, and the photoresist in the non-pixel portions was removed. Through a timed dry etching. using an O2 plasma, the vertical alignment film JALS-955 in the non-pixel portions was removed. After removing the resist in the pixel portions, the two substrates were attached to each other to obtain a cell thickness of 3 μm. Nematic liquid crystal MJ95955 (Merck & Co., Inc.) was injected into the cell, whereby an LC cell was completed. This LC material has a dielectric anisotropy of −3.3.
The resultant LC cell was-interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage. A very excellent dark display state was observed when the rubbing direction coincided with either axis of polarization. As the cell was rotated, transmitted light began to be observed in the non-pixel portions, and the amount of transmitted light became maximum with a rotation angle of 45°. Thus, it was confirmed that a horizontal alignment which was uniaxially aligned in the rubbing direction had been obtained. On the other hand, the pixel portions always exhibited an excellent dark display state, indicative of a vertical alignment. The amount of transmitted light was measured using a backlight (10000 cd/m2) while placing the LC display apparatus in an arrangement where the rubbing direction coincided with either axis of polarization. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nicol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in a cross-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount.
Next, a rectangular wave electric field (120 Hz) was applied while placing the LC display apparatus in an arrangement where the rubbing direction was at an angle of 45° with either polarization axis. As a result, the pixel portions began to brighten up in the neighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. Thus, a contrast of 800 or more was obtained. An observation with a microscope revealed total absence of disclination, which would always be observed in a conventional VA mode, even at boundaries between the pixel and the non-pixel portions.
As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode. The response times for eight gray scale levels with respect to eight variations of transmitted light amounts (8×8=64 states) were also confirmed to be all equal to or less than 2.5 ms, indicative of a very fast response.
As an example of the present invention, an LC display apparatus was produced in the same manner as in Example 8-1, except that a piece of photosensitive resin BPR107 (Japan Synthetic Rubber Co., Ltd.) was formed as a protrusion 1015 along a side edge of each ITO pixel (i.e., electrode 1003) in the manner shown in
The resultant LC cell was interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage. A very excellent dark display state was observed when the rubbing direction coincided with either axis of polarization. As the cell was rotated, transmitted light began to be observed in the non-pixel portions, and the amount of transmitted light became maximum with a rotation angle of 45°. Thus, it was confirmed that a horizontal alignment which was uniaxially aligned in the rubbing direction had been obtained. On the other hand, the pixel portions always exhibited an excellent dark display state, indicative of a vertical alignment. The amount of transmitted light was measured using a backlight (10000 cd/m2) while placing the LC display apparatus in an arrangement where the rubbing direction coincided with either axis of polarization. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nicol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in a cross-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount.
Next, a rectangular wave electric field (120 Hz) was applied while placing the LC display apparatus in an arrangement where the rubbing direction was at an angle of 45° with either polarization axis. As a result, the pixel portions began to brighten up in the neighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. Thus, a contrast of 800 or more was obtained. An observation with a microscope revealed total absence of disclination, which would always be observed in a conventional VA mode, even at boundaries between the pixel and the non-pixel portions.
As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode. The response times for eight gray scale levels with respect to eight variations of transmitted light amounts (8×8=64 states) were also confirmed to be all equal to or less than 2.5 ms, indicative of a very fast response.
As an example of the present invention, an LC display apparatus was produced in the same manner as in Example 8-1, except that a concave stepped portion 1116 was formed in the central portion of each ITO pixel (i.e., electrode 1103) in the manner shown in
The resultant LC cell was interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage. A very excellent dark display state was observed when the rubbing direction coincided with either axis of polarization. As the cell was rotated, transmitted light began to be observed in the non-pixel portions, and the amount of transmitted light became maximum with a rotation angle of 45°. Thus, it was confirmed that a horizontal alignment which was uniaxially aligned in the rubbing direction had been obtained. On the other hand, the pixel portions always exhibited an excellent dark display state, indicative of a vertical alignment. The amount of transmitted light was measured using a backlight (10000 cd/m2) while placing the LC display apparatus in an arrangement where the rubbing direction coincided with either axis of polarization. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nicol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in a cross-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount.
Next, a rectangular wave electric field (120 Hz) was applied while placing the LC display apparatus in an arrangement where the rubbing direction was at an angle of 45° with either polarization axis. As a result, the pixel portions began to brighten up in the neighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. Thus, a contrast of 800 or more was obtained. An observation with a microscope revealed total absence of disclination, which would always be observed in a conventional VA mode, even at boundaries between the pixel and the non-pixel portions.
As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode. The response times for eight gray scale levels with respect to eight variations of transmitted light amounts (8×8=64 states) were also confirmed to be all equal to or less than 2.5 ms, indicative of a very fast response.
As an example of the present invention, an LC display apparatus was produced in the same manner as in Example 8-1, except that a concave stepped portion 1216 was formed along a side edge of each ITO pixel in the manner shown in
The resultant LC cell was interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage. A very excellent dark display state was observed when the rubbing direction coincided with either axis of polarization. As the cell was rotated, transmitted light began to be observed in the non-pixel portions, and the amount of transmitted light became maximum with a rotation angle of 45°. Thus, it was confirmed that a horizontal alignment which was uniaxially aligned in the rubbing direction had been obtained. On the other hand, the pixel portions always exhibited an excellent dark display state, indicative of a vertical alignment. The amount of transmitted light was measured using a backlight (10000 cd/m2).while placing the LC display apparatus in an arrangement where the rubbing direction coincided with either axis of polarization. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nicol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in across-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount.
Next, a rectangular wave electric field (120 Hz) was applied while placing the LC display apparatus in an arrangement where the rubbing direction was at an angle of 45° with either polarization axis. As a result, the pixel portions began to brighten up in the neighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. Thus, a contrast of 800 or more was obtained. An observation with a microscope revealed total absence of disclination, which would always be observed in a conventional VA mode, even at boundaries between the pixel and the non-pixel portions.
As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode. The response times for eight gray scale levels with respect to eight variations of transmitted light amounts (8×8=64 states) were also confirmed to be all equal to or less than 2.5 ms, indicative of a very fast response.
As an example of the present invention, an LC display apparatus was produced as follows. TFT elements were formed on a glass substrate. A transparent electrode film of ITO (thickness: 1000 Å) was formed so as to be in contact with the glass substrate, thereby forming a matrix electrode substrate. The ITO film was patterned into pixel electrodes sized 300 μm×300 μm each. A transparent electrode film of ITO (thickness: 1000 Å) was formed on another glass substrate to form a counter substrate.
A horizontal alignment film LQT-120 (Hitachi Chemical Co., Ltd.) was formed on the side of each substrate on which the electrode(s) was(were) formed, Upon this, a vertical alignment film JALS-955 (Japan Synthetic Rubber Co., Ltd.) was formed, and a positive type photoresist was further formed thereon. Thereafter, exposure and development were carried out by using a photomask for shielding the pixel portions only, and the photoresist in the non-pixel portions was removed. Through a timed dry etching using an O2 plasma, the vertical alignment film JALS-955 in the non-pixel portions was removed. After removing the resist in the pixel portions, a rubbing treatment (see
The resultant LC cell was interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage. A very excellent dark display state was observed when the rubbing direction coincided with either axis of polarization. As the cell was rotated, transmitted light began to be observed in the non-pixel portions, and the amount of transmitted light became maximum with a rotation angle of 45°. Thus, it was confirmed that a horizontal alignment which was uniaxially aligned in the rubbing direction had been obtained. On the other hand, the pixel portions always exhibited an excellent dark display state, indicative of a vertical alignment. The amount of transmitted light was measured using a backlight (10000 cd/m2) while placing the LC display apparatus in an arrangement where the rubbing direction coincided with either axis of polarization. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nicol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in a cross-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount.
Next, a rectangular wave electric field (120 Hz) was applied while placing the LC display apparatus in an arrangement where the rubbing direction was at an angle of 45° with either polarization axis. As a result, the pixel portions began to brighten up in the neighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. Thus, a contrast of 800 or more was obtained. An observation with a microscope revealed total absence of disclination, which would always be observed in a conventional VA mode, even at boundaries between the pixel and the non-pixel portions.
As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode. The response times for eight gray scale levels with respect to eight variations of transmitted light amounts (8×8=64 states) were also confirmed to be all equal to or less than 2.5 ms, indicative of a very fast response.
As an example of the present invention, an LC display apparatus was produced as follows. TFT elements were formed on a glass substrate. By providing pairs of opposing comb electrodes 1403 as shown in
A horizontal alignment film LQT-120 (Hitachi Chemical Co., Ltd.) was formed on the side of each substrate on which the electrode(s) was(were) formed, and a rubbing treatment was applied to both substrates in parallel directions to each other. The rubbing direction was perpendicular to a direction in which each pair of comb electrodes opposed each other to define pixels. Upon this, a vertical alignment film JALS-955 (Japan Synthetic Rubber Co., Ltd.) was formed, and a positive type photoresist was further formed thereon. Thereafter, exposure and development were carried out by using a photomask for shielding the pixel portions only, and the photoresist in the non-pixel portions was removed. Through a timed dry etching using an O2 plasma, the vertical alignment film JALS-955 in the non-pixel portions was removed. After removing the resist in the pixel portions, the two substrates were attached to each other to obtain a cell thickness of 3 μm. Nematic liquid crystal E7 (Merck & Co., Inc.) was injected into the cell, whereby an LC cell was completed. This LC material has a dielectric anisotropy of 13.8.
The resultant LC cell was interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage. A very excellent dark display state was observed when the rubbing direction coincided with either axis of polarization. As the cell was rotated, transmitted light began to be observed in the non-pixel portions, and the amount of transmitted light became maximum with a rotation angle of 45°. Thus, it was confirmed that a horizontal alignment which was uniaxially aligned in the rubbing direction had been obtained. On the other hand, the pixel portions always exhibited an excellent dark display state, indicative of a vertical alignment. The amount of transmitted light was measured using a backlight (10000 cd/m2) while placing the LC display apparatus in an arrangement where the rubbing direction coincided with either axis of polarization. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nicol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in a cross-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount.
Next, a rectangular wave electric field (120 Hz) was applied while placing the LC display apparatus in an arrangement where the rubbing direction was at an angle of 45° with either polarization axis. As a result, the pixel portions began to brighten up in the neighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. Thus, a contrast of 800 or more was obtained. An observation with a microscope revealed total absence of disclination, which would always be observed in a conventional VA mode, even at boundaries between the pixel and the non-pixel portions.
As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode. The response times for eight gray scale levels with respect to eight variations of transmitted light amounts (8×8=64 states) were also confirmed to be all equal to or less than 2.5 ms, indicative of a very fast response.
As an example of the present invention, an LC display apparatus was produced as follows. TFT elements were formed on a glass substrate. A transparent electrode film of ITO (thickness: 1000 Å) was formed so as to be in contact with the glass substrate, thereby forming a matrix electrode substrate. The ITO film was patterned into pixel electrodes sized 300 μm×300 μm each. A piece of photosensitive resin BPR107 (Japan Synthetic Rubber Co., Ltd.), having a width of 10 μm and a thickness of 1 μm, was formed as a concave stepped portion 815 in the central portion of each ITO pixel (i.e., electrode 803) in the manner shown in
A vertical alignment film JALS-955 (Japan Synthetic Rubber Co., Ltd.) was formed on the side of each substrate on which the electrode(s) was(were) formed, and a positive type photoresist was further formed thereon. Thereafter, exposure and development were carried out by using a photomask for shielding the pixel portions only, and the photoresist in the non-pixel portions was removed. While protecting the pixel portions with the photoresist, the substrates were immersed in a 1% aqueous solution of hydrofluoric acid for 1 minute, and then rinsed with purified water, and subsequently dried. Next, a rubbing treatment was applied to both substrates in parallel directions to each other. The rubbing direction was perpendicular to the longitudinal direction of the protrusions. After removing the resist in the pixel portions, the two substrates were attached to each other to obtain a cell thickness of 3 μm. Nematic liquid crystal MJ95955 (Merck & Co., Inc.) was injected into the cell, whereby an LC cell was completed. This LC material has a dielectric anisotropy of −3.3.
The resultant LC cell was interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage. A very excellent dark display state was observed when the rubbing direction coincided with either axis of polarization. As the cell was rotated, transmitted light began to be observed in the non-pixel portions, and the amount of transmitted light became maximum with a rotation angle of 45°. Thus, it was confirmed that a horizontal alignment which was uniaxially aligned in the rubbing direction had been obtained. On the other hand, the pixel portions always exhibited an excellent dark display state, indicative of a vertical alignment. The amount of transmitted light was measured using a backlight (10000 cd/m2) while placing the LC display apparatus in an arrangement where the rubbing direction coincided with either axis of polarization. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nicol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in a cross-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount.
Next, a rectangular wave electric field (120 Hz) was applied while placing the LC display apparatus in an arrangement where the rubbing direction was at an angle of 45° with either polarization axis. As a result, the pixel portions began to brighten up in the neighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. Thus, a contrast of 800 or more was obtained. An observation with a microscope revealed total absence of disclination, which would always be observed in a conventional VA mode, even at boundaries between the pixel and the non-pixel portions.
As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode. The response times for eight gray scale levels with respect to eight variations of transmitted light amounts (8×8=64 states) were also confirmed to be all equal to or less than 2.5 ms, indicative of a very fast response.
As an example of the present invention, an LC display apparatus was produced in the same manner as in Example 9-1, except that a piece of photosensitive resin BPR107 (Japan Synthetic Rubber Co., Ltd.) was formed as a protrusion 1015 along a side edge of each ITO pixel (i.e., electrode 1003) in the manner shown in
The resultant LC cell was interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage. A very excellent dark display state was observed when the rubbing direction coincided with either axis of polarization. As the cell was rotated, transmitted light began to be observed in the non-pixel portions, and the amount of transmitted light became maximum with a rotation angle of 45°. Thus, it was confirmed that a horizontal alignment which was uniaxially aligned in the rubbing direction had been obtained. On the other hand, the pixel portions always exhibited an excellent dark display state, indicative of a vertical alignment. The amount of transmitted light was measured using a backlight (10000 cd/m2) while placing the LC display apparatus in an arrangement where the rubbing direction coincided with either axis of polarization. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nicol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in a cross-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount.
Next, a rectangular wave electric field (120 Hz) was applied while placing the LC display apparatus in an arrangement where the rubbing direction was at an angle of 45° with either polarization axis. As a result, the pixel portions began to brighten up in the neighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. Thus, a contrast of 800 or more was obtained. An observation with a microscope revealed total absence of disclination, which would always be observed in a conventional VA mode, even at boundaries between the pixel and the non-pixel portions.
As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode. The response times for eight gray scale levels with respect to eight variations of transmitted light amounts (8×8=64 states) were also confirmed to be all equal to or less than 2.5 ms, indicative of a very fast response.
As an example of the present invention, an LC display apparatus was produced in the same manner as in Example 9-1, except that a concave stepped portion 1116 was formed in the central portion of each ITO pixel (i.e., electrode 1103) in the manner shown in
The resultant LC cell was interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage. A very excellent dark display state was observed when the rubbing direction coincided with either axis of polarization. As the cell was rotated, transmitted light began to be observed in the non-pixel portions, and the amount of transmitted light became maximum with a rotation angle of 45°. Thus, it was confirmed that a horizontal alignment which was uniaxially aligned in the rubbing direction had been obtained. On the other hand, the pixel portions always exhibited an excellent dark display state, indicative of a vertical alignment. The amount of transmitted light was measured using a backlight (10000 cd/m2) while placing the LC display apparatus in an arrangement where the rubbing direction coincided with either axis of polarization. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nicol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in across-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount.
Next, a rectangular wave electric field (120 Hz) was applied while placing the LC display apparatus in an arrangement where the rubbing direction was at an angle of 45° with either polarization axis. As a result, the pixel portions began to brighten up in the neighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. Thus, a contrast of 800 or more was obtained. An observation with a microscope revealed total absence of disclination, which would always be observed in a conventional VA mode, even at boundaries between the pixel and the non-pixel portions.
As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode. The response times for eight gray scale levels with respect to eight variations of transmitted light amounts (8×8=64 states) were also confirmed to be all equal to or less than 2.5 ms, indicative of a very fast response.
As an example of the present invention, an LC display apparatus was produced in the same manner as in Example 9-1, except that a concave stepped portion 1216 was formed along a side edge of each ITO pixel in the manner shown in
The resultant LC cell was interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage. A very excellent dark display state was observed when the rubbing direction coincided with either axis of polarization. As the cell was rotated, transmitted light began to be observed in the non-pixel portions, and the amount of transmitted light became maximum with a rotation angle of 45°. Thus, it was confirmed that a horizontal alignment which was uniaxially aligned in the rubbing direction had been obtained. On the other hand, the pixel portions always exhibited an excellent dark display state, indicative of a vertical alignment. The amount of transmitted light was measured using a backlight (10000 cd/m2) while placing the LC display apparatus in an arrangement where the rubbing direction coincided with either axis of polarization. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nicol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in a cross-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount.
Next, a rectangular wave electric field (120 Hz) was applied while placing the LC display apparatus in an arrangement where the rubbing direction was at an angle of 45° with either polarization axis. As a result, the pixel portions began to brighten up in the neighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. Thus, a contrast of 800 or more was obtained. An observation with a microscope revealed total absence of disclination, which would always be observed in a conventional VA mode, even at boundaries between the pixel and the non-pixel portions.
As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode. The response times for eight gray scale levels with respect to eight variations of transmitted light amounts (8×8=64 states) were also confirmed to be all equal to or less than 2.5 ms, indicative of a very fast response.
As an example of the present invention, an LC display apparatus was produced as follows. TFT elements were formed on a glass substrate. A transparent electrode film of ITO (thickness: 1000 Å) was formed so as to be in contact with the glass substrate, thereby forming a matrix electrode substrate. The ITO film was patterned into pixel electrodes sized 300 μm×300 μm each. A transparent electrode film of ITO (thickness: 1000 Å) was formed on another glass substrate to form a counter substrate.
A vertical alignment film JALS-955 (Japan Synthetic Rubber Co., Ltd.) was formed on the side of each substrate on which the electrode(s) was(were) formed, and a positive type photoresist was further formed thereon. Thereafter, exposure and development were carried out by using a photomask for shielding the pixel portions only, and the photoresist in the non-pixel portions was removed. While protecting the pixel portions with the photoresist, the substrates were immersed in a 1% aqueous solution of hydrofluoric acid for 1 minute, and then rinsed with purified water, and subsequently dried. Next, a rubbing treatment was applied to both substrates in parallel directions to each other. After removing the resist in the pixel portions, the two substrates were attached to each other to obtain a cell thickness of 3 μm. Nematic liquid crystal MJ95955 (Merck & Co., Inc.) was injected into the cell, whereby an LC cell was completed. This LC material has a dielectric anisotropy of −3.3.
The resultant LC cell was interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage. A very excellent dark display state was observed when the rubbing direction coincided with either axis of polarization. As the cell was rotated, transmitted light began to be observed in the non-pixel portions, and the amount of transmitted light became maximum with a rotation angle of 45°. Thus, it was confirmed that a horizontal alignment which was uniaxially aligned in the rubbing direction had been obtained. On the other hand, the pixel portions always exhibited an excellent dark display state, indicative of a vertical alignment. The amount of transmitted light was measured using a backlight (10000 cd/m2) while placing the LC display apparatus in an arrangement where the rubbing direction coincided with either axis of polarization. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nicol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in across-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount.
Next, a rectangular wave electric field (120 Hz) was applied while placing the LC display apparatus in an arrangement where the rubbing direction was at an angle of 45° with either polarization axis. As a result, the pixel portions began to brighten up in the neighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. Thus, a contrast of 800 or more was obtained. An observation with a microscope revealed total absence of disclination, which would always be observed in a conventional VA mode, even at boundaries between the pixel and the non-pixel portions.
As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode. The response times for eight gray scale levels with respect to eight variations of transmitted light amounts (8×8=64 states) were also confirmed to be all equal to or less than 2.5 ms, indicative of a very fast response.
As an example of the present invention, an LC display apparatus was produced as follows. TFT elements were formed on a glass substrate. By providing pairs of opposing comb electrodes 1403 as shown in
A vertical alignment film JALS-955 (Japan Synthetic Rubber Co., Ltd.) was formed on the side of each substrate on which the electrode(s) was(were) formed, and a positive type photoresist was further formed thereon. Thereafter, exposure and development were carried out by using a photomask for shielding the pixel portions only, and the photoresist in the non-pixel portions was removed. While protecting the pixel portions with the photoresist, the substrates were immersed in a 1% aqueous solution of hydrofluoric acid for 1 minute, and then rinsed with purified water, and subsequently dried. Next, a rubbing treatment was applied to both substrates in parallel directions to each other. The rubbing direction was perpendicular to a direction in which each pair of comb electrodes opposed each other to define pixels. After removing the resist in the pixel portions, the two substrates were attached to each other to obtain a cell thickness of 3 μm. Nematic liquid crystal E7 (Merck & Co., Inc.) was injected into the cell, whereby an LC cell was completed. This LC material has a dielectric anisotropy of 13.8.
The resultant LC cell was interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage. A very excellent dark display state was observed when the rubbing direction coincided with either axis of polarization. As the cell was rotated, transmitted light began to be observed in the non-pixel portions, and the amount of transmitted light became maximum with a rotation angle of 45°. Thus, it was confirmed that a horizontal alignment which was uniaxially aligned in the rubbing direction had been obtained. On the other hand, the pixel portions always exhibited an excellent dark display state, indicative of a vertical alignment. The amount of transmitted light was measured using a backlight (10000 cd/m2) while placing the LC display apparatus in an arrangement where the rubbing direction coincided with either axis of polarization. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nicol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in across-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount.
Next, a rectangular wave electric field (120 Hz) was applied while placing the LC display apparatus in an arrangement where the rubbing direction was at an angle of 45° with either polarization axis. As a result, the pixel portions began to brighten up in the neighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. Thus, a contrast of 800 or more was obtained. An observation with a microscope revealed total absence of disclination, which would always be observed in a conventional VA mode, even at boundaries between the pixel and the non-pixel portions.
As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode. The response times for eight gray scale levels with respect to eight variations of transmitted light amounts (8×8=64 states) were also confirmed to be all equal to or less than 2.5 ms, indicative of a very fast response.
As an example of the present invention, an LC display apparatus was produced as follows. TFT elements were formed on a glass substrate. A transparent electrode film of ITO (thickness: 1000 Å) was formed so as to be in contact with the glass substrate, thereby forming a matrix electrode substrate. The ITO film was patterned into pixel electrodes sized 300 μm×300 μm each. A piece of photosensitive resin BPR107 (Japan Synthetic Rubber Co., Ltd.), having a width of 10 μm and a thickness of 1 μm, was formed in the central portion of each ITO pixel in the manner shown in
A vertical alignment film JALS-955 (Japan Synthetic Rubber Co., Ltd.) was formed on the side of each substrate on which the electrode(s) was(were) formed. Ultraviolet rays (wavelength: 270 nm) were irradiated through a photomask for shielding the pixel portions only. A rubbing treatment was applied to both substrates in parallel directions to each other. The rubbing direction was perpendicular to the longitudinal direction of the protrusions. The two substrates were attached to each other to obtain a cell thickness of 3 μm. Nematic liquid crystal MJ95955 (Merck & Co., Inc.) was injected into the cell, whereby an LC cell was completed. This LC material has a dielectric anisotropy of −3.3.
The resultant LC cell was interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage. A very excellent dark display state was observed when the rubbing direction coincided with either axis of polarization. As the cell was rotated, transmitted light began to be observed in the non-pixel portions, and the amount of transmitted light became maximum with a rotation angle of 45°. Thus, it was confirmed that a horizontal alignment which was uniaxially aligned in the rubbing direction had been obtained. On the other hand, the pixel portions always exhibited an excellent dark display state, indicative of a vertical alignment. The amount of transmitted light was measured using a backlight (10000 cd/m2) while placing the LC display apparatus in an arrangement where the rubbing direction coincided with either axis of polarization. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nicol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in across-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount.
Next, a rectangular wave electric field (120 Hz) was applied while placing the LC display apparatus in an arrangement where the rubbing direction was at an angle of 45° with either polarization axis. As a result, the pixel portions began to brighten up in the neighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. Thus, a contrast of 800 or more was obtained. An observation with a microscope revealed total absence of disclination, which would always be observed in a conventional VA mode, even at boundaries between the pixel and the non-pixel portions.
As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode. The response times for eight gray scale levels with respect to eight variations of transmitted light amounts (8×8=64 states) were also confirmed to be all equal to or less than 2.5 ms, indicative of a very fast response.
As an example of the present invention, an LC display apparatus was produced in the same manner as in Example 10-1, except that a piece of photosensitive resin BPR107 (Japan Synthetic Rubber Co., Ltd.) was formed as a protrusion 1015 along a side edge of each ITO pixel (i.e., electrode 1003) in the manner shown in
The resultant LC cell was interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage. A very excellent dark display state was observed when the rubbing direction coincided with either axis of polarization. As the cell was rotated, transmitted light began to be observed in the non-pixel portions, and the amount of transmitted light became maximum with a rotation angle of 45°. Thus, it was confirmed that a horizontal alignment which was uniaxially aligned in the rubbing direction had been obtained. On the other hand, the pixel portions always exhibited an excellent dark display state, indicative of a vertical alignment. The amount of transmitted light was measured using a backlight (10000 cd/m2) while placing the LC display apparatus in an arrangement where the rubbing direction coincided with either axis of polarization. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nicol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in across-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount.
Next, a rectangular wave electric field (120 Hz) was applied while placing the LC display apparatus in an arrangement where the rubbing direction was at an angle of 45° with either polarization axis. As a result, the pixel portions began to brighten up in the neighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. Thus, a contrast of 800 or more was obtained. An observation with a microscope revealed total absence of disclination, which would always be observed in a conventional VA mode, even at boundaries between the pixel and the non-pixel portions.
As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode. The response times for eight gray scale levels with respect to eight variations of transmitted light amounts (8×8=64 states) were also confirmed to be all equal to or less than 2.5 ms, indicative of a very fast response.
As an example of the present invention, an LC display apparatus was produced in the same manner as in Example 10-1, except that a concave stepped portion 1116 was formed in the central portion of each ITO pixel (i.e., electrode 1103) in the manner shown in
The resultant LC cell was interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage. A very excellent dark display state was observed when the rubbing direction coincided with either axis of polarization. As the cell was rotated, transmitted light began to be observed in the non-pixel portions, and the amount of transmitted light became maximum with a rotation angle of 45°. Thus, it was confirmed that a horizontal alignment which was uniaxially aligned in the rubbing direction had been obtained. On the other hand, the pixel portions always exhibited an excellent dark display state, indicative of a vertical alignment. The amount of transmitted light was measured using a backlight (10000 cd/m2) while placing the LC display apparatus in an arrangement where the rubbing direction coincided with either axis of polarization. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nicol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in across-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount.
Next, a rectangular wave electric field (120 Hz) was applied while placing the LC display apparatus in an arrangement where the rubbing direction was at an angle of 45° with either polarization axis. As a result, the pixel portions began to brighten up in the neighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. Thus, a contrast of 800 or more was obtained. An observation with a microscope revealed total absence of disclination, which would always be observed in a conventional VA mode, even at boundaries between the pixel and the non-pixel portions.
As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode. The response times for eight gray scale levels with respect to eight variations of transmitted light amounts (8×8=64 states) were also confirmed to be all equal to or less than 2.5 ms, indicative of a very fast response.
As an example of the present invention, an LC display apparatus was produced in the same manner as in Example 10-1, except that a concave stepped portion 1216 was formed along a side edge of each ITO pixel in the manner shown in
The resultant LC cell was interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage. A very excellent dark display state was observed when the rubbing direction coincided with either axis of polarization. As the cell was rotated, transmitted light began to be observed in the non-pixel portions, and the amount of transmitted light became maximum with a rotation angle of 45°. Thus, it was confirmed that a horizontal alignment which was uniaxially aligned in the rubbing direction had been obtained. On the other hand, the pixel portions always exhibited an excellent dark display state, indicative of a vertical alignment. The amount of transmitted light was measured using a backlight (10000 cd/m2) while placing the LC display apparatus in an arrangement where the rubbing direction coincided with either axis of polarization. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nicol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in across-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount.
Next, a rectangular wave electric field (120 Hz) was applied while placing the LC display apparatus in an arrangement where the rubbing direction was at an angle of 45° with either polarization axis. As a result, the pixel portions began to brighten up in the neighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. Thus, a contrast of 800 or more was obtained. An observation with a microscope revealed total absence of disclination, which would always be observed in a conventional VA mode, even at boundaries between the pixel and the non-pixel portions.
As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode. The response times for eight gray scale levels with respect to eight variations of transmitted light amounts (8×8=64 states) were also confirmed to be all equal to or less than 2.5 ms, indicative of a very fast response.
As an example of the present invention, an LC display apparatus was produced as follows. TFT elements were formed on a glass substrate. A transparent electrode film of ITO (thickness: 1000 Å) was formed so as to be in contact with the glass substrate, thereby forming a matrix electrode substrate. The ITO film was patterned into pixel electrodes sized 300 μm×300 μm each. A transparent electrode film of ITO (thickness: 1000 Å) was formed on another glass substrate to form a counter substrate.
A vertical alignment film JALS-955 (Japan Synthetic Rubber Co., Ltd.) was formed on the side of each substrate on which the electrode(s) was(were) formed. Ultraviolet rays (wavelength: 270 nm) were irradiated through a photomask for shielding the pixel portions only. A rubbing treatment was applied to both substrates in parallel directions to each other. The two substrates were attached to each other to obtain a cell thickness of 3 μm. Nematic liquid crystal MJ95955 (Merck & Co., Inc.) was injected into the cell, whereby an LC cell was completed. This LC material has a dielectric anisotropy of −3.3.
The resultant LC cell was interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage. A very excellent dark display state was observed when the rubbing direction coincided with either axis of polarization. As the cell was rotated, transmitted light began to be observed in the non-pixel portions, and the amount of transmitted light became maximum with a rotation angle of 45°. Thus, it was confirmed that a horizontal alignment which was uniaxially aligned in the rubbing direction had been obtained. On the other hand, the pixel portions always exhibited an excellent dark display state, indicative of a vertical alignment. The amount of transmitted light was measured using a backlight (10000 cd/m2) while placing the LC display apparatus in an arrangement where the rubbing direction coincided with either axis of polarization. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nicol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in across-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount.
Next, a rectangular wave electric field (120 Hz) was applied while placing the LC display apparatus in an arrangement where the rubbing direction was at an angle of 45° with either polarization axis. As a result, the pixel portions began to brighten up in the neighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. Thus, a contrast of 800 or more was obtained. An observation with a microscope revealed total absence of disclination, which would always be observed in a conventional VA mode, even at boundaries between the pixel and the non-pixel portions.
As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode. The response times for eight gray scale levels with respect to eight variations of transmitted light amounts (8×8=64 states) were also confirmed to be all equal to or less than 2.5 ms, indicative of a very fast response.
As an example of the present invention, an LC display apparatus was produced as follows. TFT elements were formed on a glass substrate. By providing pairs of opposing comb electrodes 1403 as shown in
A vertical alignment film JALS-955 (Japan Synthetic Rubber Co., Ltd.) was formed on the side of each substrate on which the electrode(s) was(were) formed. Ultraviolet rays (wavelength: 270 nm) were irradiated through a photomask for shielding the pixel portions only. A rubbing treatment was applied to both substrates in parallel directions to each other. The rubbing direction was perpendicular to a direction in which each pair of comb electrodes opposed each other to define pixels. The two substrates were attached to each other to obtain a cell thickness of 3 μm. Nematic liquid crystal E7 (Merck & Co., Inc.) was injected into the cell, whereby an LC cell was completed. This LC material has a dielectric anisotropy of 13.8.
The resultant LC cell was interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage. A very excellent dark display state was observed when the rubbing direction coincided with either axis of polarization. As the cell was rotated, transmitted light began to be observed in the non-pixel portions, and the amount of transmitted light became maximum with a rotation angle of 45°. Thus, it was confirmed that a horizontal alignment which was uniaxially aligned in the rubbing direction had been obtained. On the other hand, the pixel portions always exhibited an excellent dark display state, indicative of a vertical alignment. The amount of transmitted light was measured using a backlight (10000 cd/m2) while placing the LC display apparatus in an arrangement where the rubbing direction coincided with either axis of polarization. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nicol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in across-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount.
Next, a rectangular wave electric field (120 Hz) was applied while placing the LC display apparatus in an arrangement where the rubbing direction was at an angle of 45° with either polarization axis. As a result, the pixel portions began to brighten up in the neighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. Thus, a contrast of 800 or more was obtained. An observation with a microscope revealed total absence of disclination, which would always be observed in a conventional VA mode, even at boundaries between the pixel and the non-pixel portions.
As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode. The response times for eight gray scale levels with respect to eight variations of transmitted light amounts (8×8=64 states) were also confirmed to be all equal to or less than 2.5 ms, indicative of a very fast response.
As an example of the present invention, an LC display apparatus was produced as follows. TFT elements were formed on a glass substrate. A transparent electrode film of ITO (thickness: 1000 Å) was formed so as to be in contact with the glass substrate, thereby forming a matrix electrode substrate. The ITO film was patterned into pixel electrodes sized 300 μm×300 μm each. A piece of photosensitive resin BPR107 (Japan Synthetic Rubber Co., Ltd.), having a width of 10 μm and a thickness of 1 μm, was formed as a protrusion in the central portion of each ITO pixel in the manner shown in
A vertical alignment film JALS-955 (Japan Synthetic Rubber Co., Ltd.) was formed on the side of each substrate on which the electrode(s) was(were) formed. Linearly polarized ultraviolet rays (wavelength: 270 nm) were irradiated through a photomask for shielding the pixel portions only. The direction of linear polarization was perpendicular to the longitudinal direction of the protrusions. The two substrates were attached to each other to obtain a cell thickness of 3 μm. Nematic liquid crystal MJ95955 (Merck & Co., Inc.) was injected into the cell, whereby an LC cell was completed. This LC material has a dielectric anisotropy of −3.3.
The resultant LC cell was interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage. A very excellent dark display state was observed when the direction of linear polarization of the irradiated ultraviolet rays coincided with either axis of polarization of the polarization plates. As the cell was rotated, transmitted light began to be observed in the non-pixel portions, and the amount of transmitted light became maximum with a rotation angle of 45°. Thus, it was confirmed that a horizontal alignment which was uniaxially aligned in the direction of linear polarization of the irradiated ultraviolet rays had been obtained. On the other hand, the pixel portions always exhibited an excellent dark display state, indicative of a vertical alignment. The amount of transmitted light was measured using a backlight (10000 cd/m2) while placing the LC display apparatus in an arrangement where the direction of linear polarization of the irradiated ultraviolet rays coincided with either axis of polarization of the polarization plates. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nibol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in a cross-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount.
Next, a rectangular wave electric field (120 Hz) was applied while placing the LC display apparatus in an arrangement where the direction of linear polarization of the irradiated ultraviolet rays was at an angle of 45° with either polarization axis. As a result, the pixel portions began to brighten up in the heighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. Thus, a contrast of 800 or more was obtained. An observation with a microscope revealed total absence of disclination, which would always be observed in a conventional VA mode, even at boundaries between the pixel and the non-pixel portions.
As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode. The response times for eight gray scale levels with respect to eight variations of transmitted light amounts (8×8=64 states) were also confirmed to be all equal to or less than 2.5 ms, indicative of a very fast response.
As an example of the present invention, an LC display apparatus was produced in the same manner as in Example 11-1, except that a piece of photosensitive resin BPR107 (Japan Synthetic Rubber Co., Ltd.) was formed as a protrusion 1015 along a side edge of each ITO pixel (i.e., electrode 1003) in the manner shown in
The resultant LC cell was interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage. A very excellent dark display state was observed when the direction of linear polarization of the irradiated ultraviolet rays coincided with either axis of polarization of the polarization plates. As the cell was rotated, transmitted light began to be observed in the non-pixel portions, and the amount of transmitted light became maximum with a rotation angle of 45°. Thus, it was confirmed that a horizontal alignment which was uniaxially aligned in the direction of linear polarization of the irradiated ultraviolet rays had been obtained. On the other hand, the pixel portions always exhibited an excellent dark display state, indicative of a vertical alignment. The amount of transmitted light was measured using a backlight (10000 cd/m2) while placing the LC display apparatus in an arrangement where the direction of linear polarization of the irradiated ultraviolet rays coincided with either axis of polarization of the polarization plates. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nicol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in a cross-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount.
Next, a rectangular wave electric field (120 Hz) was applied while placing the LC display apparatus in an arrangement where the direction of linear polarization of the irradiated ultraviolet rays was at an angle of 45° with either polarization axis. As a result, the pixel portions began to brighten up in the neighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. Thus, a contrast of 800 or more was obtained. An observation with a microscope revealed total absence of disclination, which would always be observed in a conventional VA mode, even at boundaries between the pixel and the non-pixel portions.
As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode. The response times for eight gray scale levels with respect to eight variations of transmitted light amounts (8×8=64 states) were also confirmed to be all equal to or less than 2.5 ms, indicative of a very fast response.
As an example of the present invention, an LC display apparatus was produced in the same manner as in Example 11-1, except that a concave stepped portion 1116 was formed in the central portion of each ITO pixel (i.e., electrode 1103) in the manner shown in
The resultant LC cell was interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage. A very excellent dark display state was observed when the direction of linear polarization of the irradiated ultraviolet rays coincided with either axis of polarization of the polarization plates. As the cell was rotated, transmitted light began to be observed in the non-pixel portions, and the amount of transmitted light became maximum with a rotation angle of 45°. Thus, it was confirmed that a horizontal alignment which was uniaxially aligned in the direction of linear polarization of the irradiated ultraviolet rays had been obtained. On the other hand, the pixel portions always exhibited an excellent dark display state, indicative of a vertical alignment. The amount of transmitted light was measured using a backlight (10000 cd/m2) while placing the LC display apparatus in an arrangement where the direction of linear polarization of the irradiated ultraviolet rays coincided with either axis of polarization of the polarization plates. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nicol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in a cross-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount.
Next, a rectangular wave electric field (120 Hz) was applied while placing the LC display apparatus in an arrangement where the direction of linear polarization of the irradiated ultraviolet rays was at an angle of 45° with either polarization axis. As a result, the pixel portions began to brighten up in the neighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. Thus, a contrast of 800 or more was obtained. An observation with a microscope revealed total absence of disclination, which would always be observed in a conventional VA mode, even at boundaries between the pixel and the non-pixel portions.
As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode. The response times for eight gray scale levels with respect to eight variations of transmitted light amounts (8×8=64 states) were also confirmed to be all equal to or less than 2.5 ms, indicative of a very fast response.
As an example of the present invention, an LC display apparatus was produced in the same manner as in Example 11-1, except that a concave stepped portion 1216 was formed along a side edge of each ITO pixel in the manner shown in
The resultant LC cell was interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage. A very excellent dark display state was observed when the direction of linear polarization of the irradiated ultraviolet rays coincided with either axis of polarization of the polarization plates. As the cell was rotated, transmitted light began to be observed in the non-pixel portions, and the amount of transmitted light became maximum with a rotation angle of 45°. Thus, it was confirmed that a horizontal alignment which was uniaxially aligned in the direction of linear polarization of the irradiated ultraviolet rays had been obtained. On the other hand, the pixel portions always exhibited an excellent dark display state, indicative of a vertical alignment. The amount of transmitted light was measured using a backlight (10000 cd/m2) while placing the LC display apparatus in an arrangement where the direction of linear polarization of the irradiated ultraviolet rays coincided with either axis of polarization of the polarization plates. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nicol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in a cross-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount.
Next, a rectangular wave electric field (120 Hz) was applied while placing the LC display apparatus in an arrangement where the direction of linear polarization of the irradiated ultraviolet rays was at an angle of 45° with either polarization axis. As a result, the pixel portions began to brighten up in the neighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. Thus, a contrast of 800 or more was obtained. An observation with a microscope revealed total absence of disclination, which would always be observed in a conventional VA mode, even at boundaries between the pixel and the non-pixel portions.
As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode. The response times for eight gray scale levels with respect to eight variations of transmitted light amounts (8×8=64 states) were also confirmed to be all equal to or less than 2.5 ms, indicative of a very fast response.
As an example of the present invention, an LC display apparatus was produced as follows. TFT elements were formed on a glass substrate. A transparent electrode film of ITO (thickness: 1000 Å) was formed so as to be in contact with the glass substrate, thereby forming a matrix electrode substrate. The ITO film was patterned into pixel electrodes sized 300 μm×300 μm each. A transparent electrode film of ITO (thickness: 1000 Å) was formed on another glass substrate to form a counter substrate.
A vertical alignment film JALS-955 (Japan Synthetic Rubber Co., Ltd.) was formed on the side of each substrate on which the electrode(s) was(were) formed. Linearly polarized ultraviolet rays (wavelength: 270 nm) were irradiated through a photomask for shielding the pixel portions only. A rubbing treatment was applied to both substrates in parallel directions to each other. The two substrates were attached to each other to obtain a cell thickness of 3 μm. The rubbing direction was parallel to the polarization direction of the ultraviolet rays. Nematic liquid crystal MJ95955 (Merck & Co., Inc.) was injected into the cell, whereby an LC cell was completed. This LC material has a dielectric anisotropy of −3.3.
The resultant LC cell was interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage. A very excellent dark display state was observed when the rubbing direction coincided with either axis of polarization. As the cell was rotated, transmitted light began to be observed in the non-pixel portions, and the amount of transmitted light became maximum with a rotation angle of 45°. Thus, it was confirmed that a horizontal alignment which was uniaxially aligned in the rubbing direction had been obtained. On the other hand, the pixel portions always exhibited an excellent dark display state, indicative of a vertical alignment. The amount of transmitted light was measured using a backlight (10000 cd/m2) while placing the LC display apparatus in an arrangement where the rubbing direction coincided with either axis of polarization. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nicol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in across-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount.
Next, a rectangular wave electric field (120 Hz) was applied while placing the LC display apparatus in an arrangement where the rubbing direction was at an angle of 45° with either polarization axis. As a result, the pixel portions began to brighten up in the neighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. Thus, a contrast of 800 or more was obtained. An observation with a microscope revealed total absence of disclination, which would always be observed in a conventional VA mode, even at boundaries between the pixel and the non-pixel portions.
As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode. The response times for eight gray scale levels with respect to eight variations of transmitted light amounts (8×8=64 states) were also confirmed to be all equal to or less than 2.5 ms, indicative of a very fast response.
As an example of the present invention, an LC display apparatus was produced as follows. TFT elements -were formed on a glass substrate. By providing pairs of opposing comb electrodes 1403 as shown in
A vertical alignment film JALS-955 (Japan Synthetic Rubber Co., Ltd.) was formed on the side of each substrate on which the electrode(s) was(were) formed. Linearly polarized ultraviolet rays (wavelength: 270 nm) were irradiated through a photomask for shielding the pixel portions only. The direction of linear polarization of the irradiated ultraviolet rays was perpendicular to a direction in which each pair of comb electrodes opposed each other to define pixels. The two substrates were attached to each other to obtain a cell thickness of 3 μm. Nematic liquid crystal E7 (Merck & Co., Inc.) was injected into the cell, whereby an LC cell was completed. This LC material has a dielectric anisotropy of 13.8.
The resultant LC cell was interposed between a pair of polarization plates placed in a cross-nicol arrangement and operated so as to be observed in the absence of an applied voltage. A very excellent dark display state was observed when the direction of linear polarization of the irradiated ultraviolet rays coincided with either axis of polarization of the polarization plates. As the cell was rotated, transmitted light began to be observed in the non-pixel portions, and the amount of transmitted light became maximum with a rotation angle of 45°. Thus, it was confirmed that a horizontal alignment which was uniaxially aligned in the direction of linear polarization of the irradiated ultraviolet rays had been obtained. On the other hand, the pixel portions always exhibited an excellent dark display state, indicative of a vertical alignment. The amount of transmitted light was measured using a backlight (10000 cd/m2) while placing the LC display apparatus in an arrangement where the direction of linear polarization of the irradiated ultraviolet rays coincided with either axis of polarization of the polarization plates. As a result, the transmitted light through the LC cell interposed between the pair of polarization plates in a cross-nicol arrangement was 2.3 cd/m2. For comparison, the transmitted light through only the pair of polarization plates in a cross-nicol arrangement (i.e., without the LC cell) was 2.1 cd/m2. Thus, there was substantially no change in the transmitted light amount.
Next, a rectangular wave electric field (120 Hz) was applied while placing the LC display apparatus in an arrangement where the direction of linear polarization of the irradiated ultraviolet rays was at an angle of 45° with either polarization axis. As a result, the pixel portions began to brighten up in the neighborhood of 1.5 V. As the applied voltage was increased, the amount of transmitted light increased, until reaching 1900 cd/m2 at 5 V. Thus, a contrast of 800 or more was obtained. An observation with a microscope revealed total absence of disclination, which would always be observed in a conventional VA mode, even at boundaries between the pixel and the non-pixel portions.
As a result of measuring the response time of the LC by using a photodiode and an oscilloscope, the LC cell was confirmed to have a rising time of 1 ms and a falling time of 0.8 ms, indicative of a significantly faster response than that attained by a conventional VA mode. The response times for eight gray scale levels with respect to eight variations of transmitted light amounts (8×8=64 states) were also confirmed to be all equal to or less than 2.5 ms, indicative of a very fast response.
As described above, according to the present invention, it is ensured that LC molecules will tilt in asymmetrical directions in a VA mode in which optical changes take place responsive to the application of an electric field for causing an LC material in pixel portions which is originally oriented in a vertical alignment to be realigned in a horizontal alignment, the LC material having a negative dielectric anisotropy. As a result, disclination is prevented from occurring. Thus, a significantly enhanced contrast and a significantly enhanced response speed can be obtained as compared to those obtained in accordance with conventional LC apparatuses. Consequently, high-quality display images are provided such that moving pictures can be displayed without blurring.
Various other modifications will be apparent to and can be readily made by those skilled in the art without departing from the scope and spirit of this invention. Accordingly, it is not intended that the scope of the claims appended hereto be limited to the description as set forth herein, but rather that the claims be broadly construed.
Number | Date | Country | Kind |
---|---|---|---|
11-361949 | Dec 1999 | JP | national |
2000-046981 | Feb 2000 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | 09745074 | Dec 2000 | US |
Child | 11515273 | Aug 2006 | US |