Liquid crystal display device and method for driving the same

Abstract
A liquid crystal display (LCD) device includes: a plurality of gate lines; a plurality of data lines that cross the gate lines to define pixel regions; a plurality of thin film transistors at the crossings of the gate and data lines, the thin film transistors of vertically adjacent pixels each connected to a shared gate line of the plurality of gate lines and on opposite sides of the shared gate line; and a plurality of pixel electrodes in the pixel regions, wherein each pixel electrode of the plurality of pixel electrodes is formed in two horizontally-adjacent pixel regions.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiment(s) of the invention and along with the description serve to explain the principle of the invention.


In the drawings:



FIG. 1 is a perspective view schematically illustrating an LCD device of the related art using a field sequential driving system;



FIG. 2 is a timing diagram to explain driving of the field sequential driving type LCD device shown in FIG. 1;



FIG. 3 is a plan view schematically illustrating an LCD device according to a first embodiment of the present invention; and



FIG. 4 is a plan view schematically illustrating an LCD device according to a second embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.



FIG. 3 is a plan view schematically illustrating a liquid crystal display (LCD) device according to a first embodiment of the present invention.


As shown in FIG. 3, the LCD device according to the first embodiment of the present invention includes a liquid crystal panel 400 including a plurality of gate lines 100 and a plurality of data lines 200 crossing the gate lines 100 to define pixel regions, wherein one pixel 300 is formed to include two horizontally-adjacent pixel regions, and a backlight unit 500 for sequentially irradiating red (R), green (G), and blue (B) lights to the liquid crystal panel 400. The LCD device also includes a data driver 210 for dividing one frame into a plurality of sub-frames and supplying data to the data lines 200 of the liquid crystal panel 400 for every sub-frame, a gate driver 110 for supplying scan pulses to the gate lines 100 of the liquid crystal panel 400, and a timing controller 600 for controlling the gate driver 110, data driver 210, and backlight unit 500.


The gate lines 100 and data lines 200, which are included in the liquid crystal panel 400, cross each other. In particular, each data line 200 overlaps with the associated pixel region. The liquid crystal panel 400 also includes thin film transistors (TFTs) 410 each formed at the crossings of the gate lines 100 and data lines 200. A plurality of pixel electrodes 350 are formed in the pixels 300, wherein one pixel electrode 350 is formed in each of two horizontally-adjacent pixel regions. The plurality of pixel electrodes 350 are connected to the TFTs 410, respectively. Two pixels 300 are vertically arranged between the adjacent two gate lines 100.


The TFTs 410 are arranged at opposite sides of the gate line 100 in a zigzag pattern along a gate line 100 and the TFTs 410 in pixels arranged to be vertically adjacent to each other are at opposite sides of each gate line 100 and are connected to the gate line 100 such that they simultaneously receive a scan pulse from the gate line 100. Since the two pixels 300 positioned vertically-adjacent with respect to a single gate line are simultaneously driven by the corresponding gate line 100, the number of the gate lines 100 for a given sized display is reduced by one-half. Accordingly, it is possible to secure a time for sufficiently charging a data voltage via the pixel electrodes 350.


Furthermore, it is possible to reduce the time taken to drive all gate lines 100, and thus, to secure a sufficient liquid crystal response time and a sufficient light source turn-on time.


Because the LCD display device according to the first embodiment of the present invention is configured such that the vertically-adjacent pixels 300 simultaneously are driven by one gate line 100, as described above, the TFTs 410 of the vertically-adjacent pixels 300 are connected to different data lines, for example, data lines 200a and 200b, respectively.


If the TFTs 410 of the vertically-adjacent pixels 300 received data from the same data line while receiving a scan pulse from the same gate line 100, the desired image would not be displayed because the same data would be supplied to the vertically-adjacent two pixels 300.


As a portion the data lines 200a and 200b, in particular, the data lines 200b, overlap with the pixel electrodes 350, particular regions of the pixel electrodes 350 where connecting electrodes are arranged, as will be described hereinafter.


Because the data lines 200 overlap with the pixel electrodes 350, parasitic capacitance is generated therebetween. As a result, the LCD device may exhibit a degradation in picture quality because the data supplied through the data lines 200 may leak, and thus be modulated by the parasitic capacitance.


In accordance with the illustrated embodiment of the present invention, each pixel electrode 350 includes sub-pixel electrodes 350a formed in the pixel regions defined by the gate line 100 and data lines 200, and connecting electrodes 350b each formed between the horizontally-adjacent two sub-pixel electrodes 305a to electrically connect the horizontally-adjacent two sub-pixel electrodes 350a. Each connecting electrode 350b has a width smaller than that of the sub-pixel electrode 350a.


The width of each connecting electrode 350b is made smaller than the width of each sub-pixel electrode 350a to minimize a region A where the connecting electrode 350b overlaps with the data line 200, and thus, to reduce parasitic capacitance.


If the width of the connecting electrode 350b is increased, the parasitic capacitance generated between the connecting electrode 350b and the data line 200 increases and the LCD device may exhibit a degradation in picture quality because the data voltage supplied through the data line 200 may leak, and thus, be modulated by the increased parasitic capacitance.


The timing controller 600 generates a data control signal (DCS), a gate control signal GCS, and a light source control signal (LCS), using a horizontal synchronizing signal Hsync, a vertical synchronizing signal Vsync, a main clock MCLK, and a data enable signal DE provided from a source externally to the liquid crystal display device


The timing controller 600 also re-arranges, or aligns, externally-input source data RGB in the order of R, G, and B data compatible with the field sequential driving system, and then sequentially supplies the aligned R, G, B data to the data driver 210 for every respective sub-frame.


The gate driver 110 sequentially shifts the gate control signal GCS from the timing controller 600 in accordance with gate shift clocks, to supply a scan pulse to each gate line for every sub-frame.


The data driver 210 samples the data supplied from the timing controller 600 in accordance with the data control signal (DCS) from the timing controller 600, converts the sampled data to analog data, and supplies the resultant data to the data lines 200.


In particular, the data driver 210 supplies R data to each data line 200 in the first sub-frame, supplies G data to each data line 200 in the second sub-frame, and supplies B data to each data line 200 in the third sub-frame.


The backlight unit 500 includes an R light source 510 for irradiating R light to the liquid crystal panel 400, a G light source 520 for irradiating G light to the liquid crystal panel 400, and a B light source 530 for irradiating B light to the liquid crystal panel 400. The backlight unit 500 also includes a light source driving circuit 540 for driving the R, G, and B light sources 510, 520, and 530.


The R, G, and B light sources 510, 520, and 530 sequentially irradiate R, G, and B lights to the liquid crystal panel 400 during the sub-divided portions of one frame in response to drive signals from the light source driving circuit.


Each of the light sources 510, 520, and 530 may include a fluorescent lamp or a light emitting diode.


The light source driving circuit 540 sequentially drives the R, G, and B light sources 510, 520, and 530 in every sub-frame in response to a light source control signal (LCS) from the timing controller 600.


For example, in response to the light source control signal LCS, the light source driving circuit 540 may drive the R light source 510 in the first sub-frame after R data has been charged in first pixels and the liquid crystal has responded to the charged R data. In the second sub-frame, the light source driving circuit 540 may drive the G light source 520 after G data has been charged in second pixels and the liquid crystal has responded to the charged G data. In the third sub-frame, the light source driving circuit 540 may drive the B light source 530 after B data has been charged in third pixels and the liquid crystal has responded to the charged B data.



FIG. 4 is a plan view schematically illustrating an LCD device according to a second embodiment of the present invention.


Referring to FIG. 4, the LCD device according to the second embodiment of the present invention is similar to the LCD device according to the first embodiment, except for the number of data lines 200 and the structure of the liquid crystal panel 400.


In the LCD device according to the second embodiment of the present invention, the liquid crystal panel 400 is configured such that one pixel 300 includes four horizontally-adjacent pixel regions, and a plurality of thin film transistors (TFTs) 410 formed at the crossings of odd gate lines 100 and (4n−3)th and (4n−2)th data lines 200 and the crossings of even gate lines 100 and (4n−1)th and (4n)th data lines 200, where n is a natural number. The TFTs 410 are arranged at opposite sides of the gate line 100 in a zigzag arrangement along with the gate line 100. Two pixels 300 are vertically arranged between the adjacent two gate lines 100.


The TFTs 410 of a first pair of pixels 300 vertically adjacent to each other are arranged at opposite sides of one gate line, namely, a first gate line 100a, and the TFTs 410 of a second pair of vertically adjacent pixels 300c and 300d are at opposite sides of another gate line, namely, a second gate line 100b. The respective TFTs of each the first and second pair of pixels are connected to different data lines 200a, 200b, 200c, and 200d, respectively.


This configuration will be described in more detail. The liquid crystal panel 400 of the LCD device according to the second embodiment of the present invention mainly includes a plurality of first (odd) and second (even) gate lines 100a and 100b. The liquid crystal panel 400 also includes a plurality of first (4n−3)th to fourth (4n)th data lines 200a, 200b, 200c, and 200d arranged to cross the first and second gate lines 100a and 100b, and a plurality of pixels 300 in the pixel regions, wherein one pixel 300 is formed in horizontally-adjacent four pixel regions.


That is, the liquid crystal panel 400 includes a plurality of first pixels 300a that receive a data signal from the first data line 200a through the corresponding TFT 410 in accordance with the scan pulse from the first gate line 100a, a plurality of second pixels 300b that receive a data signal from the second data line 200b through the corresponding TFT 410 in accordance with the scan pulse from the first gate line 100a, a plurality of third pixels 300c that receive a data signal from the third data line 200c through the corresponding TFT 410 in accordance with the scan pulse from the second gate line 100b, and a plurality of fourth pixels 300d that receive a data signal from the fourth data line 200d through the corresponding TFT 410 in accordance with the scan pulse from the second gate line 100b.


Although the number of data lines 200 in the LCD device of the second embodiment increases to double that of the LCD device of the first embodiment, the time taken to drive all gate lines 100 is further reduced by half because the two gate lines 100a and 100b are simultaneously driven. Accordingly, it is possible to secure a time for sufficiently charging data into the pixels 300 even for large LCD devices.


In the LCD device according to the second embodiment of the present invention, the vertically-adjacent pixels 300 are connected to the gate line 100 arranged therebetween so that they simultaneously receive the scan pulse from the gate line 100. Also, a scan pulse is simultaneously supplied to two gate lines 100 in this LCD device. Accordingly, it is possible to supply scan pulses to all gate lines 100 within a time corresponding to one fourth of the time taken to drive all gate lines 100 as for the LCD device of the related art.


Because supplying the scan pulses to all of the gate lines 100 may be completed within a shortened period of time, it is possible to lengthen the turn-on time of the TFTs 410 to sufficiently charge data into the pixels without increasing the size of the TFTs 410.


Although embodiments of the present invention have been described illustrating the case in which a scan pulse is simultaneously supplied to two gate lines 100, it may be possible to simultaneously supply a scan pulse to three, four, or more gate lines 100, as long as the number of data lines 200 is appropriately increased.


As apparent from the above description, the present invention may provide the following effects.


By sharing each gate line between the vertically-adjacent pixels arranged at opposite sides of the gate line, a scan pulse is simultaneously supplied to at least two gate lines so that the time taken to input scan pulses to all gate lines may be reduced. Accordingly, even when a field sequential system is used, it is possible to secure a sufficient data charging time without an increase in the size of TFTs.


In accordance with the reduction in the time taken to input scan pulses to all gate lines, it is also possible to secure a sufficient liquid crystal response time and a sufficient light source turn-on time.


It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims
  • 1. A liquid crystal display device, comprising: a plurality of gate lines;a plurality of data lines that cross the gate lines to define pixel regions;a plurality of thin film transistors at the crossings of the gate and data lines, the thin film transistors of vertically adjacent pixels each connected to a shared gate line of the plurality of gate lines and on opposite sides of the shared gate line; anda plurality of pixel electrodes in the pixel regions, wherein each pixel electrode of the plurality of pixel electrodes is formed in two horizontally-adjacent pixel regions.
  • 2. The liquid crystal display device according to claim 1, wherein vertically-adjacent pixel electrodes on opposite sides of a gate line are simultaneously driven using the corresponding gate line.
  • 3. The liquid crystal display device according to claim 1, wherein each pixel electrode comprises: two sub-pixel electrodes in two horizontally-adjacent pixel regions; anda connecting electrode between the two sub-pixel electrodes to electrically connect the two sub-pixel electrodes.
  • 4. The liquid crystal display device according to claim 3, wherein the connecting electrode has a width smaller than that of each sub-pixel electrode.
  • 5. The liquid crystal display device according to claim 3, wherein the connecting electrode is overlapped with a data line.
  • 6. The liquid crystal display device according to claim 1, further comprising: a backlight unit that irradiates light of different colors in sub-frames, respectively.
  • 7. The liquid crystal display device according to claim 1, wherein the thin film transistors of two vertically-adjacent pixels are connected to different data lines.
  • 8. The liquid crystal display device according to claim 1, wherein two pixel electrodes are vertically arranged between the adjacent two gate lines.
  • 9. A liquid crystal display device, comprising: a plurality of first and second gate lines;a plurality of first to fourth data lines crossing the first and second gate lines to define pixel regions;a plurality of pixels, wherein each pixel includes four horizontally-adjacent pixel regions; anda plurality of thin film transistors (TFTs) at the crossings of the first gate lines and the first and second data lines and at the crossings of the second gate lines and the third and fourth data lines.
  • 10. The liquid crystal display device according to claim 9, wherein the plurality of thin film transistors are arranged at opposite sides of the first gate lines and the second gate lines in zigzags.
  • 11. The liquid crystal display device according to claim 9, wherein the plurality of pixels include, a plurality of first pixels that receive a data signal from the first data lines in accordance with the scan pulse from the first gate lines;a plurality of second pixels that receive a data signal from the second data lines in accordance with the scan pulse from the first gate lines;a plurality of third pixels that receive a data signal from the third data lines in accordance with the scan pulse from the second gate lines; anda plurality of fourth pixels that receive a data signal from the fourth data lines in accordance with the scan pulse from the second gate lines.
  • 12. The liquid crystal display device according to claim 11, wherein the first and second pixels are vertically adjacent to each other at opposite sides of the first gate lines.
  • 13. The liquid crystal display device according to claim 11, wherein the third and fourth pixels are vertically adjacent to each other at opposite sides of the second gate lines.
  • 14. The liquid crystal display device according to claim 11, wherein a scan pulse is simultaneously supplied to a pair of the first and second gate lines.
  • 15. The liquid crystal display device according to claim 9, wherein two pixels are vertically arranged between two adjacent gate lines.
  • 16. The liquid crystal display device according to claim 9, wherein vertically-adjacent pixels at opposite sides of a pair of the first and second gate lines simultaneously are driven using the corresponding first and second gate lines.
  • 17. The liquid crystal display device according to claim 9, further comprising: a plurality of pixel electrodes in each pixel of the plurality of pixels, each connecting to a thin film transistor of the plurality of thin film transistors, wherein each pixel electrode comprises;four sub-pixel electrodes in the horizontally-adjacent four pixel regions; andconnecting electrodes between the four sub-pixel electrodes to electrically connect the four sub-pixel electrodes.
  • 18. The liquid crystal display device according to claim 17, wherein each connecting electrode has a width smaller than that of each sub-pixel electrode.
  • 19. The liquid crystal display device according to claim 17, wherein each connecting electrode is overlapped with one of the first to fourth data lines.
  • 20. The liquid crystal display device according to claim 9, further comprising: a backlight unit that irradiates light of a different color in each respective sub-frame of a frame.
  • 21. A method for driving a liquid crystal display device including a plurality of gate lines, a plurality of data lines crossing the gate lines to define pixel regions, and a plurality of pixel electrodes in the pixel regions, wherein one pixel electrode is formed in two horizontally-adjacent pixel regions, the liquid crystal display device driven in a plurality of sub-frames divided from one frame, comprising: supplying a scan pulse to a gate line;supplying data signals to pixels arranged to be vertically adjacent to each other at opposite sides of the gate line to charge the pixels with the data signals; andirradiating light onto the pixels charged with the data signals.
  • 22. A method for driving a liquid crystal display device including a plurality of first and second gate lines, a plurality of first to fourth data lines crossing the first and second gate lines to define pixel regions, and a plurality of pixels in the pixel regions, wherein one pixel is formed in horizontally-adjacent four pixel regions, comprising the steps of: supplying a scan pulse to a pair of the first and second gate lines;supplying data signals to pixels arranged to be vertically adjacent to each other at opposite sides of the pair of the first and second gate lines to charge the pixels with the data signals; andirradiating light onto the pixels charged with the data signals.
Priority Claims (1)
Number Date Country Kind
10-2006-0045641 May 2006 KR national