One embodiment of the present invention relates to a semiconductor device including a field-effect transistor using an oxide semiconductor.
In this specification, a semiconductor device means all types of devices which can function by utilizing semiconductor characteristics, and an electro-optical device such as a liquid crystal display device, a semiconductor circuit, and an electronic device are all semiconductor devices.
A technique for forming thin film transistors using a semiconductor thin film formed over a substrate having an insulating surface has attracted attention. The thin film transistors are used for display devices typified by liquid crystal televisions. A silicon-based semiconductor material is known as a material for a thin semiconductor film applicable to a thin film transistor. As another material, an oxide semiconductor has attracted attention.
As a material for the oxide semiconductor, zinc oxide and a material containing zinc oxide as its component are known. Further, a thin film transistor formed using an amorphous oxide (oxide semiconductor) having an electron carrier concentration of less than 1018/cm3 is disclosed (Patent Documents 1 to 3).
However, a difference from a stoichiometric composition of an oxide semiconductor film occurs in the formation process, which becomes a problem in some cases. For example, in the case where oxygen in a film is excess or deficient, or the case where hydrogen contained as an impurity becomes an electron donor, electrical conductivity changes.
Even when having an electron carrier concentration of less than 1018/cm3, an oxide semiconductor is a substantially n-type oxide semiconductor, and an on-off ratio of the thin film transistor disclosed in the Patent Documents is only about 103. Such a low on-off ratio of the thin film transistor is due to large off-current.
It is an object of one embodiment of the present invention to provide a display device including a thin film transistor having stable electric characteristics (e.g., an off-current is extremely reduced).
One embodiment of the present invention is a liquid crystal display device including a thin film transistor in which a channel region is formed using an oxide semiconductor which is an intrinsic or substantially intrinsic semiconductor obtained by removal of impurities serving as electron donors (donors) in the oxide semiconductor and which has a larger energy gap than a silicon semiconductor.
That is, one embodiment of the present invention is a liquid crystal display device including a thin film transistor in which a channel region is formed using an oxide semiconductor film. Hydrogen or an OH bond contained in the oxide semiconductor is extremely reduced so that hydrogen is contained at 5×1019/cm3 or less, preferably 5×1018/cm3 or less, more preferably 5×1017/cm3 or less in the oxide semiconductor, and the carrier concentration of the oxide semiconductor film is set to 5×1014/cm3 or less, preferably 5×1012/cm3 or less.
The energy gap of the oxide semiconductor is 2 eV or more, preferably 2.5 eV or more, more preferably 3 eV or more and an impurity such as hydrogen which forms a donor is extremely reduced so that the carrier concentration is 1×1014/cm3 or less, preferably 1×1012/cm3 or less.
When such a highly purified oxide semiconductor is used for a channel formation region of a thin film transistor, even in the case where the channel width is 10 mm and the drain voltage is 10 V, the oxide semiconductor operates so that the drain current is 1×10−13A or less at a gate voltage of −5 V to 20 V.
One embodiment of the present invention disclosed in this specification is a liquid crystal display device. In the liquid crystal display device, a thin film transistor including a gate electrode, a gate insulating layer which is provided so as to overlap the gate electrode, an oxide semiconductor layer which is provided so as to overlap the gate electrode with the gate insulating layer interposed therebetween, and a source electrode and a drain electrode which are provided so as to overlap part of the oxide semiconductor layer is provided between a signal line and a pixel electrode which are provided in a pixel portion. An auxiliary capacitor which is electrically connected to the pixel electrode is not formed.
Another embodiment of the present invention disclosed in this specification is a liquid crystal display device. In the liquid crystal display device, a thin film transistor includes a gate electrode, a gate insulating layer which is provided so as to overlap the gate electrode, an oxide semiconductor layer which is provided so as to overlap the gate electrode with the gate insulating layer interposed therebetween, and a source electrode and a drain electrode which are provided so as to overlap part of the oxide semiconductor layer. The thin film transistor is provided between a signal line and a pixel electrode which are each provided in a plurality of subpixels in one pixel. An auxiliary capacitor which is electrically connected to the pixel electrode is not formed.
Note that an auxiliary capacitor refers to a capacitor which is intentionally provided, and parasitic capacitance which is not intentionally provided may be formed.
According to one embodiment of the present invention, a capacitor to hold a signal voltage applied to a pixel is not necessarily provided because the off-current is reduced to 1×10−13 A or less. That is, since an auxiliary capacitor is not necessarily provided in each pixel, the aperture ratio can be improved. In addition, a pixel using a thin film transistor according to one embodiment of the present invention can be kept in a certain state (a state where a video signal is written) and thus stable operation can be performed even in the case where a still image is displayed.
Embodiments of the present invention will be described in detail with reference to the accompanying drawings. The present invention is not limited to the following description, and it is easily understood by those skilled in the art that modes and details disclosed herein can be modified in various ways without departing from the spirit and the scope of the present invention. Therefore, the present invention is not to be construed as being limited to the content of the embodiments included herein. Note that in the structures of the present invention described below, the same reference numerals are used for the same portions and portions having similar functions in different drawings, and the description thereof is not repeated.
Note that the size, the thickness of a layer, or a region of each structure illustrated in drawings in this specification is exaggerated for simplicity in some cases. Therefore, embodiments of the present invention are not limited to such scales.
Note that the terms such as “first”, “second”, and “third” used in this specification are used in order to avoid confusion of structural elements and do not mean limitation of the number of the structural elements. Therefore, for example, the term “first” can be replaced with the term “second”, “third”, or the like as appropriate.
An example is described below in which a pixel of a liquid crystal display device is formed using a thin film transistor according to one embodiment of the present invention. In this embodiment, in a liquid crystal display device, a thin film transistor included in a pixel and an electrode (also referred to as a pixel electrode) connected to the thin film transistor will be shown and described as an example. Note that a pixel includes elements provided in each pixel of a display device, for example, a thin film transistor, an electrode functioning as a pixel electrode, a wiring for supplying an electric signal to the element, and the like. Note that a pixel may include a color filter or the like. For example, in a color display device including color elements of R, G, and B, a minimum unit of an image is composed of three pixels of an R pixel, a G pixel, and a B pixel.
Note that when it is described that “A and B are connected”, the case where A and B are electrically connected to each other, and the case where A and B are directly connected to each other are included therein. Here, A and B are each an object (e.g., a device, an element, a circuit, a wiring, an electrode, a terminal, a conductive film, a layer, or the like).
A storage capacitance is a combination of a capacitance of a liquid crystal element and a capacitance of a capacitor which is provided separately. The former is referred to as a liquid crystal capacitance and the latter is referred to as an auxiliary capacitance for distinction.
First, as an example of a pixel portion in a conventional liquid crystal display device, a top view is illustrated in
A pixel portion illustrated in
The first wiring 2101 also functions as a gate electrode of a thin film transistor 2106.
The second wiring 2102A also functions as one of a source electrode and a drain electrode of the thin film transistor 2106 and one electrode of a capacitor.
The third wiring 2102B also functions as the other of the source electrode and the drain electrode of the thin film transistor 2106.
The capacitor line 2104 functions as the other electrode of the capacitor. Note that the first wiring 2101 and the capacitor line 2104 are formed in the same layer, and the second wiring 2102A and the third wiring 2102B are formed in the same layer. In addition, the third wiring 2102B and the capacitor line 2104 partly overlap with each other to form an auxiliary capacitor (a capacitor) of a liquid crystal element. The oxide semiconductor layer 2103 included in the thin film transistor 2106 is provided over the first wiring 2101 with a gate insulating film 2113 (not illustrated) therebetween.
In the cross-sectional structure illustrated in
Note that the pixel illustrated in
In
Note that in
Note that a thin film transistor is an element having at least three terminals of a gate, a drain, and a source. The thin film transistor has a channel region between a drain region and a source region, and current can flow through the drain region, the channel region, and the source region. Here, since the source and the drain of the transistor may interchange depending on the structure, the operating condition, and the like of the transistor, it is difficult to define which is a source or a drain. Therefore, a region functioning as a source or a drain is not called the source or the drain in some cases. In such a case, for example, one of the source and the drain is referred to as a first terminal, a first electrode, or a first region and the other of the source and the drain is referred to as a second terminal, a second electrode, or a second region in some cases.
Next, an example of a structure of a pixel portion according to one embodiment of the present invention is illustrated in
Note that an example of a structure of a pixel portion in which a capacitor is omitted, which is one embodiment of the present invention, can have the same structure (except a capacitor) as the above-described conventional example. Although a transistor having an inverted staggered structure is described as an example, a transistor having another structure such as a bottom contact structure or a top gate structure may be used.
In order to omit a capacitor from a pixel portion as described above, the potential of the pixel needs to be held only by a charged liquid crystal element for a certain period. To realize this, the off-current of a thin film transistor needs to be sufficiently reduced. One example of a manufacturing method of a thin film transistor to achieve these characteristics is described with reference to
A glass substrate can be used as the light-transmitting substrate 111. A base film 112 is provided over the substrate 111 in order to prevent diffusion of impurities from the substrate 111 or improve adhesion between the substrate 111 and elements provided over the substrate 111. Note that the base film 112 is not necessarily provided.
Next, a conductive layer is formed over the base film 112. After that, a first photolithography step is performed so that a resist mask is formed and unnecessary portions are removed by etching, whereby the first wiring 101 is formed. At this time, etching is preferably performed so that edges of the first wiring 101 are tapered.
The first wiring 101 is preferably formed using a low-resistance conductive material such as aluminum or copper. Since the use of aluminum alone has disadvantages such as low heat resistance and a tendency to be corroded, aluminum is preferably used in combination with a conductive material having heat resistance. As the conductive material having heat resistance, it is possible to use an element selected from titanium, tantalum, tungsten, molybdenum, chromium, neodymium, and scandium; an alloy containing any of these elements as its component; an alloy containing a combination of any of these elements; or a nitride containing any of these elements as its component.
Note that the wirings and the like included in the thin film transistor can be formed by an inkjet method or a printing method. Since the wirings and the like can be manufactured without using a photomask, a layout of the transistor can be changed easily. Further, it is not necessary to use a resist, so that material cost is reduced and the number of steps can be reduced. In addition, a resist mask and the like can also be formed by an inkjet method or a printing method. Since a resist mask can be formed only over intended portions by an inkjet method or a printing method, cost can be reduced.
A resist mask having regions with a plurality of thicknesses (typically, two kinds of thicknesses) may be formed using a multi-tone mask to form wirings and the like.
Then, an insulating film (hereinafter referred to as a gate insulating film 113) is formed over the first wiring 101.
In this embodiment, the gate insulating film 113 is formed using a high-density plasma CVD apparatus in which a microwave (2.45 GHz) is used. Here, a high-density plasma CVD apparatus refers to an apparatus which can realize a plasma density higher than or equal to 1×1011/cm3. For example, plasma is generated by applying a microwave power higher than or equal to 3 kW and lower than or equal to 6 kW so that an insulating film is formed.
A monosilane gas (SiH4), nitrous oxide (N2O), and a rare gas are introduced into a chamber as a source gas to generate high-density plasma at a pressure higher than or equal to 10 Pa and lower than or equal to 30 Pa so that an insulating film is formed over a substrate. After that, the supply of a monosilane gas is stopped, and nitrous oxide (N2O) and a rare gas are introduced without exposure to the air, so that plasma treatment may be performed on a surface of the insulating film. The plasma treatment performed on the surface of the insulating film by introducing nitrous oxide (N2O) and a rare gas is performed at least after the insulating film is formed. The insulating film formed through the above process procedure has a small thickness, and reliability can be ensured even when it has a thickness less than 100 nm, for example.
In forming the gate insulating film 113, the flow ratio of a monosilane gas (SiH4) to nitrous oxide (N2O) which are introduced into the chamber is in the range of 1:10 to 1:200. In addition, as a rare gas which is introduced into the chamber, helium, argon, krypton, xenon, or the like can be used. In particular, argon, which is inexpensive, is preferably used.
Further, the insulating film formed using the high-density plasma CVD apparatus has excellent step coverage and the thickness thereof can be controlled precisely.
The insulating film formed through the above process procedure is greatly different from the insulating film formed using a conventional parallel plate PCVD apparatus. The etching rate of the insulating film formed through the above process procedure is lower than that of the insulating film formed using the conventional parallel plate PCVD apparatus by 10% or more or 20% or more in the case where the etching rates with the same etchant are compared to each other. Thus, it can be said that the insulating film formed using the high-density plasma CVD apparatus is a dense film.
In this embodiment, a silicon oxynitride film (also referred to as SiOxNy, where x>y>0) with a thickness of 100 nm formed using the high-density plasma CVD apparatus is used as the gate insulating film 113.
As another formation method of the gate insulating film 113, a sputtering method may be employed. It is needless to say that the gate insulating film 113 is not limited to such a silicon oxide film and may be formed with a single-layer structure or a layered structure of another insulating film such as a silicon oxynitride film, a silicon nitride film, an aluminum oxide film, or a tantalum oxide film.
Note that before the deposition of an oxide semiconductor, dust attached to a surface of the gate insulating film 113 is preferably removed by reverse sputtering in which argon is used as a sputtering gas. Note that as a sputtering gas, nitrogen, helium, or the like may be used instead of argon. Alternatively, argon to which oxygen, hydrogen, N2O, Cl2, CF4, or the like is added may be used as a sputtering gas.
Next, an oxide semiconductor film is formed over the gate insulating film 113. The field-effect mobility of a transistor in which an oxide semiconductor is used for a semiconductor layer can be higher than that of a transistor in which amorphous silicon is used for a semiconductor layer. Note that examples of the oxide semiconductor are zinc oxide (ZnO), tin oxide (SnO2), and the like. Moreover, In, Ga, or the like can be added to ZnO.
For the oxide semiconductor film, a thin film represented by the chemical formula, InMO3(ZnO)m (m>0) can be used. Note that M denotes one metal element or a plurality of metal elements selected from Ga, Al, Mn, and Co. Specifically, M may be Ga, Ga and Al, Ga and Mn, Ga and Co, or the like.
As the oxide semiconductor film, the following oxide semiconductors can also be used: a four-component metal oxide such as an In—Sn—Ga—Zn—O-based oxide semiconductor; a three-component metal oxide such as an In—Ga—Zn—O-based oxide semiconductor, an In—Sn—Zn—O-based oxide semiconductor, an In—Al—Zn—O-based oxide semiconductor, a Sn—Ga—Zn—O-based oxide semiconductor, an Al—Ga—Zn—O-based oxide semiconductor, and a Sn—Al—Zn—O-based oxide semiconductor; a two-component metal oxide such as an In—Zn—O-based oxide semiconductor, a Sn—Zn—O-based oxide semiconductor, an Al—Zn—O-based oxide semiconductor, a Zn—Mg—O-based oxide semiconductor, a Sn—Mg—O-based oxide semiconductor, an In—Mg—O-based oxide semiconductor, an In—Ga—O-based oxide semiconductor; an In—O-based oxide semiconductor; a Sn—O-based oxide semiconductor; and a Zn—O-based oxide semiconductor. Further, SiO2 may be contained in the above oxide semiconductor. Here, an In—Ga—Zn—O-based oxide semiconductor means an oxide including indium (In), gallium (Ga), and zinc (Zn), and there is no particular limitation on the stoichiometric proportion. Further, the In—Ga—Zn—O-based oxide semiconductor may contain an element other than In, Ga, and Zn. Furthermore, it is preferable that the energy gap of the oxide semiconductor is 2 eV or more, preferably 2.5 eV or more, more preferably 3 eV or more.
An In—Ga—Zn—O-based film is used as the oxide semiconductor. Here, a target in which In2O3, Ga2O3, and ZnO are contained at a molar ratio of 1:1:1 or 1:1:2 is used, and deposition is performed by a sputtering method. The oxide semiconductor is deposited under the following conditions: the distance between the substrate and the target is 100 mm, the pressure is 0.6 Pa, the direct current (DC) power is 0.5 kW, and the atmosphere is an oxygen atmosphere (the proportion of the oxygen flow is 100%). Note that a pulsed direct current (DC) power supply is preferably used because powder substances (also referred to as particles or dust) generated in film deposition can be reduced and the film thickness can be uniform.
In this case, the oxide semiconductor film is preferably formed while remaining moisture in the treatment chamber is removed, in order to prevent hydrogen, hydroxyl group, or moisture from being contained in the oxide semiconductor film.
In order to remove remaining moisture in the treatment chamber, an entrapment vacuum pump is preferably used. For example, a cryopump, an ion pump, or a titanium sublimation pump is preferably used. The evacuation unit may be a turbo molecular pump provided with a cold trap. In the deposition chamber which is evacuated with the cryopump, a hydrogen atom, a compound containing a hydrogen atom such as water (H2O), and the like are removed, whereby the concentration of an impurity in the oxide semiconductor film formed in the deposition chamber can be reduced.
Next, a second photolithography step is performed so that a resist mask is formed and unnecessary portions are removed by etching, whereby the oxide semiconductor layer 103 is formed. The first heat treatment for the oxide semiconductor layer may be performed on the oxide semiconductor film that has not yet been processed into the island-shaped oxide semiconductor layer.
Next, the oxide semiconductor layer is subjected to dehydration or dehydrogenation. The temperature of first heat treatment for dehydration or dehydrogenation is higher than or equal to 400° C. and lower than or equal to 750° C., preferably higher than or equal to 425° C. and lower than or equal to 750° C. Note that the heat treatment may be performed for one hour or shorter when the temperature of the heat treatment is 425° C. or higher; the heat treatment is preferably performed for one hour or longer when the temperature is lower than 425° C. Here, the substrate is introduced into an electric furnace, which is one of heat treatment apparatuses, and heat treatment is performed on the oxide semiconductor layer in a nitrogen atmosphere. Then, the oxide semiconductor layer is not exposed to air, and a high-purity oxygen gas, a high-purity N2O gas, or an ultra-dry air (having a dew point of lower than or equal to −40° C., preferably lower than or equal to −60° C.) is introduced into the same furnace and cooling is performed. At this time, it is preferable that water, hydrogen, and the like be not contained in the gas introduced. Alternatively, the purity of the gas which is introduced into the heat treatment apparatus is preferably 6N (99.9999%) or more preferably 7N (99.99999%) or more (that is, the impurity concentration in the gas is 1 ppm or less, or preferably 0.1 ppm or less).
Note that in this specification, heat treatment in the atmosphere of an inert gas such as nitrogen or a rare gas is referred to as heat treatment for dehydration or dehydrogenation. In this specification, dehydrogenation does not indicate elimination of only H2 by heat treatment. For convenience, elimination of H, OH, and the like is called dehydration or dehydrogenation.
The heat treatment apparatus is not limited to an electric furnace. For example, a rapid thermal annealing (RTA) apparatus such as a gas rapid thermal annealing (GRTA) apparatus or a lamp rapid thermal annealing (LRTA) apparatus can be used. An LRTA apparatus is an apparatus for heating an object to be processed by radiation of light (an electromagnetic wave) emitted from a lamp such as a halogen lamp, a metal halide lamp, a xenon arc lamp, a carbon arc lamp, a high pressure sodium lamp, or a high pressure mercury lamp. Further, the LRTA apparatus may have not only a lamp but also a device for heating an object to be processed by heat conduction or heat radiation from a heater such as a resistance heater. GRTA is a method of heat treatment using a high-temperature gas. As the gas, an inert gas that hardly reacts with an object to be processed by heat treatment, such as nitrogen or a rare gas such as argon is used. The heat treatment may be performed using such an RTA method at higher than or equal to 600° C. and lower than or equal to 750° C. for several minutes.
Further, after the first heat treatment for dehydration or dehydrogenation, heat treatment may be performed at 200° C. to 400° C. inclusive, preferably 200° C. to 300° C. inclusive, in an atmosphere of an oxygen gas or an N2O gas.
When the oxide semiconductor layer is subjected to heat treatment at 400° C. to 750° C. inclusive, the dehydration or dehydrogenation of the oxide semiconductor layer can be achieved; thus, water (H2O) can be prevented from being contained again in the oxide semiconductor layer later. At the same time of the dehydration or dehydrogenation, an i-type oxide semiconductor layer is changed into an oxygen-deficient oxide semiconductor layer, i.e., an n-type (e.g., n−-type and n+-type) oxide semiconductor layer. When an oxide insulating film which is in contact with the n-type oxide semiconductor layer is formed, the oxide semiconductor layer is brought into an oxygen-excess state. Accordingly, the oxide semiconductor layer becomes an i-type oxide semiconductor layer again so as to have high resistance. The threshold voltage of the transistor using such an oxide semiconductor layer is positive, so that the transistor shows so-called normally-off characteristics. It is preferable for a transistor used in a semiconductor device such as a display device that the gate voltage be a positive threshold voltage that is as close to 0 V as possible. In an active matrix display device, electric characteristics of a transistor included in a circuit are important and the performance of the display device depends on the electrical characteristics. In particular, the threshold voltage of the transistor is important. If the threshold voltage of the transistor is negative, the transistor has so-called normally-on characteristics, that is, current flows between a source electrode and a drain electrode even when the gate voltage is 0 V, so that it is difficult to control the circuit formed using the transistor. In the case of a transistor where the threshold voltage is positive but an absolute value of the threshold voltage is large, the transistor cannot perform a switching operation in some cases because driving voltage is not high enough. In the case of an n-channel transistor, it is preferable that a channel be formed and drain current begin to flow after a positive gate voltage is applied. A transistor in which a channel is not formed unless driving voltage is raised and a transistor in which a channel is formed and drain current flows even when a negative voltage is applied are unsuitable for a transistor used in a circuit.
In the first heat treatment, water, hydrogen, and the like are not preferably contained in nitrogen or a rare gas such as helium, neon, or argon. It is preferable that the purity of nitrogen or the rare gas such as helium, neon, or argon which is introduced into a heat treatment apparatus be set to be 6N (99.9999%) or higher, preferably 7N (99.99999%) or higher.
Here, the oxide semiconductor that is made to be an intrinsic oxide semiconductor or a substantially intrinsic oxide semiconductor (the oxide semiconductor that is highly purified) by removal of impurities such as hydrogen is extremely sensitive to an interface state and an interface electric charge; thus, an interface between the oxide semiconductor and the gate insulating film is important. Therefore, the gate insulating film (GI) that is in contact with the highly-purified oxide semiconductor needs to have higher quality.
For example, by the above-described high-density plasma CVD method using a microwave (2.45 GHz), an insulating film which is dense, has high withstand voltage, and has high quality can be formed. The highly-purified oxide semiconductor and the high-quality gate insulating film are in close contact with each other, whereby the interface state density can be reduced to obtain favorable interface characteristics. Needless to say, another film formation method such as a sputtering method or a plasma CVD method can be employed as long as the method enables formation of a good-quality insulating film as a gate insulating film. Further, an insulating film whose film quality and characteristic of an interface between the insulating film and an oxide semiconductor are improved by heat treatment which is performed after formation of the insulating film may be formed as a gate insulating film. In any case, any insulating film may be used as long as the insulating film has characteristics of enabling reduction in interface state density of an interface between the insulating film and an oxide semiconductor and formation of a favorable interface as well as having favorable film quality as a gate insulating film.
Further, when an oxide semiconductor containing many impurities is subjected to a gate bias-temperature stress test (BT test) for 12 hours under conditions that the temperature is 85° C. and the voltage applied to the gate is 2×106 V/cm, a bond between the impurity and a main component of the oxide semiconductor is cleaved by a high electric field (B: bias) and a high temperature (T: temperature), and a generated dangling bond induces drift of threshold voltage (Vth). In contrast, the present invention makes it possible to obtain a thin film transistor which is stable to a BT test by removal of impurities in an oxide semiconductor, especially hydrogen, water, and the like as much as possible to obtain a favorable characteristic of an interface between the oxide semiconductor film and a gate insulating film as described above.
Then, a conductive film is formed from a metal material over the oxide semiconductor film by a sputtering method or a vacuum evaporation method. Examples of a material for the conductive film are an element selected from aluminum, chromium, tantalum, titanium, molybdenum, and tungsten; an alloy containing any of the above elements as its component; and an alloy containing a combination of any of the above elements. Further, in the case where heat treatment is performed at 200° C. to 600° C. inclusive, the conductive film preferably has sufficient heat resistance to withstand heat treatment performed in this temperature range. Since the use of Al alone brings disadvantages such as low heat resistance and a tendency to be corroded, aluminum is used in combination with a conductive material having heat resistance. As such a conductive material having heat resistance, any of the following materials can be used: an element selected from titanium, tantalum, tungsten, molybdenum, chromium, neodymium, and scandium; an alloy containing any of these above elements as its component; an alloy containing a combination of any of these elements; and a nitride containing any of these elements as its component.
Here, the conductive film has a single-layer structure of a titanium film. The conductive film may have a two-layer structure, and a titanium film may be stacked over an aluminum film. Alternatively, the conductive film may have a three-layer structure in which a titanium film, an aluminum film containing neodymium (an Al—Nd film), and a titanium film are stacked in this order. Further alternatively, the conductive film may have a single-layer structure of an aluminum film containing silicon.
Next, a third photolithography step is performed so that a resist mask is formed and unnecessary portions are removed by etching, whereby the second wiring 102A and the third wiring 102B made of the conductive film are formed. Wet etching or dry etching is employed as an etching method at this time. For example, when a conductive film of titanium is etched with wet etching using an ammonia peroxide mixture (hydrogen peroxide water at 31 wt %:ammonia water at 28 wt %:water=5:2:2), the oxide semiconductor layer 103 can be left while the second wiring 102A and the third wiring 102B are selectively etched.
An exposed region of the oxide semiconductor layer is sometimes etched in the third photolithography step depending on the etching conditions. In this case, the thickness of the oxide semiconductor layer 103 in a region between the second wiring 102A and the third wiring 102B is smaller than that of the oxide semiconductor layer over the first wiring 101 in a region overlapping the second wiring 102A or the third wiring 102B.
Then, the oxide insulating layer 114 is formed over the gate insulating film 113, the oxide semiconductor layer 103, the second wiring 102A, and the third wiring 102B. At this stage, part of the oxide semiconductor layer 103 is in contact with the oxide insulating layer 114.
The oxide insulating layer 114 can be formed to a thickness of at least 1 nm by a method with which impurities such as water and hydrogen are not mixed into the oxide insulating layer as appropriate. In this embodiment, a silicon oxide film is formed by a sputtering method as the oxide insulating layer. The substrate temperature in film deposition is higher than or equal to room temperature and lower than or equal to 300° C., and is 100° C. in this embodiment. The silicon oxide film can be formed by a sputtering method in a rare gas (typically, argon) atmosphere, an oxygen atmosphere, or a mixed atmosphere of a rare gas (typically, argon) and oxygen. As a target for deposition, a silicon oxide target or a silicon target can be used. For example, with the use of a silicon target, a silicon oxide film can be formed by a sputtering method in an atmosphere of oxygen and a rare gas. As the oxide insulating layer which is formed in contact with the oxide semiconductor layer which is changed into an oxygen-deficient type and has low resistance, an inorganic insulating film that does not include impurities such as moisture, a hydrogen ion, and OH− and blocks entry of these impurities from the outside is used. Specifically, a silicon oxide film, a silicon nitride oxide film, an aluminum oxide film, or an aluminum oxynitride film is used. Note that a target for deposition which is doped with phosphorus (P) or boron (B) is used, so that an oxide insulating layer to which phosphorus (P) or boron (B) is added can be formed.
In this embodiment, the oxide insulating layer 114 is formed by a pulsed DC sputtering method using a columnar polycrystalline silicon target doped with boron that has a purity of 6N and a resistivity of 0.01 Ωcm in the following conditions: the distance between the substrate and the target (T-S distance) is 89 mm, the pressure is 0.4 Pa, the direct-current (DC) power is 6 kW, and the atmosphere is an oxygen atmosphere (the oxygen flow rate is 100%). The thickness thereof is 300 nm.
Note that the oxide insulating layer 114 is provided on and in contact with a region serving as the channel formation region of the oxide semiconductor layer and also functions as a channel protective layer.
In this case, the oxide insulating layer 114 is preferably formed while remaining moisture in the treatment chamber is removed, in order to prevent hydrogen, hydroxyl group, or moisture from being contained in the oxide semiconductor layer 103 and the oxide insulating layer 114.
In order to remove remaining moisture in the treatment chamber, an entrapment vacuum pump is preferably used. For example, a cryopump, an ion pump, or a titanium sublimation pump is preferably used. The evacuation unit may be a turbo molecular pump provided with a cold trap. In the deposition chamber which is evacuated with the cryopump, a hydrogen atom, a compound containing a hydrogen atom such as water (H2O), and the like are removed, whereby the concentration of an impurity in the oxide insulating layer 114 formed in the deposition chamber can be reduced.
Next, second heat treatment (preferably at 200° C. to 400° C. inclusive, for example, 250° C. to 350° C. inclusive) is performed in an inert gas atmosphere. For example, the second heat treatment is performed at 250° C. for one hour in a nitrogen atmosphere. By the second heat treatment, heat is applied while part of the oxide semiconductor layer 103 is in contact with the oxide insulating layer 114.
When the second heat treatment is performed while the oxide semiconductor layer 103 which is changed into an oxygen-deficient type at the same time as elimination of hydrogen and the resistance of which is reduced by the first heat treatment is in contact with the oxide insulating layer 114, a region that is in contact with the oxide insulating layer 114 is brought into an oxygen-excess state. Thus, the oxide semiconductor layer 103 is changed into a high-resistance (i-type) oxide semiconductor layer in the depth direction from the region that is in contact with the oxide insulating layer 114.
Further, the heat treatment may be performed at 100° C. to 200° C. inclusive for one hour to 30 hours inclusive in the air. For example, the heat treatment is performed at 150° C. for 10 hours. This heat treatment may be performed at a fixed heating temperature. Alternatively, the following change in the heating temperature may be conducted plural times repeatedly: the heating temperature is increased from room temperature to a temperature of 100° C. to 200° C. inclusive and then decreased to room temperature. Further, this heat treatment may be performed before formation of the oxide insulating film under a reduced pressure. Under the reduced pressure, the heat treatment time can be shortened. With such heat treatment, hydrogen is introduced from the oxide semiconductor layer to the oxide insulating layer; thus, a normally-off thin film transistor can be obtained. Therefore, reliability of the semiconductor device can be improved.
Then, an opening portion 121 is formed in the oxide insulating layer 114 through a fourth photolithography step and an etching step, and a light-transmitting conductive film is formed. The light-transmitting conductive film is formed using indium oxide (In2O3), indium tin oxide (In2O3—SnO2, hereinafter abbreviated as ITO), or the like by a sputtering method, a vacuum evaporation method, or the like. Alternatively, an Al—Zn—O-based film containing nitrogen, that is, an Al—Zn—O—N-based film, a Zn—O-based film containing nitrogen, or a Sn—Zn—O-based film containing nitrogen may be used. Note that the composition ratio (atomic %) of zinc in the Al—Zn—O—N-based film is less than or equal to 47 atomic % and is higher than that of aluminum in the film; the composition ratio (atomic %) of aluminum in the film is higher than that of nitrogen in the film. Such a material is etched with a hydrochloric acid-based solution. However, since a residue is easily generated particularly in etching ITO, indium zinc oxide (In2O3—ZnO) may be used to improve etching processability.
Note that the unit of the percentage of components in the light-transmitting conductive film is atomic percent (atomic %), and the percentage of components is evaluated by analysis using an electron probe X-ray microanalyzer (EPMA).
Next, a fifth photolithography step is performed so that a resist mask is formed and unnecessary portions are removed by etching, thereby forming the pixel electrode 105.
In such a manner, the pixel including the thin film transistor 106 with low off-current can be manufactured. Moreover, the pixels are arranged in a matrix to form a pixel portion, whereby one of substrates for manufacturing an active-matrix liquid crystal display device can be obtained. In this specification, such a substrate is referred to as an active-matrix substrate for convenience.
Note that in an active-matrix liquid crystal display device, pixel electrodes arranged in a matrix are driven so that a display pattern is formed on a screen. Specifically, voltage is applied between a selected pixel electrode and a counter electrode corresponding to the pixel electrode, so that a liquid crystal layer provided between the pixel electrode and the counter electrode is optically modulated and this optical modulation is recognized as a display pattern by an observer. A display element such as a liquid crystal element is provided over the pixel electrode 105.
As described above, the structure described in this embodiment, in which a capacitor is omitted, makes it possible to increase the aperture ratio of a pixel including a thin film transistor in which an oxide semiconductor is used. Thus, a liquid crystal display device can include a high definition display portion.
This embodiment can be implemented in combination with any of the structures described in the other embodiments as appropriate.
According to one embodiment of the present invention, impurities to be donors (or acceptors) of carriers in an oxide semiconductor are reduced to a very low level, whereby the oxide semiconductor is made to be intrinsic or substantially intrinsic, and the oxide semiconductor is used for a thin film transistor. In this embodiment, measured values of off-current using a test element group (also referred to as a TEG) will be described below.
As shown in
A method for manufacturing the thin film transistor used for the measurement is described.
First, a silicon nitride film was formed as a base layer over a glass substrate by a CVD method, and a silicon oxynitride film was formed over the silicon nitride film. A tungsten layer was formed as a gate electrode layer over the silicon oxynitride film by a sputtering method. Here, the gate electrode layer was formed by selectively etching the tungsten layer.
Then, a silicon oxynitride film having a thickness of 100 nm was formed as a gate insulating layer over the gate electrode layer by a CVD method.
Then, an oxide semiconductor film having a thickness of 50 nm was formed over the gate insulating layer by a sputtering method using an In—Ga—Zn—O-based metal oxide target (at a molar ratio of In2O3:Ga2O3:ZnO=1:1:2). Here, an island-shaped oxide semiconductor layer was formed by selectively etching the oxide semiconductor film.
Then, first heat treatment was performed on the oxide semiconductor layer in a nitrogen atmosphere in a clean oven at 450° C. for 1 hour.
Then, a titanium layer (having a thickness of 150 nm) was formed as a source electrode layer and a drain electrode layer over the oxide semiconductor layer by a sputtering method. Here, the source electrode layer and the drain electrode layer were formed by selectively etching the titanium layer such that 200 thin film transistors each having a channel length L of 3 μm and a channel width W of 50 μm were connected in parallel to obtain a thin film transistor with L/W=3 μm/10000 μm.
Then, a silicon oxide film having a thickness of 300 nm was formed as a protective insulating layer in contact with the oxide semiconductor layer by a reactive sputtering method. Opening portions were formed over the gate electrode layer, the source electrode layer, and the drain electrode layer by selectively etching the silicon oxide film. After that, second heat treatment was performed in a nitrogen atmosphere at 250° C. for 1 hour.
Then, heat treatment was performed at 150° C. for 10 hours before the measurement of Vg-Id characteristics.
Through the above process, a bottom-gate thin film transistor was manufactured.
The reason why the off-current of the thin film transistor is approximately 1×10−13 A as shown in
Although the example of using an In—Ga—Zn—O-based oxide semiconductor is described, this embodiment is not particularly limited thereto. As another oxide semiconductor material, a four-component metal oxide film such as an In—Sn—Ga—Zn—O film; a three-component metal oxide film such as an In—Ga—Zn—O film, an In—Sn—Zn—O film, an In—Al—Zn—O film, a Sn—Ga—Zn—O film, an Al—Ga—Zn—O film, or a Sn—Al—Zn—O film; or a two-component metal oxide film such as an In—Zn—O film, a Sn—Zn—O film, an Al—Zn—O film, a Zn—Mg—O film, a Sn—Mg—O film, or an In—Mg—O film; an In—O film, a Sn—O film, or a Zn—O film can be used for the oxide semiconductor film. Furthermore, as an oxide semiconductor material, an In—Al—Zn—O-based oxide semiconductor mixed with AlOx of 2.5 wt % to 10 wt % or an In—Zn—O-based oxide semiconductor mixed with SiOx of 2.5 wt % to 10 wt % can be used.
The carrier concentration of the oxide semiconductor layer which is measured by a carrier measurement device is preferably less than or equal to 1.45×1010/cm3, which is intrinsic carrier concentration of silicon. Specifically, the carrier concentration is 5×1014/cm3 or less, preferably 5×1012/cm3 or less. In other words, the carrier concentration of the oxide semiconductor layer can be made as close to zero as possible.
The thin film transistor can also have a channel length L of 10 nm to 1000 nm inclusive, which enables an increase in circuit operation speed, and the off-current is extremely small, which enables a further reduction in power consumption.
In addition, in circuit design, the oxide semiconductor layer can be regarded as an insulator when the thin film transistor is in an off state.
After that, the temperature characteristics of off-current of the thin film transistor manufactured in this embodiment were evaluated. Temperature characteristics are important in considering the environmental resistance, maintenance of performance, or the like of an end product in which the thin film transistor is used. It is to be understood that a smaller amount of change is more preferable, which increases the degree of freedom for product designing.
For the temperature characteristics, the Vg-Id characteristics were obtained using a constant-temperature chamber under the conditions where substrates provided with thin film transistors were kept at respective constant temperatures of −30° C., 0° C., 25° C., 40° C., 60° C., 80° C., 100° C., and 120° C., the drain voltage was set to 6 V, and the gate voltage was changed from −20 V to +20V.
A thin film transistor including a purified oxide semiconductor (purified OS) shows almost no dependence of off-current on temperature. It can be said that an oxide semiconductor does not show temperature dependence when purified because the conductivity type becomes extremely close to an intrinsic type and the Fermi level is located in the middle of the forbidden band, as illustrated in the energy band diagram of
At normal temperature, electrons in the metal degenerate and the Fermi level is positioned in the conduction band. On the other hand, a conventional oxide semiconductor is generally of n-type, and the Fermi level (EF) in that case is positioned closer to the conduction band and is away from the intrinsic Fermi level (Ei) that is located in the middle of the band gap. Note that it is known that some hydrogen in the oxide semiconductor form a donor and might be a factor that causes an oxide semiconductor to be an n-type oxide semiconductor.
In contrast, the oxide semiconductor according to the present invention is an oxide semiconductor that is made to be an intrinsic (i-type) semiconductor or made to be as close to an intrinsic semiconductor as possible by being highly purified not by addition of an impurity but by removal of hydrogen that is an n-type impurity so that as few impurities, which are not main components of the oxide semiconductor, as possible are contained. In other words, the oxide semiconductor according to the present invention has a feature in that it is made to be an i-type (intrinsic) semiconductor or made to be close thereto by being highly purified by removal of impurities such as hydrogen or water as much as possible. As a result, the Fermi level (EF) can be at the same level as the intrinsic Fermi level (Ei).
It is said that the electron affinity (χ) of an oxide semiconductor is 4.3 eV in the case where the band gap (Eg) thereof is 3.15 eV. The work function of titanium used for forming the source and drain electrodes is substantially equal to the electron affinity (χ) of the oxide semiconductor. In the case where titanium is used for the source and drain electrodes, the Schottky electron barrier is not formed at an interface between the metal and the oxide semiconductor.
In other words, an energy band diagram (a schematic diagram) like
In
In this case, as shown in
In
For example, even when the thin film transistor has a channel width W of 1×104 μm and a channel length of 3 μm, an off-current of 10−13 A or less and a subthreshold value (S value) of 0.1 V/dec. (the thickness of the gate insulating film: 100 nm) can be obtained.
Therefore, not by simply using an oxide semiconductor having a wide band gap for a transistor but by highly purifying the oxide semiconductor such that an impurity other than a main component can be prevented from being contained therein as much as possible so that the carrier concentration becomes 1×1014/cm3 or less, preferably 1×1012/cm3 or less, carriers to be thermally excited at a practical operation temperature can be eliminated, and the transistor can operate only with carriers that are injected from the source side. This makes it possible to decrease the off-current to 1×10−13 A or less and to obtain a transistor whose off-current hardly changes with a change in temperature and which is capable of extremely stable operation.
In the case where a memory circuit (memory element) or the like is manufactured using a thin film transistor having such an extremely small off-current, there is very little leakage. Therefore, memory data can be stored for a longer period of time. Similarly in a liquid crystal display device and the like, leakage from a storage capacitor through a thin film transistor can be suppressed; therefore, a potential of a pixel can be held only by a liquid crystal capacitor, without an auxiliary capacitor.
This embodiment can be implemented in combination with any of the structures described in the other embodiments as appropriate.
In this embodiment, a structure and operation of a pixel that can be applied to a liquid crystal display device will be described.
The wiring 3884 can function as a signal line. The signal line is a wiring for transmitting a signal voltage, which is input from the outside of the pixel, to the pixel 3880. The wiring 3885 can function as a scan line. The scan line is a wiring for controlling on/off of the transistor 3881. The wiring 3886 can function as a capacitor line. The capacitor line is a wiring for applying a predetermined voltage to the second terminal of the capacitor 3883. The transistor 3881 can function as a switch. The capacitor 3883 can function as an auxiliary capacitor. The capacitor is an auxiliary capacitor with which the signal voltage continues to be applied to the liquid crystal element 3882 even when the switch is off. The wiring 3887 can function as a counter electrode. The counter electrode is a wiring for applying a predetermined voltage to the second terminal of the liquid crystal element 3882. Note that a function of each wiring is not limited to the above, and each wiring can have a variety of functions. For example, by changing a voltage applied to the capacitor line, a voltage applied to the liquid crystal element can be adjusted.
Here, a pixel portion including the thin film transistor described in Embodiment 1 is illustrated in
The pixel configuration in
In the pixel configuration in
In the timing chart in
In this case, so-called overdriving may be performed in which an overdrive voltage is applied to the pixel portion and the response speed of the liquid crystal element is increased to suppress blur. Thus, when a moving image is displayed, the movement thereof can be displayed clearly.
Specifically, in the case where a capacitor which is parallel to a liquid crystal element is not provided as in one embodiment of the present invention, there are cases where after writing data to the pixel, dielectric constant is changed in accordance with a change in a state of liquid crystal and a capacitance of the liquid crystal itself is changed, whereby a potential held by the pixel is changed; therefore, overdriving is an effective driving method.
Next, a pixel configuration and a driving method that are preferably used particularly by a liquid crystal element with a vertical alignment (VA) mode typified by an MVA mode or a PVA mode will be described. The VA mode has advantages that a rubbing process is not necessary in manufacturing, the amount of light leakage is small in displaying black images, the level of drive voltage is low, and the like; however, the VA mode has a problem in that the quality of images deteriorates when a screen is viewed from an angle (i.e., the viewing angle is small). In order to increase the viewing angle in the VA mode, a pixel configuration in which one pixel includes a plurality of subpixels as illustrated in
The pixel configuration in
Next, an estimate of how much the aperture ratio of each pixel in a liquid crystal display device is increased by using a thin film transistor including an oxide semiconductor layer according to one embodiment of the present invention is shown.
Parameters for estimating the aperture ratio of a pixel are as follows: the leakage current of the thin film transistor including the oxide semiconductor layer is 1×10−13 (A), the panel size is 3.4 inches, the grayscale to be expressed is 256 gray levels, a voltage input is 10 V, and one frame for display is 1/60 second. Moreover, a gate insulating film has a dielectric constant of 3.7 (F/m) and a thickness of 1×10−7 (m).
First, the area of a capacitor and the aperture ratio in the case where the above-described parameters apply to a panel (referred to as a first panel) in which the number of pixels is 540×RGB×960 are estimated. The size of the pixel in the panel is 26 (μm)×78 (μm), that is, 2.03×10−9 (m2). The area other than a region occupied by a wiring and a thin film transistor is 1.43×10−9 (m2), and the area of the region occupied by the wiring and the thin film transistor is 6.00×10−10 (m2).
In the first panel, a minimum necessary capacitance of an auxiliary capacitor is 4.25×10−14 (F) in a pixel having a thin film transistor including an oxide semiconductor layer. In this case, the area necessary for the capacitor is 1.30×1010 (m2); the capacitor accounts for 6.4% of the area of the pixel and the aperture ratio is 64.0%.
In addition, the area of a capacitor and the aperture ratio in the case where the above-described parameters apply to a panel (referred to as a second panel) in which the number of pixels is 480×RGB×640 are estimated. The size of a pixel in the panel is 36 (μm)×108 (μm), that is, 3.89×10−9 (m2). The area excluding a region occupied by a wiring and a thin film transistor is 3.29×10−9 (m2), and the area of the region occupied by the wiring and the thin film transistor is 6.00×10−10 (m2).
In the second panel, a minimum necessary capacitance of an auxiliary capacitor is 4.25×10−14 (F) in a pixel having a thin film transistor including an oxide semiconductor layer. In this case, the area necessary for the capacitor is 1.30×10−10 (m2); the capacitor accounts for 3.3% of the area of the pixel and the aperture ratio is 81.2%.
When a thin film transistor including an oxide semiconductor layer according to one embodiment of the present invention is used for the first panel and the second panel, a capacitor line can be reduced and the region occupied by the pixel electrode 105 can be increased. The calculated aperture ratio in the first panel is 70.4% and that in the second panel is 84.5%; therefore, it is found that the aperture ratio is significantly increased by omitting a capacitor.
By a combination of the pixel in this embodiment with the structure in Embodiment 1 or 2, the aperture ratio can be increased when the pixel including a thin film transistor in which an oxide semiconductor is used is formed.
This embodiment can be implemented in combination with any of the structures described in the other embodiments as appropriate.
In this embodiment, an example of an electronic device including the liquid crystal display device described in any of Embodiments 1 to 3 will be described.
The electronic devices described in this embodiment each can include a liquid crystal display device in which the aperture ratio of a plurality of pixels included in the display portion can be increased.
This embodiment can be implemented in combination with any of the structures described in the other embodiments as appropriate.
This application is based on Japanese Patent Application serial no. 2009-242787 filed with Japan Patent Office on Oct. 21, 2009, the entire contents of which are hereby incorporated by reference.
101: wiring, 102A: wiring, 102B: wiring, 103: oxide semiconductor layer, 105: pixel electrode, 106: thin film transistor, 111: substrate, 112: base film, 113: gate insulating film, 114: oxide insulating layer, 121: opening portion, 700: substrate, 701: pixel, 702: pixel portion, 703: scan line drive circuit, 704: signal line drive circuit, 880: pixel, 884: wiring, 885: wiring, 887: wiring, 889: common wiring, 984: signal, 985: signal, 1080: subpixel, 1081: transistor, 1082: liquid crystal element, 1084: wiring, 1085: wiring, 1088: pixel electrode, 2101: wiring, 2102A: wiring, 2102B: wiring, 2103: oxide semiconductor layer, 2104: capacitor line, 2105: pixel electrode, 2106: thin film transistor, 2111: substrate, 2112: base film, 2113: gate insulating film, 2114: oxide insulating layer, 3880: pixel, 3881: transistor, 3882: liquid crystal element, 3883: capacitor, 3884: wiring, 3885: wiring, 3886: wiring, 3887: wiring, 9630: housing, 9631: display portion, 9633: speaker, 9635: operation key, 9636: connection terminal, 9638: microphone, 9672: recording medium insert reading portion, 9676: shutter button, 9677: image receiving portion, 9680: external connection port, and 9681: pointing device.
Number | Date | Country | Kind |
---|---|---|---|
2009-242787 | Oct 2009 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5412493 | Kunii | May 1995 | A |
5541748 | Ono et al. | Jul 1996 | A |
5598284 | Kogushi et al. | Jan 1997 | A |
5650636 | Takemura et al. | Jul 1997 | A |
5731856 | Kim et al. | Mar 1998 | A |
5744864 | Cillessen et al. | Apr 1998 | A |
5767832 | Koyama et al. | Jun 1998 | A |
5798746 | Koyama | Aug 1998 | A |
5844538 | Shiraki et al. | Dec 1998 | A |
5977940 | Akiyama et al. | Nov 1999 | A |
6067132 | Kim | May 2000 | A |
6294274 | Kawazoe et al. | Sep 2001 | B1 |
6384461 | Lu et al. | May 2002 | B1 |
6414738 | Fujikawa | Jul 2002 | B1 |
6493046 | Ueda | Dec 2002 | B1 |
6563174 | Kawasaki et al. | May 2003 | B2 |
6597348 | Yamazaki et al. | Jul 2003 | B1 |
6661096 | Takayama et al. | Dec 2003 | B1 |
6727522 | Kawasaki et al. | Apr 2004 | B1 |
6738107 | Nagase et al. | May 2004 | B2 |
6762813 | Zhang et al. | Jul 2004 | B1 |
7045816 | Ishihara et al. | May 2006 | B2 |
7049190 | Takeda et al. | May 2006 | B2 |
7053969 | Yamazaki et al. | May 2006 | B2 |
7061014 | Hosono et al. | Jun 2006 | B2 |
7064346 | Kawasaki et al. | Jun 2006 | B2 |
7105868 | Nause et al. | Sep 2006 | B2 |
7129918 | Kimura | Oct 2006 | B2 |
7145536 | Yamazaki et al. | Dec 2006 | B1 |
7211825 | Shih et al | May 2007 | B2 |
7212265 | Eguchi et al. | May 2007 | B2 |
7235810 | Yamazaki et al. | Jun 2007 | B1 |
7282782 | Hoffman et al. | Oct 2007 | B2 |
7286108 | Tsuda et al. | Oct 2007 | B2 |
7297977 | Hoffman et al. | Nov 2007 | B2 |
7317438 | Yamazaki et al. | Jan 2008 | B2 |
7321353 | Tsuda et al. | Jan 2008 | B2 |
7323356 | Hosono et al. | Jan 2008 | B2 |
7385224 | Ishii et al. | Jun 2008 | B2 |
7385579 | Satake | Jun 2008 | B2 |
7402506 | Levy et al. | Jul 2008 | B2 |
7411209 | Endo et al. | Aug 2008 | B2 |
7453065 | Saito et al. | Nov 2008 | B2 |
7453087 | Iwasaki | Nov 2008 | B2 |
7462862 | Hoffman et al. | Dec 2008 | B2 |
7468304 | Kaji et al. | Dec 2008 | B2 |
7501293 | Ito et al. | Mar 2009 | B2 |
7525614 | Jeong et al. | Apr 2009 | B2 |
7601984 | Sano et al. | Oct 2009 | B2 |
7612849 | Eguchi et al. | Nov 2009 | B2 |
7674650 | Akimoto et al. | Mar 2010 | B2 |
7732819 | Akimoto et al. | Jun 2010 | B2 |
7738055 | Egi et al. | Jun 2010 | B2 |
7767106 | Chang | Aug 2010 | B2 |
7777825 | Noda et al. | Aug 2010 | B2 |
7791072 | Kumomi et al. | Sep 2010 | B2 |
7791074 | Iwasaki | Sep 2010 | B2 |
7791571 | Ohtani et al. | Sep 2010 | B2 |
7804091 | Takechi et al. | Sep 2010 | B2 |
7816191 | Takayama et al. | Oct 2010 | B2 |
7821613 | Kimura | Oct 2010 | B2 |
7903190 | Noda et al. | Mar 2011 | B2 |
7906429 | Takayama et al. | Mar 2011 | B2 |
7935582 | Iwasaki | May 2011 | B2 |
7956361 | Iwasaki | Jun 2011 | B2 |
7994500 | Kim et al. | Aug 2011 | B2 |
7998372 | Yano et al. | Aug 2011 | B2 |
8058645 | Jeong et al. | Nov 2011 | B2 |
8084331 | Ofuji et al. | Dec 2011 | B2 |
8134154 | Gosain et al. | Mar 2012 | B2 |
8143115 | Omura et al. | Mar 2012 | B2 |
8148721 | Hayashi et al. | Apr 2012 | B2 |
8148779 | Jeong et al. | Apr 2012 | B2 |
8188480 | Itai | May 2012 | B2 |
8193045 | Omura et al. | Jun 2012 | B2 |
8202365 | Umeda et al. | Jun 2012 | B2 |
8203143 | Imai | Jun 2012 | B2 |
8242837 | Yamazaki et al. | Aug 2012 | B2 |
8253138 | Yamazaki et al. | Aug 2012 | B2 |
8269217 | Arai et al. | Sep 2012 | B2 |
8330887 | Kurokawa et al. | Dec 2012 | B2 |
8384077 | Yano et al. | Feb 2013 | B2 |
8400187 | Yamazaki et al. | Mar 2013 | B2 |
8618545 | Gosain et al. | Dec 2013 | B2 |
8786527 | Umezaki et al. | Jul 2014 | B2 |
8890781 | Yamazaki et al. | Nov 2014 | B2 |
20010043292 | Tsujimura et al. | Nov 2001 | A1 |
20010046027 | Tai et al. | Nov 2001 | A1 |
20020056838 | Ogawa | May 2002 | A1 |
20020132454 | Ohtsu et al. | Sep 2002 | A1 |
20020154084 | Tanaka et al. | Oct 2002 | A1 |
20030189401 | Kido et al. | Oct 2003 | A1 |
20030218222 | Wager et al. | Nov 2003 | A1 |
20040038446 | Takeda et al. | Feb 2004 | A1 |
20040127038 | Carcia et al. | Jul 2004 | A1 |
20040263719 | Inoue et al. | Dec 2004 | A1 |
20050017302 | Hoffman | Jan 2005 | A1 |
20050018105 | Inoue et al. | Jan 2005 | A1 |
20050024556 | Nakahata et al. | Feb 2005 | A1 |
20050030445 | Inoue et al. | Feb 2005 | A1 |
20050199959 | Chiang et al. | Sep 2005 | A1 |
20060035452 | Carcia et al. | Feb 2006 | A1 |
20060043377 | Hoffman et al. | Mar 2006 | A1 |
20060050193 | Seki et al. | Mar 2006 | A1 |
20060061700 | Chung | Mar 2006 | A1 |
20060091793 | Baude et al. | May 2006 | A1 |
20060108529 | Saito et al. | May 2006 | A1 |
20060108636 | Sano et al. | May 2006 | A1 |
20060110867 | Yabuta et al. | May 2006 | A1 |
20060113536 | Kumomi et al. | Jun 2006 | A1 |
20060113539 | Sano et al. | Jun 2006 | A1 |
20060113549 | Den et al. | Jun 2006 | A1 |
20060113565 | Abe et al. | Jun 2006 | A1 |
20060158573 | Huh | Jul 2006 | A1 |
20060169973 | Isa et al. | Aug 2006 | A1 |
20060170111 | Isa et al. | Aug 2006 | A1 |
20060197092 | Hoffman et al. | Sep 2006 | A1 |
20060208977 | Kimura | Sep 2006 | A1 |
20060228974 | Thelss et al. | Oct 2006 | A1 |
20060231882 | Kim et al. | Oct 2006 | A1 |
20060238135 | Kimura | Oct 2006 | A1 |
20060244107 | Sugihara et al. | Nov 2006 | A1 |
20060284171 | Levy et al. | Dec 2006 | A1 |
20060284172 | Ishii | Dec 2006 | A1 |
20060292777 | Dunbar | Dec 2006 | A1 |
20070001954 | Shishido et al. | Jan 2007 | A1 |
20070024187 | Shin et al. | Feb 2007 | A1 |
20070046191 | Saito | Mar 2007 | A1 |
20070046591 | Shishido et al. | Mar 2007 | A1 |
20070052025 | Yabuta | Mar 2007 | A1 |
20070054507 | Kaji et al. | Mar 2007 | A1 |
20070075627 | Kimura et al. | Apr 2007 | A1 |
20070090365 | Hayashi et al. | Apr 2007 | A1 |
20070108446 | Akimoto | May 2007 | A1 |
20070152217 | Lai et al. | Jul 2007 | A1 |
20070172591 | Seo et al. | Jul 2007 | A1 |
20070187678 | Hirao et al. | Aug 2007 | A1 |
20070187760 | Furuta et al. | Aug 2007 | A1 |
20070194379 | Hosono et al. | Aug 2007 | A1 |
20070236640 | Kimura | Oct 2007 | A1 |
20070252928 | Ito et al. | Nov 2007 | A1 |
20070272922 | Kim et al. | Nov 2007 | A1 |
20070278490 | Hirao et al. | Dec 2007 | A1 |
20070279344 | Kimura et al. | Dec 2007 | A1 |
20070279374 | Kimura et al. | Dec 2007 | A1 |
20070287296 | Chang | Dec 2007 | A1 |
20080006877 | Mardilovich et al. | Jan 2008 | A1 |
20080035920 | Takechi et al. | Feb 2008 | A1 |
20080038882 | Takechi et al. | Feb 2008 | A1 |
20080038929 | Chang | Feb 2008 | A1 |
20080050595 | Nakagawara et al. | Feb 2008 | A1 |
20080055218 | Tsuda et al. | Mar 2008 | A1 |
20080073653 | Iwasaki | Mar 2008 | A1 |
20080083950 | Pan et al. | Apr 2008 | A1 |
20080106191 | Kawase | May 2008 | A1 |
20080117348 | Chen | May 2008 | A1 |
20080119018 | Toyota et al. | May 2008 | A1 |
20080128689 | Lee et al. | Jun 2008 | A1 |
20080129195 | Ishizaki et al. | Jun 2008 | A1 |
20080166834 | Kim et al. | Jul 2008 | A1 |
20080182358 | Cowdery-Corvan et al. | Jul 2008 | A1 |
20080198285 | Hsieh et al. | Aug 2008 | A1 |
20080224133 | Park et al. | Sep 2008 | A1 |
20080254569 | Hoffman et al. | Oct 2008 | A1 |
20080258139 | Ito et al. | Oct 2008 | A1 |
20080258140 | Lee et al. | Oct 2008 | A1 |
20080258141 | Park et al. | Oct 2008 | A1 |
20080258143 | Kim et al. | Oct 2008 | A1 |
20080284929 | Kimura | Nov 2008 | A1 |
20080296568 | Ryu et al. | Dec 2008 | A1 |
20080297676 | Kimura | Dec 2008 | A1 |
20090002586 | Kimura | Jan 2009 | A1 |
20090002590 | Kimura | Jan 2009 | A1 |
20090009455 | Kimura | Jan 2009 | A1 |
20090011611 | Ichijo et al. | Jan 2009 | A1 |
20090045397 | Iwasaki | Feb 2009 | A1 |
20090068773 | Lai et al. | Mar 2009 | A1 |
20090073325 | Kuwabara et al. | Mar 2009 | A1 |
20090114910 | Chang | May 2009 | A1 |
20090134399 | Sakakura et al. | May 2009 | A1 |
20090140438 | Yamazaki et al. | Jun 2009 | A1 |
20090141203 | Son et al. | Jun 2009 | A1 |
20090152506 | Umeda et al. | Jun 2009 | A1 |
20090152541 | Maekawa et al. | Jun 2009 | A1 |
20090174835 | Lee et al. | Jul 2009 | A1 |
20090207328 | Hur et al. | Aug 2009 | A1 |
20090244419 | Nakamura et al. | Oct 2009 | A1 |
20090256816 | Kim | Oct 2009 | A1 |
20090261325 | Kawamura et al. | Oct 2009 | A1 |
20090267064 | Yano et al. | Oct 2009 | A1 |
20090278122 | Hosono et al. | Nov 2009 | A1 |
20090280600 | Hosono et al. | Nov 2009 | A1 |
20100007810 | Nakamura | Jan 2010 | A1 |
20100051936 | Hayashi et al. | Mar 2010 | A1 |
20100065844 | Tokunaga | Mar 2010 | A1 |
20100084651 | Yamazaki et al. | Apr 2010 | A1 |
20100092800 | Itagaki et al. | Apr 2010 | A1 |
20100109002 | Itagaki et al. | May 2010 | A1 |
20100149138 | Lee | Jun 2010 | A1 |
20100155719 | Sakata et al. | Jun 2010 | A1 |
20100245697 | Shiiba et al. | Sep 2010 | A1 |
20100276689 | Iwasaki | Nov 2010 | A1 |
20100279462 | Iwasaki | Nov 2010 | A1 |
20100283049 | Sato et al. | Nov 2010 | A1 |
20100289020 | Yano et al. | Nov 2010 | A1 |
20100296020 | Noda et al. | Nov 2010 | A1 |
20100304539 | Matsuura | Dec 2010 | A1 |
20100320458 | Umeda et al. | Dec 2010 | A1 |
20100320459 | Umeda et al. | Dec 2010 | A1 |
20100320471 | Takechi et al. | Dec 2010 | A1 |
20110032435 | Kimura | Feb 2011 | A1 |
20110068852 | Yamazaki et al. | Mar 2011 | A1 |
20110089927 | Yamazaki et al. | Apr 2011 | A1 |
20110090183 | Yamazaki et al. | Apr 2011 | A1 |
20110090184 | Yamazaki et al. | Apr 2011 | A1 |
20110090186 | Yamazaki et al. | Apr 2011 | A1 |
20110134345 | Yamazaki et al. | Jun 2011 | A1 |
20110193083 | Kim et al. | Aug 2011 | A1 |
20110210327 | Kondo et al. | Sep 2011 | A1 |
20110215328 | Morosawa et al. | Sep 2011 | A1 |
20120001881 | Miyake et al. | Jan 2012 | A1 |
20120119205 | Taniguchi et al. | May 2012 | A1 |
20120168750 | Hayashi et al. | Jul 2012 | A1 |
20140327662 | Umezaki et al. | Nov 2014 | A1 |
20150084048 | Hayashi et al. | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
001353329 | Jun 2002 | CN |
101548389 | Sep 2009 | CN |
1209748 | May 2002 | EP |
1737044 | Dec 2006 | EP |
2092569 | Aug 2009 | EP |
2226847 | Sep 2010 | EP |
60-198861 | Oct 1985 | JP |
63-210022 | Aug 1988 | JP |
63-210023 | Aug 1988 | JP |
63-210024 | Aug 1988 | JP |
63-215519 | Sep 1988 | JP |
63-239117 | Oct 1988 | JP |
63-265818 | Nov 1988 | JP |
64-010299 | Jan 1989 | JP |
02-137825 | May 1990 | JP |
02-240636 | Sep 1990 | JP |
04-302289 | Oct 1992 | JP |
05-034724 | Feb 1993 | JP |
05-251705 | Sep 1993 | JP |
06-347831 | Dec 1994 | JP |
07-191304 | Jul 1995 | JP |
08-264794 | Oct 1996 | JP |
09-321305 | Dec 1997 | JP |
10-122144 | May 1998 | JP |
10-274782 | Oct 1998 | JP |
11-505377 | May 1999 | JP |
11-274504 | Oct 1999 | JP |
2000-044236 | Feb 2000 | JP |
2000-150900 | May 2000 | JP |
2000-275611 | Oct 2000 | JP |
2001-013518 | Jan 2001 | JP |
2001-166331 | Jun 2001 | JP |
2002-014320 | Jan 2002 | JP |
2002-050762 | Feb 2002 | JP |
2002-055326 | Feb 2002 | JP |
2002-076356 | Mar 2002 | JP |
2002-289859 | Oct 2002 | JP |
2002-323707 | Nov 2002 | JP |
2003-050405 | Feb 2003 | JP |
2003-086000 | Mar 2003 | JP |
2003-086808 | Mar 2003 | JP |
2003-131633 | May 2003 | JP |
2004-103957 | Apr 2004 | JP |
2004-245641 | Sep 2004 | JP |
2004-273614 | Sep 2004 | JP |
2004-273732 | Sep 2004 | JP |
2006-165527 | Jun 2006 | JP |
2006-165528 | Jun 2006 | JP |
2006-165529 | Jun 2006 | JP |
2006-165532 | Jun 2006 | JP |
2006-286773 | Oct 2006 | JP |
2007-103918 | Apr 2007 | JP |
2007-142195 | Jun 2007 | JP |
2007-154785 | Jun 2007 | JP |
2007-194594 | Aug 2007 | JP |
2008-040343 | Feb 2008 | JP |
2008-042067 | Feb 2008 | JP |
2008-129314 | Jun 2008 | JP |
2008-166716 | Jul 2008 | JP |
2009-010362 | Jan 2009 | JP |
2009-055008 | Mar 2009 | JP |
2009-135482 | Jun 2009 | JP |
2009-141221 | Jun 2009 | JP |
2009-158940 | Jul 2009 | JP |
2009-224354 | Oct 2009 | JP |
4404881 | Jan 2010 | JP |
2010-177431 | Aug 2010 | JP |
2002-0038482 | May 2002 | KR |
2009-0089444 | Aug 2009 | KR |
588209 | May 2004 | TW |
200841475 | Oct 2008 | TW |
WO-2004114391 | Dec 2004 | WO |
WO-2006064789 | Jun 2006 | WO |
WO-2007029844 | Mar 2007 | WO |
WO-2008069056 | Jun 2008 | WO |
WO-2008069255 | Jun 2008 | WO |
WO-2008149873 | Dec 2008 | WO |
WO-2009060922 | May 2009 | WO |
Entry |
---|
International Search Report (Application No. PCT/JP2010/067498) Dated Dec. 28, 2010. |
Written Opinion (Application No. PCT/JP2010/067498) Dated Dec. 28, 2010. |
Fortunato.E et al., “Wide-Bandgap High-Mobility ZnO Thin-Film Transistors Produced at Room Temperature,”, Appl. Phys. Lett. (Applied Physics Letter) , Sep. 27, 2004, vol. 85, No. 13, pp. 2541-2543. |
Dembo.H et al., “RFCPUS on Glass and Plastic Substrates Fabricated By TFT Transfer Technology,”, IEDM 05: Technical Digest of International Electron Devices Meeting, Dec. 5, 2005, pp. 1067-1069. |
Ikeda.T et al., “Full-Functional System Liquid Crystal Display Using CG-Silicon Technology,”, SID Digest '04 : SID International Symposium Digest of Technical Papers, 2004, vol. 35, pp. 860-863. |
Nomura.K et al., “Room-Temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Amorphous Oxide Semiconductors,”, Nature, Nov. 25, 2004, vol. 432, pp. 488-492. |
Park.J et al., “Improvements in the Device Characteristics of Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors by Ar Plasma Treatment,”, Appl. Phys. Lett. (Applied Physics Letters), Jun. 26, 2007, vol. 90, No. 26, pp. 262106-1-262106-3. |
Takahashi.M et al., “Theoretical Analysis of IGZO Transparent Amorphous Oxide Semiconductor,”, IDW '08 : Proceedings of the 15th International Display Workshops, Dec. 3, 2008, pp. 1637-1640. |
Hayashi.R et al., “42.1: Invited Paper: Improved Amorphous In-Ga-Zn-O TFTS,”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 621-624. |
Prins.M et al., “A Ferroelectric Transparent Thin-Film Transistor,”, Appl. Phys. Lett. (Applied Physics Letters) , Jun. 17, 1996, vol. 68, No. 25, pp. 3650-3652. |
Nakamura.M et al., “The phase relations in the In2O3-Ga2ZnO4-ZnO system at 1350°C,”, Journal of Solid State Chemistry, Aug. 1, 1991, vol. 93, No. 2, pp. 298-315. |
Kimizuka.N et al., “Syntheses and Single-Crystal Data of Homologous Compounds, In2O3(ZnO)m (m =3, 4, and 5), InGaO3(ZnO)3, and Ga2O3(ZnO)m (m =7, 8, 9, and 16) in the In2O3-ZnGa2O4-ZnO System,”, Journal of Solid State Chemistry, Apr. 1, 1995, vol. 116, No. 1, pp. 170-178. |
Nomura.K et al., “Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor,”, Science, May 23, 2003, vol. 300, No. 5623, pp. 1269-1272. |
Masuda.S et al., “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties,”, J. Appl. Phys. (Journal of Applied Physics) , Feb. 1, 2003, vol. 93, No. 3, pp. 1624-1630. |
Asakuma.N. et al., “Crystallization and Reduction of Sol-Gel-Derived Zinc Oxide Films by Irradiation With Ultraviolet Lamp,”, Journal of Sol-Gel Science and Technology, 2003, vol. 26, pp. 181-184. |
Osada.T et al., “15.2: Development of Driver-Integrated Panel using Amorphous In-Ga-Zn-Oxide TFT,”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 184-187. |
Nomura.K et al., “Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films,”, Appl. Phys. Lett. (Applied Physics Letters) , Sep. 13, 2004, vol. 85, No. 11, pp. 1993-1995. |
Li.C et al., “Modulated Structures of Homologous Compounds InMo3(ZnO)m (M=In,Ga; m=Integer) Described by Four-Dimensional Superspace Group,”, Journal of Solid State Chemistry, 1998, vol. 139, pp. 347-355. |
Son.K et al., “42.4L: Late-News Paper: 4 Inch QVGA AMOLED Driven by the Threshold Voltage Controlled Amorphous GIZO (Ga2O3-In2O3-ZnO) TFT,”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 633-636. |
Lee.J et al., “World's Largest (15-Inch) XGA AMLCD Panel Using IGZO Oxide TFT,”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 625-628. |
Nowatari.H et al., “60.2: Intermediate Connector With Suppressed Voltage Loss for White Tandem OLEDS,”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, vol. 40, pp. 899-902. |
Kanno.H et al., “White Stacked Electrophosphorecent Organic Light-Emitting Devices Employing MoO3 As a Charge-Generation Layer,”, Adv. Mater. (Advanced Materials), 2006, vol. 18, No. 3, pp. 339-342. |
Tsuda.K et al., “Ultra Low Power Consumption Technologies for Mobile TFT-LCDs ,”, IDW '02 : Proceedings of the 9th International Display Workshops, Dec. 4, 2002, pp. 295-298. |
Van de Walle.C, “Hydrogen as a Cause of Doping in Zinc Oxide,”, Phys. Rev. Lett. (Physical Review Letters), Jul. 31, 2000, vol. 85, No. 5, pp. 1012-1015. |
Fung.T et al., “2-D Numerical Simulation of High Performance Amorphous In-Ga-Zn-O TFTs for Flat Panel Displays,”, AM-FPD '08 Digest of Technical Papers, Jul. 2, 2008, pp. 251-252, The Japan Society of Applied Physics. |
Jeong.J et al., “3.1: Distinguished Paper: 12.1-Inch WXGA AMOLED Display Driven by Indium-Gallium-Zinc Oxide TFTs Array,”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, No. 1, pp. 1-4. |
Park.J et al., “High performance amorphous oxide thin film transistors with self-aligned top-gate structure,”, IEDM 09: Technical Digest of International Electron Devices Meeting, Dec. 7, 2009, pp. 191-194. |
Kurokawa.Y et al., “UHF RFCPUS on Flexible and Glass Substrates for Secure RFID Systems,”, Journal of Solid-State Circuits, 2008, vol. 43, No. 1, pp. 292-299. |
Ohara.H et al., “Amorphous In-Ga-Zn-Oxide TFTs with Suppressed Variation for 4.0 inch QVGA AMOLED Display,”, AM-FPD '09 Digest of Technical Papers, Jul. 1, 2009, pp. 227-230, The Japan Society of Applied Physics. |
Coates.D et al., “Optical Studies of the Amorphous Liquid-Cholesteric Liquid Crystal Transition:The “Blue Phase”,”, Physics Letters, Sep. 10, 1973, vol. 45A, No. 2, pp. 115-116. |
Cho.D et al., “21.2:AL and Sn-Doped Zinc Indium Oxide Thin Film Transistors for AMOLED Back-Plane,”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 280-283. |
Lee.M et al., “15.4:Excellent Performance of Indium-Oxide-Based Thin-Film Transistors by DC Sputtering,”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 191-193. |
Jin.D et al.,“65.2:Distinguished Paper:World-Largest (6.5″) Flexible Full Color Top Emission AMOLED Display on Plastic Film and Its Bending Properties,”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 983-985. |
Sakata.J et al., “Development of 4.0-IN. AMOLED Display With Driver Circuit Using Amorphous In-Ga-Zn-Oxide TFTS,”, IDW '09 : Proceedings of the 16th International Display Workshops, 2009, pp. 689-692. |
Park.J et al., “Amorphous Indium-Gallium-Zinc Oxide TFTS and Their Application for Large Size AMOLED,”, AM-FPD '08 Digest of Technical Papers, Jul. 2, 2008, pp. 275-278. |
Park.S et al., “Challenge to Future Displays: Transparent AM-OLED Driven by Peald Grown ZnO TFT,”, IMID '07 Digest, 2007, pp. 1249-1252. |
Godo.H et al., “Temperature Dependence of Characteristics and Electronic Structure for Amorphous In-Ga-Zn-Oxide TFT,”, AM-FPD '09 Digest of Technical Papers, Jul. 1, 2009, pp. 41-44. |
Osada.T et al., “Development of Driver-Integrated Panel Using Amorphous In-Ga-Zn-Oxide TFT,”, AM-FPD '09 Digest of Technical Papers, Jul. 1, 2009, pp. 33-36. |
Hirao.T et al., “Novel Top-Gate Zinc Oxide Thin-Film Transistors (ZNO TFTS) for AMLCDS,”, Journal of the SID, 2007, vol. 15, No. 1, pp. 17-22. |
Hosono.H, “68.3:Invited Paper:Transparent Amorphous Oxide Semiconductors for High Performance TFT,”, SID Digest '07 : SID International Symposium Digest of Technical Papers, 2007, vol. 38, pp. 1830-1833. |
Godo.H et al., “P-9:Numerical Analysis on Temperature Dependence of Characteristics of Amorphous In-Ga-Zn-Oxide TFT,”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 1110-1112. |
Ohara.H et al., “21.3:4.0 IN. QVGA AMOLED Display Using In-Ga-Zn-Oxide TFTS With a Novel Passivation Layer,”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 284-287. |
Miyasaka.M, “SUFTLA Flexible Microelectronics on Their Way to Business,”, SID Digest '07 : SID International Symposium Digest of Technical Papers, 2007, vol. 38, pp. 1673-1676. |
Chern.H et al., “An Analytical Model for the Above-Threshold Characteristics of Polysilicon Thin-Film Transistors,”, IEEE Transactions on Electron Devices, Jul. 1, 1995, vol. 42, No. 7, pp. 1240-1246. |
Kikuchi.H et al., “39.1:Invited Paper:Optically Isotropic NaNo-Structured Liquid Crystal Composites for Display Applications,”, SID Digest '09: SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 578-581. |
Asaoka.Y et al., “29.1:Polarizer-Free Reflective LCD Combined With Ultra Low-Power Driving Technology,”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 395-398. |
Lee.H et al., “Current Status of, Challenges to, and Perspective View of AM-OLED ,”, IDW '06 : Proceedings of the 13th International Display Workshops, Dec. 7, 2006, pp. 663-666. |
Kikuchi.H et al., “62.2:Invited Paper:Fast Electro-Optical Switching in Polymer-Stabilized Liquid Crystalline Blue Phases for Display Application,”, SID Digest '07 : SID International Symposium Digest of Techincal Papers, 2007, vol. 38, pp. 1737-1740. |
Nakamura,M. “Synthesis of Homologous Compound with New Long-Period Structure,”, NIRIM Newsletter, Mar. 1, 1995, vol. 150, pp. 1-4. |
Kikuchi.H et al., “Polymer-Stabilized Liquid Crystal Blue Phases,”, Nature Materials, Sep. 1, 2002, vol. 1, pp. 64-68. |
Kimizuka.N et al., “Spinel, YbFe2O4, and Yb2Fe3O7 Types of Structures for Compounds in the In2O3 and Sc2O3-A2O3-BO Systems [A; Fe, Ga, Or Al; B: Mg, Mn, Fe, Ni, Cu,Or Zn ]at Temperatures over 1000°C,”, Journal of Solid State Chemistry, 1985, vol. 60, pp. 382-384. |
Kitzerow.H et al., “Observation of Blue Phases in Chiral Networks,”, Liquid Crystals, 1993, vol. 14, No. 3, pp. 911-916. |
Costello.M et al., “Electron Microscopy of a Cholesteric Liquid Crystal and Its Blue Phase,”, Phys. Rev. A (Physical Review. A), May 1, 1984, vol. 29, No. 5, pp. 2957-2959. |
Meiboom.S et al., “Theory of the Blue Phase of Cholesteric Liquid Crystals,”, Phys. Rev. Lett. (Physical Review Letters), May 4, 1981, vol. 46, No. 18, pp. 1216-1219. |
Park.Sang-Hee et al., “42.3: Transparent ZnO Thin Film Transistor for the Application of High Aperture Ratio Bottom Emission AM-OLED Display,”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 629-632. |
Orita.M et al., “Mechanism of Electrical Conductivity of Transparent InGaZnO4,”, Phys. Rev. B (Physical Review. B), Jan. 15, 2000, vol. 61, No. 3, pp. 1811-1816. |
Nomura.K et al., “Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors,”, JPN. J. Appl. Phys. (Japanese Journal of Applied Physics) , 2006, vol. 45, No. 5B, pp. 4303-4308. |
Janotti.A et al., “Native Point Defects in ZnO,”, Phys. Rev. B (Physical Review. B), Oct. 4, 2007, vol. 76, No. 16, pp. 165202-1-165202-22. |
Park.J et al., “Electronic Transport Properties of Amorphous Indium-Gallium-Zinc Oxide Semiconductor Upon Exposure to Water,”, Appl. Phys. Lett. (Applied Physics Letters) , 2008, vol. 92, pp. 072104-1-072104-3. |
Hsieh.H et al., “P-29:Modeling of Amorphous Oxide Semiconductor Thin Film Transistors and Subgap Density of States,”, SID Digest '08 : SID International Symposium Digest of Technical Papers, 2008, vol. 39, pp. 1277-1280. |
Janotti.A et al., “Oxygen Vacancies in ZnO,”, Appl. Phys. Lett. (Applied Physics Letters) , 2005, vol. 87, pp. 122102-1-122102-3. |
Oba.F et al., “Defect energetics in ZnO: A hybrid Hartree-Fock density functional study,”, Phys. Rev. B (Physical Review. B), 2008, vol. 77, pp. 245202-1-245202-6. |
Orita.M et al., “Amorphous transparent conductive oxide InGaO3(ZnO)m (m<4):a Zn4s conductor,”, Philosophical Magazine, 2001, vol. 81, No. 5, pp. 501-515. |
Hosono.H et al., “Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples,”, J. Non-Cryst. Solids (Journal of Non-Crystalline Solids), 1996, vol. 198-200, pp. 165-169. |
Mo.Y et al., “Amorphous Oxide TFT Backplanes for Large Size AMOLED Displays,”, IDW '08 : Proceedings of the 6th International Display Workshops, Dec. 3, 2008, pp. 581-584. |
Kim.S et al., “High-Performance oxide thin film transistors passivated by various gas plasmas,”, 214th ECS Meeting, 2008, No. 2317, ECS. |
Clark.S et al., “First Principles Methods Using CASTEP,”, Zeitschrift fur Kristallographie, 2005, vol. 220, pp. 567-570. |
Lany.S et al., “Dopability, Intrinsic Conductivity, and Nonstoichiometry of Transparent Conducting Oxides,”, Phys. Rev. Lett. (Physical Review Letters), Jan. 26, 2007, vol. 98, pp. 045501-1-045501-4. |
Park.J et al., “Dry etching of ZnO films and plasma-induced damage to optical properties,”, J. Vac. Sci. Technol. B (Journal of Vacuum Science & Technology B), Mar. 1, 2003, vol. 21, No. 2, pp. 800-803. |
Oh.M et al., “Improving the Gate Stability of ZNO Thin-Film Transistors With Aluminum Oxide Dielectric Layers,”, J. Electrochem. Soc. (Journal of the Electrochemical Society), 2008, vol. 155, No. 12, pp. H1009-H1014. |
Ueno.K et al., “Field-Effect Transistor on SrTiO3 With Sputtered Al2O3 Gate Insulator,”, Appl. Phys. Lett. (Applied Physics Letters), Sep. 1, 2003, vol. 83, No. 9, pp. 1755-1757. |
Naoshi Suzuki, “Principle of low-current measurement and actual picoammeter”, Oyobuturi, Jul. 10, 2001, vol. 70, No. 7, pp. 868-871, JSAP (The Japan Society of Applied Physics). |
Shen.T et al., “A 2-ns Detecting Time, 2-μm CMOS Built-in Current Sensing Circuit”, IEEE Journal of Solid-State Circuits, Jan. 1993, vol. 28, No. 1, pp. 72-77. |
Thelen.D et al., “A Low Noise Readout Detector Circuit for Nanoampere Sensor Applications”, IEEE Journal of Solid-State Circuits, Mar. 3, 1997, vol. 32, No. 3, pp. 337-348. |
Nakayama et al., “17a-TL-8 Effect of GaO Layer on IGZO-TFT Channel”, Extended Abstracts (The 57th Spring Meeting 2010), The Japan Society of Applied Physics and Related Societies, Mar. 17, 2010, pp. 21-008. |
Chinese Office Action (Application No. 201080049068.9) Dated May 30, 2014. |
Taiwanese Office Action (Application No. 099135074) Dated Jun. 25, 2015. |
Number | Date | Country | |
---|---|---|---|
20110090416 A1 | Apr 2011 | US |