The accompanying drawings, which are included to provide a further understanding of embodiments of the present invention and are incorporated in and constitute a part of this application, illustrate embodiments of the present invention and together with the description serve to explain the principle of embodiments of the present invention. In the drawings:
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
The data processor 220 converts three-color RGB data from a system into four-color RGCB data, and then calculates a gain from the four-color RGCB data. The data processor 220 amplifies a gray level of the four-color RGCB data in proportion to the calculated gain, and then calculates a minimum gray level of the amplified four-color RGCB data. The data processor 220 calculates an RGCB data using the calculated gain and the minimum gray level, and at the same time generates a W data having the calculated minimum gray level in each of the color components to output a digital RGCBW data to the timing controller 230.
The timing controller 230 supplies the digital RGCBW data to the data driver 240, and at the same time generates a data driving control signal DDC and a gate driving control signal GDC using horizontal/vertical synchronizing signals H and V from a system in accordance with a clock signal CLK inputted from a system to supply them to the data driver 240 and the gate driver 130, respectively. Herein, the data driving control signal DDC includes a source shift clock SSC, a source start pulse SSP, a polarity control signal POL, and a source output enable signal SOE, etc., and the gate driving control signal GDC includes a gate start pulse GSP, a gate shift clock GSC, and a gate output enable signal GOE, etc.
The data driver 240 converts a digital RGCBW data inputted via the timing controller 230 into an analog RGCBW data in accordance with the timing controller 230 to supply it to the LCD panel 210 as follows. Each input frame is divided into first and second subframes to be sequentially displayed on the LCD panel. Accordingly, if the input frames are driven at a frequency of about 60 Hz, for example, the corresponding first and second subframes are driven at a frequency of about 120 Hz.
During the second subframe period, each pixel is irradiated with a Y light from the backlight (not shown). If data from the second subframe is inputted from the timing controller 230, the data driver 240 supplies an analog G data and an analog R data to a G sub-pixel and an M sub-pixel, respectively, and supplies an analog W data to a W sub-pixel. During the second subframe period, the G sub-pixel transmits a light of G wavelength and the M sub-pixel transmits a light of R wavelength. Furthermore, the W sub-pixel transmits the Y light from the backlight source substantially unchanged to increase a light transmittance.
The backlight assembly 250 is radiated by a driving voltage and a current supplied from the inverter 160 to sequentially irradiate a C light and a Y light into the LCD panel 210 as follows. When driving the first subframe, a G sub-pixel and an M sub-pixel are supplied with an analog C data and an analog B data, respectively, and a W sub-pixel is supplied with an analog W data. Then, the backlight assembly 250 turns on a C light source to irradiates the C light onto the LCD panel 210. When driving the second subframe, a G sub-pixel and an M sub-pixel are supplied with an analog G data and an analog R data, respectively, and a W sub-pixel is supplied with an analog W data. Then, the backlight assembly 250 turns on a Y light source to irradiates the Y light into the LCD panel 210.
The gain calculator 222 calculates a maximum gray level GV1max and a minimum gray level GV1min of four-color RGCB data converted by the data converter 221, and then substitutes the maximum gray level GV1max and the minimum gray level GV1min in the following equation 1 to calculate a gain, thereby outputting it to the data amplifier 223.
Gain=(GV1max+GV1min)/GV1max [Equation 1]
As described above, the gain calculator 222 divides a value that the calculated maximum gray level GV1max and the minimum gray level GV1min are added, by the maximum gray level GV1max to calculate the share as a gain.
The data amplifier 223 multiplies a gray level of RGCB data by the calculated gain to amplify a gray level of RGCB data. In other words, the data amplifier 223 amplifies a gray level of RGCB data in proportion to the calculated gain as shown in
Referring to
The data calculator 225 subtracts a minimum gray level GV2min calculated by the gray level calculator 224 from a gray level of RGCB data amplified by the data amplifier 223 to calculate a Ro, Go, Co, and Bo data to be outputted to the data output terminal, and generates a Wo data having a minimum gray level GV2min to output it to the data output terminal. More specifically, the data calculator 225 carries out a predetermined equation 2 to equation 5 to calculate an output Ro, Go, Co, and Bo data as shown in
Ro=(gain*R)−GV2min [Equation 2]
As described above, the data calculator 225 subtracts a minimum gray level GV2min calculated by the gray level calculator 224 from a gray level of a R data amplified by the data amplifier 223 to calculate a Ro data.
Go=(gain*G)−GV2min [Equation 3]
As described above, the data calculator 225 subtracts a minimum gray level GV2min calculated by the gray level calculator 224 from a gray level of a G data amplified by the data amplifier 223 to calculate a Go data.
Co=(gain*C)−GV2min [Equation 4]
As described above, the data calculator 225 subtracts a minimum gray level GV2min calculated by the gray level calculator 224 from a gray level of a C data amplified by the data amplifier 223 to calculate a Co data.
Bo=(gain*B)−GV2min [Equation 5]
As described above, the data calculator 225 subtracts a minimum gray level GV2min calculated by the gray level calculator 224 from a gray level of a B data amplified by the data amplifier 223 to calculate a Bo data.
Furthermore, there is a functional relation between a Wo data generated by the data calculator 225, and a maximum gray level GV2max and a minimum gray level GV2min of gray levels of RGCB data amplified by the data amplifier 223 as shown in the following equation 6.
Wo=f(GV2max,GV2min) [Equation 6]
Herein, “f” represents a function having a maximum gray level GV2max and a minimum gray level GV2min as a variable.
Referring to
The data calculator 225 subtracts a white gray level GV2white calculated by the gray level calculator 224 from a gray level of RGCB data amplified by the data amplifier 223 to calculate a Ro, Go, Co, and Bo data to be outputted to the data output terminal, and generates a Wo data having the white gray level GV2white to output it to the data output terminal. Furthermore, the data calculator 225 generates a Wo data having the gray level GV2white calculated as shown in
Ro=(gain*R)−GV2white [Equation 7]
As described above, the data calculator 225 subtracts the white gray level GV2white calculated by the gray level calculator 224 from a gray level of a R data amplified by the data amplifier 223 to calculate a Ro data in accordance with Equation 7.
Go=(gain*G)−GV2white [Equation 8]
As described above, the data calculator 225 subtracts the white gray level GV2white calculated by the gray level calculator 224 from a gray level of a G data amplified by the data amplifier 223 to calculate a Go data in accordance with Equation 8.
Co=(gain*C)−GV2white [Equation 9]
As described above, the data calculator 225 subtracts the white gray level GV2white calculated by the gray level calculator 224 from a gray level of a C data amplified by the data amplifier 223 to calculate a Co data in accordance with Equation 9.
Bo=(gain*B)−GV2white [Equation 10]
As described above, the data calculator 225 subtracts the white gray level GV2white calculated by the gray level calculator 224 from a gray level of a B data amplified by the data amplifier 223 to calculate a Bo data in accordance with Equation 10.
As described above, the present invention calculates a W data through the above-mentioned process to increase a light transmittance, and calculate a white data without distorting an R color, a G color, a C color, and a B color.
It will be apparent to those skilled in the art that various modifications and variations can be made in the liquid crystal display device and method of driving the same of embodiments of the present invention. Thus, it is intended that embodiments of the present invention cover the modifications and variations of the embodiments described herein provided they come within the scope of the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2006-051975 | Jun 2006 | KR | national |