The present invention relates to a liquid crystal display device.
In a case where a DC voltage is applied across a pixel (liquid crystal capacitor including a pixel electrode, a counter electrode, and liquid crystals sandwiched between the pixel electrode and the counter electrode) due to electric charge remaining at the pixel electrode when a liquid crystal display device is turned off, image sticking and/or flickering occur. This ruins the reliability of the liquid crystal display device.
Patent Literature 1 discloses a technology in which a transistor is turned on during a power-off sequence of a liquid crystal display device so as to intentionally discharge electric charge that is remaining at a pixel electrode.
The inventors of the present invention found the following problem: (i) Even if a transistor is turned on during a power-off sequence as is the case of Patent Literature 1, potential variation (kickback) is induced by surrounding parasitic capacitance when the transistor is changed from an on state to an off state (when an electric potential of the transistor changes). This causes a DC voltage to be applied across a pixel (liquid crystal capacitor). (ii) A liquid crystal display device having good off-state characteristics of a transistor, in particular, may cause a DC voltage to be applied across a pixel for an extended period of time (since self-discharge via the transistor is suppressed).
An object of the present invention is to make it unlikely for a DC voltage to be applied across a pixel even if potential variation (kickback) occurs at a pixel electrode in reaction to a change in status of a transistor from an on state to an off state in a case where the transistor is turned on during a power-off sequence of a liquid crystal display device.
A liquid crystal display device of the present invention includes: a data signal line; a scan signal line; a pixel electrode; a transistor connected to (i) the data signal line, (ii) the scan signal line, and (iii) the pixel electrode; and a common electrode, the liquid crystal display device being configured to turn on the transistor during a power-off sequence by causing a change in an electric potential of the scan signal line, the electric potential of the scan signal line increasing up to a first electric potential at a first timing after the change is initiated, and an output electric potential supplied to the data signal line at a second timing which comes after the first timing being set to a value higher than an output electric potential supplied to the common electrode at the second timing.
A liquid crystal display device of the present invention makes it unlikely for a DC voltage to be applied across a pixel even if kickback occurs at a pixel electrode in reaction to a change in status of a transistor from an on state to an off state in a case where the transistor is turned on at the time of turning off the liquid crystal display device.
The following description will discuss embodiments of the present invention with reference to
The liquid crystal panel LCP includes scan signal lines G1 through Gn, a data signal line SL, a pixel electrode PE, a transistor (thin film transistor, TFT) TR, and a common electrode COM. The transistor TR has (i) a gate electrode which is connected to the scan signal line G1, (ii) a source electrode which is connected to a the data signal line SL, and (iii) a drain electrode which is connected to the pixel electrode PE. As illustrated in
The source driver SD drives the data signal line SL (generates an output electric potential to be supplied to the data signal line SL). The gate driver GD drives the scan signal lines G1 through Gn. The common electrode driver CMD drives the common electrode COM (generates an output electric potential to be supplied to the common electrode COM). The display control circuit DCC (i) includes a timing controller and an image processing circuit and (ii) controls the source driver SD, the gate driver GD, and the common electrode driver CMD. The power supply control circuit PCC controls the power supply circuit PWC in response to instruction from a user or a system. The power supply circuit PWC is controlled by the power supply control circuit PCC to supply various power supply voltages to the source driver SD, the gate driver GD, and the common electrode driver CMD.
The liquid crystal display device of Embodiment 1 is configured such that in a case where instruction is given to turn off a power supply at time Ta, (i) electric potentials of the scan signal lines G1 through Gn rise at time Tb so as to turn on the transistor TR, (ii) an offset potential Vos is supplied to the data signal line SL at the time Tb, (iii) a ground potential Vgd is supplied to the common electrode COM at the time Tb, and (iv) the transistor TR becomes turned off at time Tg which comes after the time Tb (see
The details (sequence after the time Tb) of
First, at the time Tb, (i) rising of the electric potential of the scan signal line G1 is initiated, (ii) the offset potential Vos is supplied to the data signal line SL, and (iii) the ground potential Vgd is supplied to the common electrode COM. At time Td (first timing), the electric potential of the scan signal line G1 reaches the gate-on potential VGH (first electric potential) which is higher than the threshold potential Vth of the transistor.
At time Te which comes after the time Td, the electric potential of a gate pulse signal (electric potential of the scan signal line G1) turns downwards. Then, the transistor TR becomes turned off around the time Tg at which the electric potential of the scan signal line G1 becomes equal to the threshold potential Vth of the transistor.
During a period after the time Tg, the electric potential of the gate pulse signal (electric potential of the scan signal line G1) decreases from the threshold potential Vth of the transistor to the ground potential Vgd. During the period, the transistor TR is turned off (a resistance between the source electrode of the transistor TR and the pixel electrode PE is extremely high). This, along with the parasitic capacitance Cgd, causes the electric potential of the pixel electrode PE to decrease from the offset potential Vos to the ground potential Vgd (i.e. kickback, see
Embodiment 1 brings about the following effect: Since, during a period between the time Tb and the time Tg, the ground potential Vgd and the offset potential Vos (>ground potential Vgd) are supplied to the common electrode COM and the data signal line SL, respectively, it is possible to largely eliminate an electric potential difference between the pixel electrode PE and the common electrode COM (i.e. DC voltage across the pixel Pix) even in a case where potential variation (kickback) occurs at the pixel electrode PE after the time Tg at which the transistor TR is turned off.
According to Embodiment 1, as illustrated in
A configuration of a liquid crystal display device of Embodiment 2 is as illustrated in
At time Te which comes after the time Td, the electric potential of a gate pulse signal (electric potential of the scan signal line G1) falls (decreases) from an active level VGH. At time Tg (second timing) which comes after the time Te, the electric potential of the gate pulse signal (electric potential of the scan signal line G1) falls lower than a threshold potential Vth of the transistor. This causes the transistor TR to be turned off.
During a period after the time Tg, the electric potential of the gate pulse signal (electric potential of the scan signal line G1) decreases from the threshold potential Vth of the transistor to the ground potential Vgd. During the period, the transistor TR is turned off (a resistance between a source electrode of the transistor TR and a pixel electrode PE is extremely high). This, along with a parasitic capacitance Cgd, causes an electric potential of the pixel electrode PE to decrease from the offset potential Vou to the display center potential Vcom (i.e. kickback, see
A configuration of a liquid crystal display device of Embodiment 3 is as illustrated in
At time Te which comes after the time Td, the electric potential of a gate pulse signal (electric potential of the scan signal line G1) turns downwards. Then, the transistor TR becomes turned off around time Tg at which the electric potential of the scan signal line G1 becomes equal to the threshold potential Vth of the transistor.
During a period after the time Tg, the electric potential of the gate pulse signal (electric potential of the scan signal line G1) decreases from the threshold potential Vth of the transistor to the ground potential Vgd. During the period, the transistor TR is turned off (a resistance between a source electrode of the transistor TR and a pixel electrode PE is extremely high). This, along with a parasitic capacitance Cgd, causes the electric potential of the pixel electrode PE to decrease from the ground potential Vgd to the negative potential Vng (i.e. kickback, see
Embodiment 3 brings about the following effect: Since, during a period between the time Tb and the time Tg, the ground potential Vgd and the negative potential Vng (<ground potential Vgd) are supplied to the data signal line SL and the common electrode COM, respectively, it is possible to largely eliminate an electric potential difference between the pixel electrode PE and the common electrode COM (i.e. DC voltage across a pixel Pix) even in a case where potential variation (kickback) occurs at the pixel electrode PE after the time Tg at which the transistor TR is turned off.
According to Embodiment 3, as illustrated in
In each of the illustrations of
[Remarks on Embodiments]
According to the above embodiments, as illustrated in
According to each of the liquid crystal display devices of the above embodiments, the power supply circuit PWC stops supplying power to the drivers D (GD, SD, and CSD) at the time Ta. This causes, for example, a power source potential GPW (supplied to the gate driver) to be maintained until the time Te but then decrease by self-discharge (see
According to each of the liquid crystal display devices of the above embodiments, it is desirable that a TFT, in which a semiconductor layer is formed by what is known as an oxide semiconductor, be used as a transistor of a liquid crystal panel. Examples of the oxide semiconductor encompass an oxide semiconductor (InGaZnOx) containing indium, gallium, and zinc.
Specifically, a leak current while the oxide semiconductor TFT is turned off is approximately 1/100 of a leak current while the a-Si TFT is turned off. That is, an off-state characteristic of the oxide semiconductor TFT is so excellent as to hardly allow a leak current. Note, however, that the quite excellent off-state characteristic leaves a high possibility of electric charge remaining in a pixel for an extended period of time while the TFT is turned off.
The liquid crystal display device of the present invention includes: a data signal line; a scan signal line; a pixel electrode; a transistor connected to (i) the data signal line, (ii) the scan signal line, and (iii) the pixel electrode; and a common electrode, the liquid crystal display device being configured to turn on the transistor during a power-off sequence by causing a change in an electric potential of the scan signal line, the electric potential of the scan signal line increasing up to a first electric potential at a first timing after the change is initiated, and an output electric potential supplied to the data signal line at a second timing which comes after the first timing being set to a value higher than an output electric potential supplied to the common electrode at the second timing.
With the configuration, it is possible to cause the pixel electrode to discharge electric charge by turning on the transistor after the first timing of the power-off sequence. In addition, the output electric potential supplied to the data signal line at the second timing after the first timing is set to a value higher than the output electric potential supplied to the common electrode at the second timing. This makes it unlikely for a DC voltage to be applied across a pixel even if an electric potential reduction (kickback) occurs at the pixel electrode in reaction to a change in status of the transistor from an on state to an off state.
The liquid crystal display device can be configured such that: the output electric potential supplied to the common electrode at the second timing is a second electric potential; and the output electric potential supplied to the data signal line at the second timing is a third electric potential.
The liquid crystal display device can be configured such that: the output electric potential supplied to the common electrode at the second timing is a fourth electric potential; and the output electric potential supplied to the data signal line at the second timing is a second electric potential.
The liquid crystal display device can be configured such that the first electric potential is equal to or higher than a threshold potential of the transistor.
The liquid crystal display device can be configured such that the second electric potential is a ground potential.
The liquid crystal display device can be configured such that the fourth electric potential is lower than a ground potential.
The liquid crystal display device can be configured such that an electric potential of the common electrode during normal display is the fourth electric potential.
The liquid crystal display device can be configured such that, after the first timing, (i) an output electric potential supplied to the common electrode is set to a fifth electric potential and then set to the second electric potential and (ii) an output electric potential supplied to the data signal line is set to a sixth electric potential and then set to the third electric potential.
The liquid crystal display device can be configured such that, after the first timing, (i) an output electric potential supplied to the common electrode is set to a fifth electric potential and then set to a third electric potential and (ii) an output electric potential supplied to the data signal line is set to a sixth electric potential and then set to the second electric potential.
The liquid crystal display device can be configured such that a pixel including the pixel electrode carries out black display by (i) setting, to the fifth electric potential, an output electric potential supplied to the common electrode and (ii) causing the data signal line to write the sixth electric potential into the pixel electrode.
The liquid crystal display device can be configured to further include: a data signal line drive circuit for generating an output electric potential to be supplied to the data signal line; a common electrode drive circuit for generating an output electric potential to be supplied to the common electrode; and a control circuit for controlling the data signal line drive circuit and the common electrode drive circuit.
The liquid crystal display device can be configured such that an oxide semiconductor is used for a semiconductor layer of the transistor.
The liquid crystal display device can be configured such that the oxide semiconductor contains indium, gallium, and zinc.
A method of the present invention is a method of driving a liquid crystal display device, said liquid crystal display device including: a data signal line; a scan signal line; a pixel electrode; a transistor connected to (i) the data signal line, (ii) the scan signal line, and (iii) the pixel electrode; and a common electrode, the liquid crystal display device being configured to turn on the transistor during a power-off sequence by causing a change in an electric potential of the scan signal line, said method including the steps of: increasing the electric potential of the scan signal line up to a first electric potential at a first timing after the change is initiated; and setting an output electric potential, which is supplied to the data signal line at a second timing which comes after the first timing, to a value higher than an output electric potential supplied to the common electrode at the second timing.
The present invention is not limited to the description of the embodiments, but can be altered in many ways by a person skilled in the art within the scope of the claims. An embodiment derived from a proper combination of technical means disclosed in different embodiments is also encompassed in the technical scope of the present invention.
A liquid crystal display device of the present invention is suitable for, for example, various liquid crystal displays and various liquid crystal televisions.
Number | Date | Country | Kind |
---|---|---|---|
2012-019152 | Jan 2012 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/051768 | 1/28/2013 | WO | 00 |