This application claims the benefit of Korean Patent Application No. 10-2005-080707, filed in Korea on Aug. 31, 2005, which is hereby incorporated by reference in its entirety.
1. Field
The present embodiments relate to a liquid crystal display device.
2. Related Art
Until recently, cathode-ray tubes (CRTs) have been typical used in display devices. Researchers are currently studying and developing various types of flat panel displays, such as liquid crystal display (LCD) devices, plasma display panels (PDPs), field emission displays (FED), and electro-luminescence displays (ELDs), as a substitute for CRTs. These types of flat panel displays are driven in an active matrix type display, which has a plurality of pixels arranged in a matrix form. The plurality of pixels are driven using a plurality of thin film transistors therein. Among the active matrix types of flat panel displays, liquid crystal display (LCD) devices and electroluminescent display (ELD) devices are widely used for notebook computers and desktop computers because of their high resolution, ability to display colors and superiority in displaying moving images.
Conventionally, an LCD device includes two substrates that are spaced apart and face each other with a layer of liquid crystal molecules interposed between the two substrates. The two substrates include electrodes that face each other. A voltage applied between the electrodes induces an electric field across the layer of liquid crystal molecules. Alignment of the liquid crystal molecules changes in accordance with the intensity of the induced electric field in the direction of the induced electric field, thereby changing the light transmissivity of the LCD device. Thus, the LCD device displays images by varying the intensity of the induced electric field across the layer of liquid crystal molecules.
As shown in
A data driver 110 supplies data voltages to the data lines DL1 to DLm. A gate driver 120 supplies gate voltages to the gate lines GL1 to GLn. A timing controller 130 supplies control signals to the data and gate drivers 110 and 120 and data signals to the data driver 110.
When an on gate voltage is applied to the gate line GL1 to GLn, the thin film transistor T connected to the gate line GL1 to GLn is turned on. When the thin film transistor T is turned on, the data voltage is applied to the pixel electrode of the pixel P through the data line DL1 to DLm and charged in the pixel P. A common voltage is applied to the common electrode. Accordingly, an electric field is induced to the liquid crystal and light transmissivity of the liquid crystal layer is changed, thereby displaying an image.
The liquid crystal has response delay. A pixel voltage charged in the pixel does not reach the data voltage applied, for example, a normal voltage displaying an image desired, during a charging period (frame period). Accordingly, the related art LCD device has problem of motion blurring.
Generally, an over driving method has been used to obviate the problem of motion blurring. The over driving method applies an over driving data voltage other than a data voltage corresponding to a data signal of a present frame. A data signal of the present frame is compared with a data signal of a previous frame. An over driving data voltage has a gray level higher than a data voltage of a data signal of the present frame when the data signal of the present frame has a gray level higher than the data signal of the previous frame. An over driving data voltage has a gray level lower than a data voltage of the data signal of the present frame when the data signal of the present frame has a gray level lower the data signal of the previous frame. Since the pixel is applied with the over driving data voltage higher or lower than the data voltage of the present frame, the response delay of the liquid crystal is compensated and a normal voltage desired to the pixel is reached in a frame period.
As shown in
When the data signal is an n-bit signal, 2n gray levels are displayed. Accordingly, the data driver use an n-bit data drive IC generating 2n gray level voltages corresponding to the 2n gray levels, for example, respectively.
When the LCD device having the n-bit data drive IC is operated in the over driving method, the 2n gray level voltages are also used for the over driving voltages.
When the n-bit data drive IC is used for the over driving method of the n-bit data signal, the over driving method can be performed for the middle gray levels.
For the highest gray level or the lowest gray level, for example, full bright gray level or full dark gray level, the over driving method can not be performed, because there is no over driving data voltages for the full bright or full dark gray level. For example, for the 9-bit data signal, 512 gray level voltages are generated. Since a 1st gray level or 512th gray level is a lowest or highest gray level, there is no over driving data voltages for the gray levels in the 512th gray level voltages. Accordingly, the over driving for the full bright or bull dark gray level can not be performed, and display quality is degraded.
The present embodiments relate to a liquid crystal display device and a method of driving the same. The present embodiments may obviate one or more of the problems due to limitations and disadvantages of the related art. For example, in one exemplary embodiment of the liquid crystal display device and method of driving the same the display quality is improved.
Additional features and advantages of the present embodiments will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice. Additional objectives and other advantages of the embodiments will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
A liquid crystal display device according to one exemplary embodiment includes an over driving data generator that compares a gray level of a data signal of a present frame with a gray level of a data signal of a previous frame and outputs an over driving data signal, wherein the data signal has a bit number of n. A data drive IC generates level voltages having a number of more than 2n and outputs one of the level voltages of the over driving data signal. A liquid crystal panel includes a pixel applied with the one of the level voltages.
In another embodiment, a method of driving a liquid crystal display device includes comparing a gray level of a data signal of a present frame with a gray level of a data signal of a previous frame and outputting an over driving data signal, wherein the data signal has a bit number of n; generating level voltages having a number of more than 2n; outputting one of the level voltages corresponding to the over driving data signal; and applying the one of the level voltages to a pixel of a liquid crystal panel.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the claimed embodiments.
The accompanying drawings, which are included to provide a further understanding of the claimed embodiments and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention. In the drawings:
Reference will now be made in detail to the illustrated embodiments, which are illustrated in the accompanying drawings.
As shown in
Parts of the 210 (=1024) level voltages 0G to 1023G are used as available gray level voltages. For example, 257th to 768th level voltages 256G to 767G may be used as available gray level voltages. The 257th to 768th level voltages 256G to 767G correspond to 1st to 512th gray levels of the 9-bit data signal, for example, respectively. For example, the 257th to 768th level voltages 256G to 767G are pixel voltages normally displaying 1st to 512th gray levels, respectively. The available gray level voltages may be also over driving data voltages for the 2nd to 511th gray levels except for a 1st gray level and a 512th gray level (i.e., lowest and highest gray levels or full dark and full bright gray levels).
One of the 769th to 1024th level voltages 768G to 1023G may be used as an over driving data voltage for the highest gray level, and one of the 1st to 256th level voltages 0G to 255G may be used as an over driving data voltage for the lowest gray level.
In the over driving method according to the exemplary embodiment, when a data signal of a present frame has a gray level higher than a data signal of a previous frame, a level voltage higher than a level voltage of the gray level of the present frame is outputted as an over driving data voltage. When a data signal of a present frame has a gray level lower than a data signal of a previous frame, a level voltage lower than a level voltage of the gray level of the present frame is outputted. Even when the data signal of the present frame has a highest or lowest gray level, one of the level voltages higher than the available gray level voltages or one of the level voltage lower than the available gray level voltages may be used as an over driving data voltage for the highest or lowest gray level. Accordingly, the pixel can have the normal voltages desired to display the entire gray levels.
By using the data driver IC having a bit number more than a bit number of the data signal, there are over driving voltages for the entire gray levels including the highest and lowest gray levels. Thus, over driving for the entire gray levels can be performed.
A method of driving the LCD device according to the exemplary embodiment of the present invention is explained in detail with reference to
The liquid crystal panel 480 is similar to the liquid crystal panel of
The driving circuit includes a data processing circuit 410, an over driving data generator 420, and a data drive IC 430. The data processing circuit 410 and the over driving data generator 420 may be included in a timing controller (130 of
The data processing circuit 410 is supplied with a source data signal from an external system. The data processing circuit 410 processes the source data signal to generate a frame data signal FD. The frame data signal is an n-bit data signal, for example, a 9-bit data signal. The frame data signal FD displays 512 gray levels. The source data signal may have a bit number less than a bit number of the frame data signal FD. During data processing, information of the source data signal may be partially lost. Accordingly, the data processing circuit 410 may generate the frame data signal FD having a bit number more than a bit number of the source data signal.
The over driving data generator 420 includes a frame memory 424 and a look-up table (LUT) 422. The frame memory 424 stores a frame data signal of the previous frame. The look-up table 422 is an input-to-output table. The look-up table 422 is supplied with the present frame data signal and the previous frame data signal and outputs an over driving data signal OD according to the comparison of the present frame data signal with the previous frame data signal. For example, the look-up table 422 functions as comparing a gray level of the present frame data signal with a gray level of the previous frame data signal and generating the over driving data signal OD according to the comparing result. When the gray level of the present frame data signal is higher than the gray level of the previous frame data signal, the over driving data signal OD has a level higher than a level (for example, gray level) of the present frame data signal. When the gray level of the present frame data signal is lower than the gray level of the previous frame data signal, the over driving data signal OD has a level lower than a level (for example, gray level) of the present frame data signal.
The over driving data signal OD may has (29+2) levels for the 9-bit data signal. The 1st level of the over driving data signal OD is for the over driving of the 1st gray level of the 9-bit data signal, and the (29+2)th level of the over driving data signal OD is for the over driving of the (29)th gray level of the 9-bit data signal. The 2nd to (29+1)th levels of the over driving data signal OD are for the 2nd to (29−1)th gray levels of the 9-bit data signal.
The over driving data signal OD is inputted to the data drive IC 430. The data drive IC 430 outputs one of the level voltages of the over driving data signal OD. For example, the 2nd to (29+1)th levels of the over driving data signal OD correspond to 257th to 768th level voltages 256G to 767G, for example, respectively. The 1st level of the over driving data signal corresponds to one of the 1st to 256th level voltages 0G to 255G. The (29+2)th level of the over driving data signal corresponds to one of the 769th to 1024th level voltages 768G to 1023G. Accordingly, the 257th to 768th level voltages 256G to 767G, one of the 1st to 256th level voltages 0G to 255G, and one of the 769th to 1024th level voltages 768G to 1023G are used as over driving data voltages for the entire gray levels.
One among the 257th to 768th level voltages 256G to 767G, one of the 1st to 256th level voltages 0G to 255G, and one of the 769th to 1024th level voltages 768G to 1023G is outputted as an over driving voltage to the data line in the liquid crystal panel 480. The outputted over driving data voltage is applied to the corresponding pixel of the liquid crystal panel 480. Since the pixel is applied with the over driving data voltage having a level higher or lower than the gray level of the present frame, the pixel has the pixel voltage (normal voltage) desired during the present frame so that the gray level of the present frame is displayed normally.
By using the data driver IC having a bit number more than a bit number of the data signal, over driving for the entire gray levels can be performed. Accordingly, dynamic contrast ratio (C/R) and display quality can be improved.
As shown in
The dithering circuit 540 is arranged between a data processing circuit 510 and an over driving data generator 520. The data processing circuit 510 generates a (9+k)-bit extended frame data signal EFD. The dithering circuit 540 truncates k low significant bits (LSB) of the extended frame data signal EFD, and generates a plurality of 9-bit frame data signals FD to spatially and/or temporally compensate the truncation of the k low significant bits. The plurality of 9-bit frame data signals FD are repeated during at least one frame so that a gray level between gray levels displayed by the plurality of 9-bit frame data signals FD is perceived by a viewer. The gray level between the gray levels displayed by the plurality of 9-bit frame data signals FD is a gray level, which the (9+k) extended frame data signal EFD displays. The spatial compensation is to apply the frame data signals FD having different gray levels to different pixels to compensate the truncation of the low significant bits. The temporal compensation applies the frame data signals FD having different gray levels during different frames to compensate for the truncation of the low significant bits.
The 9-bit frame data signal FD is inputted to the over driving data generator 520. The over driving data generator 520 compares the present frame data signal with the previous frame data signal to output an over driving data signal OD by using a frame memory 524 and a look-up table 522, for example, as in the embodiment shown in
A data drive IC 530 outputs the over driving data voltage of the over driving data signal OD to a liquid crystal panel 580, as in the embodiment shown in
In another exemplary embodiment, by using the data driver IC having a bit number more than a bit number of the data signal, over driving for the entire gray levels can be performed. Accordingly, dynamic contrast ratio (C/R) and display quality can be improved. In this embodiment, by using the dithering circuit, gray levels more than gray levels realized by the data drive IC can be displayed. Accordingly, product cost can be reduced and high performance can be achieved.
It will be apparent to those skilled in the art that various modifications and variations can be made in the liquid crystal display device and the method of driving the display device of the present embodiments without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2005-080707 | Aug 2005 | KR | national |