1. Field of the Invention
The present invention relates to a liquid crystal display (LCD) device, and more particularly, to an LCD device according to a liquid crystal dispensing method, and a method for manufacturing the same.
2. Discussion of the Related Art
Generally, ultra thin sized flat panel displays having a display screen with a thickness of several centimeters or less, and in particular, flat panel LCD devices, are widely used in monitors for notebook computers, spacecraft, and aircraft because such LCD devices have low power consumption because of a low driving voltage and are easy to carry.
Such LCD devices include a lower substrate, an upper substrate and a liquid crystal layer. A thin film transistor (TFT) and a pixel electrode are formed on the lower substrate. A light-shielding layer, a color filter layer and a common electrode are formed on the upper substrate, which is opposite to the lower substrate. Then, the liquid crystal layer is formed between the lower and upper substrates. In operation, an electric field is generated between the lower and upper substrates by the pixel and common electrodes, so that the alignment of molecules in the liquid crystal layer is driven by the electric field. Transmissivity of light through the liquid crystal layer is controlled with driving the liquid crystal layer, thereby displaying an image.
In manufacturing this LCD device, a vacuum injection method based on capillary phenomenon and pressure difference has been conventionally used to form the liquid crystal layer between lower and upper substrates. However, such a vacuum injection method has a problem in that it takes a long time to inject the liquid crystal due to the large sized display area, thereby reducing the productivity.
A liquid crystal dispensing method has been proposed to solve such a problem. A prior art method for manufacturing an LCD device based on the liquid crystal dispensing method will be explained with reference to
As illustrated in
A light-shielding layer is formed on the upper substrate 3 to prevent light from leaking out from the gate and data lines and the thin film transistor. Color filter layers of red(R), green(G), and blue(B) are formed on the light-shielding layer, and a common electrode is formed on the color filter layers. An alignment layer is formed on at least one of the lower substrate 1 and the upper substrate 3 to initially align molecules in a liquid crystal to be interposed between the upper and lower substrates 1 and 3.
As shown in
In the liquid crystal dispensing method, the liquid crystal layer is formed on the substrates before they are attached in a sealant hardening process. If a heat-hardening type sealant is used for the sealant, the liquid crystal which flows during the heating may be contaminated by the sealant. For this reason, a UV-hardening type sealant is used for the sealant in the liquid crystal dispensing method.
As shown in
Referring to
As shown in
As shown in
Even though the cutting line 10 is not shown in
If the substrate is cut into the cells in the break process after the scribing process, a problem is not generated by the hardened dummy sealant 8. However, if the unit cell is obtained one by one by carrying out the scribing/breaking process at the same time, it is hard to cut the substrate into the cells due to the hardened dummy sealant 8.
Accordingly, the present invention is directed to an LCD device and a method for manufacturing the same that substantially obviates one or more problems due to limitations and disadvantages of the related art.
An advantage of the present invention is to provide to an LCD and a method for manufacturing the same, in which a substrate is cut into unit cells in an easier way by carrying out scribe and break processes at the same time.
Additional advantages and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
To achieve these and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, an LCD device according to the present invention includes a substrate; a UV hardening main sealant on the substrate; a UV hardening dummy sealant in a region between the UV hardening main sealant and an edge of the substrate; and a UV shielding part formed in a portion where the UV hardening dummy sealant is overlapped with a cell-cutting line.
In another aspect, a method for manufacturing an LCD device according to the present invention includes preparing first and second substrates; forming a UV shielding part in a dummy region on one of first and second substrates; forming a UV hardening main sealant on the substrate on which the UV shielding part is formed; forming a UV hardening dummy sealant on the substrate between the UV hardening main sealant and an edge of the substrate; applying a liquid crystal on one of the first and second substrates; attaching the first and second substrates; irradiating UV light onto the UV hardening main sealant and UV hardening dummy sealant; and cutting the substrates into unit cells.
Also, a UV blocking part is formed under the UV hardening dummy sealant in a portion where a UV hardening dummy sealant is overlapped with a cell-cutting line, so that the sealant formed under the UV blocking part is not hardened, thereby easily cutting the substrate into unit cells.
It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the principle of the invention. In the drawings:
Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
Referring to
A UV blocking part 750 is formed under the UV hardening dummy sealant 800 in a portion where the UV hardening dummy sealant 800 overlaps with a cell-cutting line 600. Preferably, the UV blocking part is formed at a thickness between about 1000 Å and 2000 Å. The UV blocking part 750 has no influence on cell cutting at this thickness. That is, the UV blocking part 750 may be made of any one of materials such as a metal that can block UV light, at this thickness.
In the LCD device according to the first embodiment of the present invention shown in
As shown in
Meanwhile, the liquid crystal layer is formed between the lower and upper substrates. At this time, the sealant may be formed any one of the lower and upper substrates.
If one substrate shown in
If one substrate shown in
Also, a column spacer may be formed on any of the lower and upper substrates maintain a cell gap. The column spacer is formed on a portion that corresponds to the gate line or the data line. Preferably, the column spacer is made of photosensitive organic resin.
As shown in
An alignment layer is formed on the pixel electrode to initially align the liquid crystal. The alignment layer may be formed of polyimide, polyamide group compound, polyvinylalcohol(PVA), polyamic acid by rubbing, or a photosensitive material, such as polyvinvylcinnamate(PVCN), polysilioxanecinnamate(PSCN), or cellulosecinnamate(CelCN) group compound by photo-alignment.
The light-shielding layer is formed on the upper substrate 300 for shielding light from leaking onto the gate lines, the data lines, and the thin film transistors. The color filter layer of red (R), green (G), and blue (B), is formed on the light-shielding layer. The common electrode is formed on the color filter layer. An overcoat layer may be additionally formed between the color filter layer and the common electrode. Also, the aforementioned alignment layer is formed on the common electrode.
Silver (Ag) dots are formed on the lower substrate 200, for applying a voltage to the common electrode on the upper substrate 300 after the lower and upper substrates 200, 300 are attached with each other. The silver dots may be formed on the upper substrate 300.
In an LCD device of In Plane Switching (IPS) mode, the common electrode and the pixel electrode are formed on the lower substrate, so that an electric field that is parallel to the substrate is induced, and the silver dots are not formed on the substrates.
Referring to
If the UV blocking part 750 is formed on the lower substrate 200, the UV blocking part 750 may be formed during forming the gate or data line with the same material as the gate or data line. If the UV blocking part 750 is formed on the upper substrate 300, the UV blocking part 750 may be formed during forming the light-shielding layer with the same material as the light-shielding layer.
Referring to
The sealant forming method is divided into two types, a screen printing method and a dispensing method. In the screen printing method, since a screen contacts the substrate, the alignment layer formed on the substrate may be damaged. Also, with a trend toward the large-sized LCD device; the sealant is used in great quantities, so that it is useful to form the sealant by the dispensing method.
Monomers or oligomers each having both ends coupled to acrylic group mixed with an initiator are used as the sealant; or, monomers or oligomers each having one end coupled to acrylic group and the other end coupled to epoxy group mixed with an initiator are used as the sealant.
Also, the liquid crystal 500 is dropped on the lower substrate 200, thereby forming a liquid crystal layer.
If the liquid crystal 500 contacts the main sealant 700 before the main sealant 700 is hardened, the liquid crystal 500 is contaminated. Accordingly, it is preferable to drop the liquid crystal 500 in the center of the lower substrate 200. Then, the liquid crystal 500 gradually spreads onto the entire substrate at a constant rate until hardening the main sealant 700.
In the drawings, the liquid crystal 500 is dropped on the lower substrate 200, and the UV blocking part 750 and the sealant 700, 800 are formed on the upper substrate 300. However, it is not limited to this. That is, the liquid crystal 500 may be formed on the upper substrate 300, and the UV blocking part 750 and the UV hardening main and dummy sealants 700, 800 may be formed on the lower substrate 200. Also, the liquid crystal 500, the UV blocking part 750 and the UV hardening main and dummy sealant 700, 800 may be formed on the same substrate.
If the liquid crystal 500 is formed on the same layer as the UV hardening main and dummy sealants 700, 800, processing time is unbalanced between the substrate having the liquid crystal 500 and the UV hardening main and dummy sealants 700, 800 and the other substrate, thereby increasing processing time. Also, if the sealant is contaminated before attaching the substrates to each other, it is impossible to clean the substrate since the liquid crystal and the UV hardening main and dummy sealants are formed on the same substrate. Preferably, the liquid crystal is formed on the different substrate from the UV hardening main and dummy sealants.
Although not shown, a spacer may be formed on any one of the lower and upper substrates 200, 300, preferably on the upper substrate 300, for maintaining the cell gap.
The spacer is formed in a ball spacer or a column spacer. The ball spacer is mixed with a solution at a predetermined density and is distributed on the substrate from a nozzle at a high pressure. The column spacer is attached to the substrate having the gate or data lines. If the ball spacer is applied to a large-sized panel, it has a problem in that the cell gap is not constant. Thus, it may be preferable to form the column spacer on the large-sized panel. Currently, the column spacer is made of photosensitive organic resin.
Referring to
The substrate having the liquid crystal is fixed to a lower space, and the other substrate is fixed to an upper space. At this time, the surface of the other substrate on which layers are formed is faced to the surface of the substrate on which the liquid crystal is formed. Then, the upper substrate is pressed to the lower substrate to attach the lower and upper substrates to each other. In another way, in a state of that the lower substrate is spaced from the upper substrate at a predetermined portion, the lower and upper substrates are maintained at a vacuum state, and then the lower and upper substrates are attached in atmospheric pressure.
As shown in
In a case in which the UV light is irradiated to the portion of the UV hardening dummy sealant 800 where the UV blocking part 750 is formed, the UV hardening dummy sealant 800 is not hardened. That is, the UV hardening dummy sealant 800 is maintained in a fluid state, so that the portion can be easily cut during the process of cutting the attached substrates into the unit cells.
If the monomers or oligomers each having one end coupled to acrylic group and the other end coupled to epoxy group mixed with an initiator are used as the UV hardening main and dummy sealants 700, 800, the epoxy group is not reactive with UV light irradiation. That is, heat must be additionally applied to the sealant for about one hour at a temperature of 120° C. to harden the sealant after irradiating the UV light.
Even if the dummy sealant not hardened during the UV irradiating process is hardened by heating in the above conditions, the ratio of hardening is below 50%. Thus, the cell cutting process is not affected by the heating.
If the UV light is irradiated to the entire surface of the substrate during the UV irradiating process, the characteristic of the TFT formed on the substrate may be deteriorated. Also, a pretilt angle of the alignment layer, which is formed for initially aligning the liquid crystal, may be changed. Preferably, a mask 950 for blocking an active region inside the UV hardening dummy sealant 800 is provided between the UV irradiating device 900 and the attached substrates, as shown in
As shown in
Although not shown, a final testing process is performed after cutting the substrate into the unit cells. In the testing process, the unit cells are checked for any failure, and each pixel electrode is appropriately driven when a voltage is applied or is not applied.
The LCD device and the method for manufacturing the same according to the present invention have the following advantages.
In the present invention, the UV blocking part is formed under the UV hardening dummy sealant in the portion where the UV hardening dummy sealant is overlapped with the cell-cutting line. Accordingly, the UV hardening dummy sealant is not hardened in the portion where the UV blocking part is formed during irradiating the UV ray, thereby easily cutting the substrate into the unit cells.
It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2002-15886 | Mar 2002 | KR | national |
This application is a continuation of U.S. patent application Ser. No. 10/265,435 filed Oct. 7, 2002, now U.S. Pat. No. 6,628,365, which claims the benefit of the Korean Application No. P2002-15886 filed on Mar. 23, 2002, which applications are hereby incorporated by reference as if fully set for herein.
Number | Name | Date | Kind |
---|---|---|---|
3978580 | Leupp et al. | Sep 1976 | A |
4094058 | Yasutake et al. | Jun 1978 | A |
4653864 | Baron et al. | Mar 1987 | A |
4691995 | Yamazaki et al. | Sep 1987 | A |
4775225 | Tsuboyama et al. | Oct 1988 | A |
5247377 | Omeis et al. | Sep 1993 | A |
5263888 | Ishihara et al. | Nov 1993 | A |
5379139 | Sato et al. | Jan 1995 | A |
5406989 | Abe | Apr 1995 | A |
5410423 | Furushima et al. | Apr 1995 | A |
5499128 | Hasegawa et al. | Mar 1996 | A |
5507323 | Abe | Apr 1996 | A |
5511591 | Abe | Apr 1996 | A |
5539545 | Shimizu et al. | Jul 1996 | A |
5548429 | Tsujita | Aug 1996 | A |
5642214 | Ishii et al. | Jun 1997 | A |
5680189 | Shimizu et al. | Oct 1997 | A |
5742370 | Kim et al. | Apr 1998 | A |
5757451 | Miyazaki et al. | May 1998 | A |
5852484 | Inoue et al. | Dec 1998 | A |
5854664 | Inoue et al. | Dec 1998 | A |
5861932 | Inata et al. | Jan 1999 | A |
5875922 | Chastine et al. | Mar 1999 | A |
5952678 | Ashida | Sep 1999 | A |
5956112 | Fujimori et al. | Sep 1999 | A |
6001203 | Yamada et al. | Dec 1999 | A |
6011609 | Kato et al. | Jan 2000 | A |
6016178 | Kataoka et al. | Jan 2000 | A |
6016181 | Shimada | Jan 2000 | A |
6055035 | von Gutfeld et al. | Apr 2000 | A |
6163357 | Nakamura | Dec 2000 | A |
6181405 | Izumi | Jan 2001 | B1 |
6219126 | Von Gutfeld | Apr 2001 | B1 |
6226067 | Nishiguchi et al. | May 2001 | B1 |
6236445 | Foschaar et al. | May 2001 | B1 |
6304306 | Shiomi et al. | Oct 2001 | B1 |
6304311 | Egami et al. | Oct 2001 | B1 |
6327015 | Awane et al. | Dec 2001 | B1 |
6337730 | Ozaki et al. | Jan 2002 | B1 |
6414733 | Ishikawa et al. | Jul 2002 | B1 |
20010021000 | Egami | Sep 2001 | A1 |
Number | Date | Country |
---|---|---|
1003066 | May 2000 | EP |
51-065656 | Jun 1976 | JP |
57038414 | Mar 1982 | JP |
57088428 | Jun 1982 | JP |
58027126 | Feb 1983 | JP |
59-057221 | Apr 1984 | JP |
59-195222 | Nov 1984 | JP |
60-111221 | Jun 1985 | JP |
60164723 | Aug 1985 | JP |
60217343 | Oct 1985 | JP |
61007822 | Jan 1986 | JP |
61055625 | Mar 1986 | JP |
62089025 | Apr 1987 | JP |
62090622 | Apr 1987 | JP |
62205319 | Sep 1987 | JP |
63109413 | May 1988 | JP |
63110425 | May 1988 | JP |
63128315 | May 1988 | JP |
63311233 | Dec 1988 | JP |
05127179 | May 1993 | JP |
05-154923 | Jun 1993 | JP |
05-257136 | Oct 1993 | JP |
05265011 | Oct 1993 | JP |
05281557 | Oct 1993 | JP |
05281562 | Oct 1993 | JP |
06051256 | Feb 1994 | JP |
06148657 | May 1994 | JP |
6160871 | Jun 1994 | JP |
06-235925 | Aug 1994 | JP |
06265915 | Sep 1994 | JP |
06-313870 | Nov 1994 | JP |
07-084268 | Mar 1995 | JP |
07128674 | May 1995 | JP |
07181507 | Jul 1995 | JP |
08-101395 | Apr 1996 | JP |
08095066 | Apr 1996 | JP |
08106101 | Apr 1996 | JP |
08171094 | Jul 1996 | JP |
08190099 | Jul 1996 | JP |
08240807 | Sep 1996 | JP |
09005762 | Jan 1997 | JP |
09026578 | Jan 1997 | JP |
09-061829 | Mar 1997 | JP |
09073075 | Mar 1997 | JP |
09073096 | Mar 1997 | JP |
09127528 | May 1997 | JP |
09230357 | Sep 1997 | JP |
09281511 | Oct 1997 | JP |
09311340 | Dec 1997 | JP |
10123537 | May 1998 | JP |
10123538 | May 1998 | JP |
10142616 | May 1998 | JP |
10-177178 | Jun 1998 | JP |
10221700 | Aug 1998 | JP |
10282512 | Oct 1998 | JP |
10-333157 | Dec 1998 | JP |
10-333159 | Dec 1998 | JP |
11014953 | Jan 1999 | JP |
11038424 | Feb 1999 | JP |
11064811 | Mar 1999 | JP |
11109388 | Apr 1999 | JP |
11-133438 | May 1999 | JP |
11-142864 | May 1999 | JP |
11174477 | Jul 1999 | JP |
11212045 | Aug 1999 | JP |
11-248930 | Sep 1999 | JP |
11-326922 | Nov 1999 | JP |
11344714 | Dec 1999 | JP |
2000-002879 | Jan 2000 | JP |
2000029035 | Jan 2000 | JP |
2000-056311 | Feb 2000 | JP |
2000-066165 | Mar 2000 | JP |
2000-137235 | May 2000 | JP |
3000-147528 | May 2000 | JP |
2000-193988 | Jul 2000 | JP |
2000-241824 | Sep 2000 | JP |
2000-284295 | Oct 2000 | JP |
2000-292799 | Oct 2000 | JP |
2000-310759 | Nov 2000 | JP |
2000-310784 | Nov 2000 | JP |
2000-338501 | Dec 2000 | JP |
2001-005401 | Jan 2001 | JP |
2001-005405 | Jan 2001 | JP |
2001-013506 | Jan 2001 | JP |
2001-033793 | Feb 2001 | JP |
2001-042341 | Feb 2001 | JP |
2001-051284 | Feb 2001 | JP |
2001-066615 | Mar 2001 | JP |
2001-091727 | Apr 2001 | JP |
2001-117109 | Apr 2001 | JP |
2001117105 | Apr 2001 | JP |
2001-133745 | May 2001 | JP |
2001-133799 | May 2001 | JP |
2001133794 | May 2001 | JP |
2001142074 | May 2001 | JP |
2001147437 | May 2001 | JP |
2001-166272 | Jun 2001 | JP |
2001-166310 | Jun 2001 | JP |
2001154211 | Jun 2001 | JP |
2001-183683 | Jul 2001 | JP |
2001-209052 | Aug 2001 | JP |
2001-209060 | Aug 2001 | JP |
2001-222017 | Aug 2001 | JP |
2001-235758 | Aug 2001 | JP |
2001-215459 | Sep 2001 | JP |
2001255542 | Sep 2001 | JP |
2001264782 | Sep 2001 | JP |
2001-201750 | Oct 2001 | JP |
2001-272640 | Oct 2001 | JP |
2001-281675 | Oct 2001 | JP |
2001-281678 | Oct 2001 | JP |
2001-282126 | Oct 2001 | JP |
2001-305563 | Oct 2001 | JP |
2001-330837 | Nov 2001 | JP |
2001330840 | Nov 2001 | JP |
2001-356353 | Dec 2001 | JP |
2001356354 | Dec 2001 | JP |
2002014360 | Jan 2002 | JP |
2002023176 | Jan 2002 | JP |
2002049045 | Feb 2002 | JP |
2002082340 | Mar 2002 | JP |
2002090759 | Mar 2002 | JP |
2002090760 | Mar 2002 | JP |
2002107740 | Apr 2002 | JP |
2002122872 | Apr 2002 | JP |
2002122873 | Apr 2002 | JP |
2002080321 | Jun 2002 | JP |
2002202512 | Jul 2002 | JP |
2002202514 | Jul 2002 | JP |
2002214626 | Jul 2002 | JP |
2000-0035302 | Jun 2000 | KR |
Number | Date | Country | |
---|---|---|---|
20040057006 A1 | Mar 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10265435 | Oct 2002 | US |
Child | 10671454 | US |