Liquid crystal display device for displaying display data

Information

  • Patent Grant
  • 6603468
  • Patent Number
    6,603,468
  • Date Filed
    Friday, March 2, 2001
    23 years ago
  • Date Issued
    Tuesday, August 5, 2003
    21 years ago
Abstract
A liquid crystal display device includes a liquid crystal panel; a plurality of data drivers for applying, to the pixel elements, graduation voltages corresponding to the display data; a gate driver for selecting a pixel element to which a graduation voltage is to be applied; and a liquid crystal control circuit for controlling the data drivers on the basis of a transfer clock. Each data driver includes a reproducing circuit for reproducing the transfer clock input to the data driver such that the deviations between the duties of the display data and the transfer clock input to the data driver and the duties of the display data and the transfer clock output from the data driver become small, and for generating a latch clock, and a latch circuit for latching the display data input to the data driver.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a liquid crystal display device provided with a plurality of data drivers.




2. Description of the Related Art




There is described a liquid crystal display device in Japanese Patent Application Laid-open No. 11-194748 wherein a plurality of data drivers are connected in series by transmission lines to transmit display data and a data transfer clock. Each data driver is also provided with a buffer circuit between the transmission lines on either of the input and output sides.




The above related art, however, does not consider a change in duty ratio of transmitted pulse that may arise when a pulse transmission is performed. For example, in the case that the response characteristic of each buffer circuit is duller at a rise of a transmitted pulse than that at a fall thereof, the rise of the transmitted signal is delayed every time when it passes through a buffer circuit. This brings about a reduction of the transmission quality because the pulse width is decreased.




Even if the logic level of the transmitted signal (display data and a data transfer clock) is inverted every time when it passes through the buffer circuit on the output side of a data driver, a difference in duty once produced can not be canceled. For example, when the duty is 50% at the first data driver and 45% at the third data driver, it is expected to be about 40% at the fifth data driver. To say the least, it is not expected that the duty return to 50% again.




Further, in dual edge transfer wherein display data is taken in at rise/fall of a transfer clock, the margin of either of setup/hold times for each rising edge of the transfer clock differs from that for each falling edge. More specifically, in dual edge drive, since the transfer clock and display data have the same maximum frequency, the same line width for the transfer clock and the display data is used in input/output buffers and transmission lines. The difference in either of the delay time upon rise and the delay time upon fall between the transfer clock and the display data can thereby be narrowed within each path from the output buffer of one data driver to the input buffer of the next data driver. On the other hand, the delay time upon rise differs from that upon fall. As a result, some problems may arise. For example, for each rising edge of the transfer clock, the margin of the hold time is small though the margin of the setup time is sufficient. Inversely, for each falling edge of the transfer clock, the margin of the setup time is small though the margin of the hold time is sufficient. Sufficient margins of the setup/hold times are required for either edge. Consequently, the margin of either of the setup/hold times becomes insufficient.




SUMMARY OF THE INVENTION




It is an object of the present invention to provide liquid crystal display devices wherein changes in transfer clock and display data are suppressed.




It is another object of the present invention to provide liquid crystal display devices wherein there are increased margins of setup/hold times for display data.




In the present invention, a transfer clock input to a data driver is reproduced such that the deviations between the duties of the display data and the transfer clock input to the data driver and the duties of the display data and the transfer clock output from the data driver become small, and a latch clock is generated. The display data input to the data driver is latched on the basis of the latch clock.




Besides, in the present invention, a latch clock is generated on the basis of a transfer clock so as to increase the margins of setup/hole times of display data input to a data driver. The display data is latched on the basis of the latch clock. Preferably, the latch clock is generated such that it rises earlier than the transfer clock by a period t, and falls later than the transfer clock by the period t.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a block circuit diagram showing the construction of a data driver according to the first embodiment of the present invention;





FIG. 2

is a block diagram showing the construction of a liquid crystal display device according to the first embodiment;





FIG. 3

is a block circuit diagram showing the construction of a clock reproducing circuit according to the first embodiment;





FIG. 4

is a circuit diagram showing the construction of a phase comparing circuit according to the first embodiment;





FIG. 5

is a chart showing an operation of the phase comparing circuit according to the first embodiment;





FIG. 6

is a circuit diagram showing the construction of an edge judging circuit according to the first embodiment;





FIG. 7

is a circuit diagram showing the construction of a VCO according to the first embodiment;





FIG. 8

is a graph showing a relation between bias voltage and VCO oscillation frequency according to the first embodiment;





FIG. 9

is a timing chart of the clock reproducing circuit according to the first embodiment;





FIG. 10

is a timing chart of the data driver according to the first embodiment;





FIG. 11

is a block circuit diagram showing the construction of a clock reproducing circuit according to the second embodiment of the present invention;





FIG. 12

is a block circuit diagram showing the construction of a first delay circuit according to the second embodiment;





FIG. 13

is a circuit diagram showing the construction of a delay circuit according to the second embodiment;





FIG. 14

is a circuit diagram showing the construction of an edge comparing circuit according to the second embodiment;





FIG. 15

is a timing chart of the first delay circuit according to the second embodiment;





FIG. 16

is a block circuit diagram showing the construction of a duty reproducing circuit according to the second embodiment; and





FIG. 17

is a timing chart of the duty reproducing circuit according to the second embodiment.











DETAILED DESCRIPTION OF THE EMBODIMENTS




The first embodiment of the present invention will be described below with reference to

FIGS. 1

to


10


.





FIG. 1

is a block circuit diagram showing the construction of a data driver according to the first embodiment. Reference numeral


101


denotes a data driver for outputting graduation voltages in accordance with display data, which driver includes 384 liquid crystal output lines in this embodiment. Reference numeral


102


denotes an input transfer clock,


103


does input display data, and


104


does an input enable signal. The data driver


101


takes the display data


103


in at each rising edge and each falling edge of the input transfer clock


102


on the basis of an input enable signal


104


. Reference numeral


105


denotes an input liquid crystal application signal including a graduation voltage in accordance with the display data, and


106


does an input liquid crystal reference voltage for determining a graduation voltage to be output to a liquid crystal display panel. Reference numeral


107


denotes a clock reproducing circuit,


108


does a reproduced transfer clock reproduced in the clock reproducing circuit on the basis of the input transfer clock


102


, and


109


does a latch clock, which is the doubled signal of the reproduced transfer clock


108


. Reference numeral


110


denotes an enable control circuit,


111


does a latch address start signal,


112


does an output start signal, and


113


does an output enable signal. These signals


111


to


113


are generated in the enable control circuit


110


on the basis of the input enable signal


104


and the input transfer clock


102


. Reference numeral


114


denotes a latch circuit for latching the input display data


103


at each rising edge of the latch clock


109


, and


115


does display data latched by the latch circuit


114


. Reference numerals


116


and


118


denote output buffers, which are in a high-impedance state when the output start signal


112


is at low level. Reference numeral


117


denotes an output transfer clock, and


119


does output display data. Reference numeral


120


denotes a latch address generating circuit, and


121


is a latch address. The latch address


121


is generated in the latch address generating circuit


120


on the basis of the latch clock


109


and the latch address start signal


111


. Reference numeral


122


denotes a latch circuit (


1


), and


123


does display data taken in the latch circuit (


1


)


122


on the basis of the latch address


121


. Reference numeral


124


denotes a latch circuit (


2


), and


125


does display data output from the latch circuit (


2


)


124


on the basis of the input liquid crystal application signal


105


. Reference numeral


126


denotes a liquid crystal driving circuit, and


127


does a liquid crystal application voltage generated from the input liquid crystal reference voltage on the basis of the display data


125


. Reference numeral


128


denotes an output liquid crystal application signal obtained by buffering the input liquid crystal application signal


105


, and


129


does an output liquid crystal reference voltage obtained by amplifying the input liquid crystal reference voltage


106


through an electric current.





FIG. 2

is a block diagram showing the construction of a liquid crystal display device according to the present invention. Reference numeral


500


denotes a liquid crystal display panel including pixel elements arranged in a matrix form, and


501


does a liquid crystal display device. The size of the display area in this embodiment is according to a standard, e.g., called XGA of 1024×3 (RGB)×768. Reference numeral


502


denotes a liquid crystal controller,


503


-


1


to


503


-


8


do data drivers as shown in

FIG. 1

, and


504


-


1


to


504


-


3


do gate drivers for outputting selection voltages for selecting a pixel (scan line) to which a graduation voltage is applied. Each gate driver includes 256 outputs. The data drivers


503


-


1


to


503


-


8


and the gate drivers


504


-


1


to


504


-


3


are disposed on a glass substrate of the liquid crystal display panel


500


. Reference numerals


505


-


1


to


505


-


8


denote data driver signal groups, which are connected between the liquid crystal controller


502


and the data driver


503


at the preceding stage and the data driver at the subsequent stage. Reference numerals


506


-


1


to


506


-


3


denote gate driver signal groups, which are connected between the liquid crystal controller


502


and the gate driver at the preceding stage and the gate data at the subsequent stage like the data driver signal groups.





FIG. 3

is a block circuit diagram showing the construction of the clock reproducing circuit


107


. Reference numeral


601


denotes an input buffer for the input transfer clock


102


, and


602


does an input transfer clock output from the input buffer


601


. Reference numerals


603


and


604


denote inverting circuits, and


605


and


606


do signals obtained by inverting the input transfer clock


602


and a comparison signal


619


in the inverting circuits


603


and


604


, respectively. Reference numerals


607


and


608


denote edge comparing circuits for comparing the phases of the corresponding edges in input signals with each other, and outputting the difference in phase,


609


-up and


610


-up do phase advance signals in the respective edge comparing circuits


607


and


608


, and


609


-dwn and


610


-dwn do phase delay signals in the respective edge comparing circuits


607


and


608


. Reference numeral


611


denotes an edge judging circuit for performing an arithmetic operation to judge each edge on the basis of the outputs of the edge comparing circuits


607


and


608


, and outputting a phase advance signal


612


-up or a phase delay signal


612


-dwn as an operation result. Reference numeral


613


denotes a charge pump circuit, and


614


does a bias voltage. In the example shown, the charge pump circuit


613


is made into a CMOS circuit, and the bias voltage


614


varies in accordance with the logic level of the phase advance signal


612


-up or the phase delay signal


612


-dwn. Reference numeral


615


denotes a loop filter for removing high-frequency components from the bias voltage


614


to generate a bias voltage


616


. Reference numeral


617


denotes a VCO (Voltage-Controlled Oscillator) whose output frequency varies in accordance with the input potential level. Reference numeral


618


denotes a frequency dividing circuit for dividing the frequency of the latch clock


109


to generate a comparison signal


619


. Reference numeral


620


denotes an inverting circuit for the comparison signal


619


, which circuit outputs the reproduced transfer clock


108


.





FIG. 4

is a circuit diagram showing the construction of each of the phase comparing circuits


607


and


608


shown in FIG.


3


.

FIG. 5

is a timing chart showing an operation of the phase comparing circuit.

FIG. 6

is a circuit diagram showing the construction of the edge judging circuit, which includes NOR circuits


901


-


1


to


901


-


3


and an inverting circuit


902


.





FIG. 7

is a circuit diagram showing the construction of the VCO


617


, wherein reference numeral


1001


denotes an inverting circuit with a bias input, and


1002


does an output buffer. The VCO


617


obtains its oscillation frequency in the manner that an odd number of inverting circuits


1001


are connected in series and the output of the last stage is used as an input of the first stage.





FIG. 8

is a graph showing a relation between bias voltage and the oscillation frequency of the VCO


617


.

FIG. 9

is a timing chart of the clock reproducing circuit


108


.

FIG. 10

is a timing chart of the data driver


101


. The operation of this embodiment will be described with reference to the figures as mentioned above.




As shown in

FIG. 2

, the data driver signal group


505


-


1


generated in the liquid crystal controller


502


is transferred to the first stage data driver


503


-


1


. The operation of each data driver


503


will be described. As shown in

FIG. 10

, the input transfer clock


102


is transferred from the circuit at the preceding stage with such timings that the input display data


103


can be taken in at each rising/falling edge. As already described in relation to the related art, however, the duty of the input transfer clock


102


, the input display data


103


, or the like, changes due to the output buffer in the preceding stage circuit, the input buffer in the present stage circuit, the impedances of the transfer lines, etc.




In each data driver


503


, the latch clock


109


and the reproduced transfer signal


108


are first generated in the clock reproducing circuit


107


on the basis of the input transfer clock


102


. This process will be described with reference to

FIGS. 3

to


9


. The input transfer clock


102


input to the clock reproducing circuit


107


passes through the input buffer


601


as shown in FIG.


3


and then it is input to the edge comparing circuit


607


for comparing it in rising edge with the comparison signal


619


. On the other hand, the input transfer clock


602


and the comparison signal


619


are input to the inverting circuits


603


and


604


, respectively. After being inverted, they are input to the edge comparing circuit


608


for comparing their falling edges with each other.




Either of the edge comparing circuits


607


and


608


is constructed as shown in FIG.


4


. In their timing charts, e.g., in case of the edge comparing circuit


607


, as shown in

FIG. 5

, the corresponding rising edges of the two input signals are compared with each other. If the timings of rising of both are the same, its outputs


609


-up and


609


-dwn are both set at low level. If rising of the input transfer clock


602


is earlier than that of the comparison clock


620


, the output


609


-dwn is set to high level in the period in which the input transfer clock


602


is to high level and the comparison clock


620


is at low level. Inversely, if rising of the input transfer clock


602


is later than that of the comparison clock


620


, the output


609


-up is set to high level in the period in which the input transfer clock


602


is to low level and the comparison clock


620


to at high level.




Therefore, in the clock generating circuit


107


, for example, when the comparison signal


619


has the same cycle and duty as the input transfer clock


602


but the phase of the comparison signal


619


is a little late, in the edge comparing circuit


607


, the phase delay signal


609


-dwn is at high level during the period from rise of the input transfer clock


602


to rise of the comparison signal


619


, the phase delay signal


610


-dwn is at high level during the period from fall of the input transfer clock


602


to fall of the comparison signal


619


, and any of the phase advance signals


609


-up and


610


-up and the phase delay signals


609


-dwn and


610


-dwn is at low level during the other periods. Consequently, these phase advance signals and phase delay signals give information on phase difference in relation to rise and fall of either of the input transfer clock


602


and the comparison signal


619


.




The phase advance signals


609


-up and


610


-up and the phase delay signals


609


-dwn and


610


-dwn thus generated are input to the edge judging circuit


611


, wherein the logical sum of phase difference information is made in relation to each of rise and fall, and thereby each piece of phase advance information and phase delay information in relation to rise and fall is obtained as a unit of information. Besides, in order to make a signal level suitable for the charge pump circuit


613


at the subsequent stage, when a phase difference in phase advance signal arises, a logical conversion is performed to make it at low level. Further, phase advance and phase delay must not occur at once in the phase difference signals, but, only by performing an OR operation, for example, a possibility may remain that there is a period in which either of the phase advance signal


609


-up and the phase delay signal


610


-dwn is at high level. For this reason, as for the phase delay signal, after an OR operation is performed in the NOR circuit


901


-


2


, it is masked using the NOR circuit


901


-


3


by the phase advance signal that has been made high-active in the inverting circuit


902


.




The phase advance signal


612


-up and the phase delay signal


612


-dwn thus generated are input to the charge pump circuit


613


. As shown in

FIG. 6

, the charge pump circuit


613


inputs the phase advance signal


612


-up to the gate of a PMOS whose source side has been set at a high potential level, and the phase delay signal


612


-dwn to the gate of an NMOS whose source side has been set at a low potential level. The drain sides of the PMOS and the NMOS are connected to each other and the node between them gives the bias voltage


614


. Therefore, if the phase advance signal


612


-up becomes low level, the potential of the bias voltage


614


rises because a current flows in from the high potential side, and, if the phase delay signal


612


-dwn becomes low level, the potential of the bias voltage


614


is lowered by flowing a current to the low potential side. Further, when the phase advance signal


612


-up is at high level and the phase delay signal


612


-dwn is at low level, the bias voltage


614


does not change because no current flows on either source side. The bias voltage


614


generated through the above-described process is input to the VCO circuit


617


after high-frequency components are removed from it by the loop filter


615


.




Next, the operation of the VCO circuit


617


will be described. As shown in

FIG. 8

, the VCO circuit


617


shows a linear relation between bias voltage and oscillation frequency. Therefore, in the range between VL and VH of the bias voltage


614


, a change in frequency when the bias voltage changes from V


1


to V


2


is equal to a change in frequency when the bias voltage changes from V


2


to V


1


.




A signal generated in the above VCO circuit


617


is output from the clock reproducing circuit as the reproduced transfer clock


109


. The signal is fed back to the edge comparing circuit


607


and also to the edge comparing circuit


608


through the inverting circuit


604


.




As a result of the above operation, when a signal of a duty t


0


/T


0


% (T


0


: one cycle period of input signal, t


0


: period of high level) is input as the input transfer clock


602


at the input of the clock reproducing circuit


107


, as shown in

FIG. 9

, the comparison signal


619


rises earlier than the input transfer clock


602


by a period trm, and falls earlier than the input transfer clock


602


by a period tfm. In this case, the periods trm and tfm are equal to each other because of the characteristic of the VCO circuit


617


. That is, trm=tfm=(T


0


−t


0


)/2. Therefore, the comparison signal


619


has its duty of 50%, and it is a signal in which the delay time has changed in the forward and backward directions by the same width in relation to the input transfer clock


602


. The same applies to the reproduced transfer clock


109


obtained by inverting the comparison signal


619


.




On the basis of the latch clock


108


and the reproduced transfer clock


109


generated as above, the data driver


101


operates. So, a data taking-in method in case of using those latch clock and reproduced transfer clock will be described with reference to FIG.


10


.




Even when the duty of either of the output transfer clock


117


and the display data


119


output from the data driver at the preceding stage is 50%, the input transfer clock


102


and the input display data


103


input to the present stage may have changed in duty because of the input and output buffers and the impedance of the transfer lines. However, in the case that the drive performances of the input and output buffers and the impedance of the transfer lines are the same in any transfer path, as shown in

FIG. 10

, when the transfer clock delays by Tdr seconds at each rise and by Tdf seconds at each fall, the display data also delays by Tdr seconds at each rise and by Tdf seconds at each fall. That is, the duty that was 50% for one cycle T


0


changes to (50+(Tdf−Tdr)/T


0


)%. In the construction of

FIG. 1

, the input display data


103


is latched in the latch circuit


114


with the reproduced transfer clock


109


. But, if it were latched with the input transfer clock


102


, in case of Tdr>Tdf, as shown in

FIG. 10

, at each rising edge of the clock, the margin of setup time remains Trsu but the margin of hold time changes to Trho′=Trho−(Tdr−Tdf). On the other hand, at each falling edge, the margin of setup time changes to Tfsu′=Tfsu−(Tdr−Tdf). Since the margins of setup/hold times must be satisfied simultaneously upon rise and fall, as the whole circuit, the margin of setup time must be Tsu′=Tfsu−(Tdr−Tdf), and the margin of hold time must be Tho′=Trho−(Tdr−Tdf).




Contrastingly, in the case of using the reproduced transfer clock by applying the first embodiment, the duty becomes 50%. Since the reproduced transfer clock rises earlier than the input transfer clock by (Tdr−Tdf)/2 seconds and falls later than the input transfer clock by (Tdr−Tdf)/2 seconds, the margins of setup/hold times upon rise are Trsu″=Trsu−(Tdr−Tdf)/2 and Thsu″=Tfsu′+(Tdr−Tdf)/2=Tfsu−(Tdr−Tdf)/2, respectively, and the margins of setup/hold times upon fall are Tfsu″=Tfsu′+(Tdr−Tdf)/2=Tfsu−(Tdr−Tdf)/2 and Tfho″=Tfsu−(Tdr−Tdf)/2, respectively. Thus the difference in margin of either of setup/hold times between rise/fall of the clock is cancelled, and a margin of (Tdr−Tdf)/2 seconds is produced for either of setup/hold times. Accordingly, high speed transfer becomes possible.




Next, the second embodiment of the present invention in which a clock reproducing circuit different in construction from that of the first embodiment is used will be described with reference to

FIGS. 1 and 11

to


17


.





FIG. 11

is a block circuit diagram showing the construction of the clock reproducing circuit according to the second embodiment. Reference numeral


1401


denotes a first delay circuit, which delays the phase of the input transfer clock


102


by half of its high level width to generate a delay transfer clock (


1


)


1402


. Reference numeral


1403


denotes a duty reproducing circuit, which generates a reproduced transfer clock (


1


)


1404


with its duty of 50% synchronously with each rise of the delay transfer clock (


1


)


1402


. Reference numeral


1405


denotes a second delay circuit, which has the same function as the first delay circuit


1401


and delays the phase of the reproduced transfer clock (


1


)


1404


by half of its high level width to generate the reproduced transfer clock


108


. Reference numeral


1406


denotes an exclusive OR circuit, which performs an exclusive OR operation of the reproduced transfer clock (


1


)


1404


and the reproduced transfer clock


108


to generate the latch clock


109


.





FIG. 12

is a block circuit diagram showing the construction of the first delay circuit


1401


. Reference numerals


1501


-


1


and


1501


-


2


denote delay circuits having the same construction, either of which delays its input signal on the basis of a delay control signal


1502


. In this example, the delay circuit


1501


-


1


delays the input transfer clock


102


to generate the delay transfer clock (


1


)


1402


, and the delay circuit


1501


-


2


delays the delay transfer clock (


1


)


1402


to generate a delay transfer clock (


2


)


1503


. Reference numeral


1504


denotes an inverting circuit, and


1505


does the inverted signal of the input transfer clock


102


generated by the inverting circuit


1504


. Reference numeral


1506


denotes an edge comparing circuit, which judges the difference in phase at each rising edge between the delay transfer clock (


2


)


1503


and the inverted signal


1505


, and outputs the result as a phase advance signal


1507


-up or a phase delay signal


1507


-dwn. Reference numeral


1508


denotes a delay circuit, and


1509


does a delay signal of the inverted signal


1505


. Reference numeral


1510


denotes an up/down counter, which operates synchronously with the delay signal


1509


, and counts up when the phase advance signal


1507


-up is effective and counts down when the phase delay signal


1507


-dwn is effective, and outputs the result as a count signal


1511


. Reference numeral


1512


denotes a decoder, which converts the count signal


1511


of n bits into the delay control signal


1502


in which only one bit of 2{circumflex over ( )}n bits is effective.





FIG. 13

is a circuit diagram showing the construction of the delay circuit


1501


. The delay circuit


1501


comprises 2{circumflex over ( )}n delay circuits


1601


-


1


to


1601


-2{circumflex over ( )}n and delays the input transfer clock


102


as its input in 2{circumflex over ( )}n steps to generate delay signals


1602


-


1


to


1602


-2{circumflex over ( )}n. Reference numerals


1603


-


1


to


1603


-2{circumflex over ( )}n denote switching circuits, one of which is turned on at most on the basis of the delay control signal


1502


of 2{circumflex over ( )}n bits to obtain the delay transfer clock (


1


)


1402


as the output of the delay circuit


1501


. The delay circuits


1501


-


1


and


1501


-


2


has the same construction.





FIG. 14

is a circuit diagram showing the construction of the edge comparing circuit


1506


. Reference numerals


1701


-


1


and


1701


-


2


denote delay circuits, and


1702


-


1


and


1702


-


2


do latch circuits. In the edge comparing circuit


1506


constructed as shown in

FIG. 14

, when the inverted signal


1505


advances in phase more than the delay transfer clock (


2


)


1503


by more than the delay quantity in the delay circuit


1701


-


1


, the signal


1507


-up becomes high level. Inversely, when the delay transfer clock (


2


)


1503


advances in phase more than the inverted signal


1505


by more than the delay quantity in the delay circuit


1701


-


2


, the signal


1507


-dwn becomes high level.





FIG. 15

is a timing chart showing the operation of the first delay circuit.





FIG. 16

is a block circuit diagram showing the construction of the duty reproducing circuit


1403


. Reference numerals


1901


-


1


and


1901


-


2


denote delay circuits having the same construction, either of which delays its input signal on the basis of a delay control signal


1902


. In this example, the delay circuit


1901


-


1


delays the delay transfer clock (


1


)


1402


to generate a clear signal


1903


, and the delay circuit


1901


-


2


delays the clear signal


1903


to generate a delay transfer clock (


3


)


1904


. Reference numeral


1905


denotes an edge comparing circuit, e.g., having the same function as that shown in

FIG. 17

, which compares the phases of the delay transfer clock (


3


)


1904


and the delay transfer clock (


1


)


1402


, and outputs the result as a phase advance signal


1906


-up or a phase delay signal


1906


-dwn. Reference numeral


1907


denotes a delay circuit, and


1908


does a delay signal of the delay transfer clock (


1


)


1402


delayed in the delay circuit


1907


. Reference numeral


1910


denotes an up/down counter, which operates synchronously with the delay signal


1908


, and counts up when the phase advance signal


1906


-up is effective and counts down when the phase delay signal


1906


-dwn is effective, and outputs the result as a count signal


1911


. Reference numeral


1912


denotes a decoder, which converts the count signal


1911


of n bits into the delay control signal


1902


in which only one bit of 2{circumflex over ( )}n bits is effective. Reference numeral


1913


denotes a latch circuit having an edge clear function, which latches a high level voltage synchronously with the delay transfer clock (


1


)


1402


, and performs an asynchronous clear operation upon fall of the clear signal


1903


to generate the reproduced transfer clock


108


.





FIG. 17

is a timing chart showing the operation of the duty reproducing circuit. The operation of the second embodiment will be described in detail with reference to the figures as mentioned above.




Like the first embodiment, to the data driver


101


input is the input transfer clock


102


whose duty has changed. In the data driver


101


, the input transfer clock


102


externally input is transferred to the clock reproducing circuit


107


of this embodiment as shown in FIG.


11


. The operation of the clock reproducing circuit will be described with reference to

FIGS. 12

to


17


.




Referring to

FIG. 12

, the input transfer clock


102


is transferred to the delay circuit


1501


-


1


. The delay circuit


1501


-


1


has the construction as shown in

FIG. 13

, wherein the input transfer clock


102


is delayed in 2{circumflex over ( )}n steps using 2{circumflex over ( )}n delay circuits


1601


-


1


to


1601


-2{circumflex over ( )}n. From the delay signals


1602


-


1


to


1602


-2{circumflex over ( )}n generated using those circuits, the delay transfer clock (


1


)


1402


is generated by selecting only one of the switching circuits


1603


-


1


to


1603


-2{circumflex over ( )}n. The delay transfer clock (


1


)


1402


thus generated is input to the delay circuit


1501


-


2


. Since the delay circuit


1501


-


2


has quite the same construction as the delay circuit


1501


-


1


and the delay control signal is common, the delay time of the delay circuit


1501


-


2


is equal to that of delay circuit


1501


-


1


. In this manner, through the delay circuit


1501


-


2


, the delay transfer clock (


2


)


1503


is generated. The delay transfer clock (


2


)


1503


and the above-described inverted signal


1505


are input to the edge comparing circuit


1506


. The edge comparing circuit


1506


has the construction as shown in FIG.


14


. In the edge comparing circuit


1506


, if the difference in phase between the input signals is within the range of the delay time determined by the delay circuit


1701


-


1


or


1701


-


2


, the difference in phase between the signals


1503


and


1505


is digitally considered to be a multiple of their cycle, and either of the phase advance signal


1507


-up and the phase delay signal


1507


-dwn becomes low level. If the delay transfer clock (


2


)


1503


advances more than the inverted signal


1505


by more than the delay time by the delay circuit


1701


-


1


, the signal


1507


-up becomes high level. If the inverted signal


1505


advances more than the delay transfer clock (


2


)


1503


by more than the delay time by the delay circuit


1701


-


2


, the signal


1507


-dwn becomes high level. This circuit has the same meaning as the edge comparing circuits


607


and


608


in the first embodiment. In this embodiment, since information on width of the phase difference is not so important, the circuit shown in

FIG. 14

can be used.




The phase advance signal


1507


-up and the phase delay signal


1507


-dwn are input to the up/down counter


1510


together with the delay signal


1509


. On the basis of the delay signal


1509


, the up/down counter


1510


counts up when the phase advance signal


1507


-up is at high level, and counts down when the phase delay signal


1507


-dwn is at high level. Therefore, as shown in the operation timing chart of

FIG. 15

, the up/down counter


1510


counts up as three, four, and five while the phase advance signal


1507


-up is at high level, stops counting when either of the signals


1507


-up and


1507


-dwn becomes low level, and then holds the counted value. The count signal


1511


of n bits generated as above is decoded by the decoder


1512


into 2{circumflex over ( )}n bits to generate the delay control signal


1502


. By the above operation, when a rising edge of the delay signal (


3


)


1503


is within a certain range in relation to the corresponding rising edge of the input transfer clock


102


and thereby both rising edges can be considered to be equal, this condition can be held.




Since the delay circuits


1501


-


1


and


1501


-


2


have the same construction, each rising edge of the delay transfer clock (


1


)


1402


generated in the delay circuit


1501


-


1


is shifted by half the high-level period of the input transfer clock


102


.




Next, the operation of the duty reproducing circuit


1403


will be described with reference to

FIGS. 16 and 17

. The delay transfer clock (


1


)


1402


is transferred to the delay circuit


1901


-


1


as well as the latch circuit


1913


. The delay circuit


1901


-


1


has the construction shown in

FIG. 13

like the delay circuit


1501


-


1


, wherein only one switching circuit is selected with the delay control signal


1902


to generate the reset signal


1903


. The reset signal


1903


is applied to the latch circuit


1913


as its clear signal and also input to the delay circuit


1901


-


2


. Since the delay circuits


1901


-


1


and


1901


-


2


has quite the same construction and the delay control signal is common, the delay times of the delay circuits


1901


-


1


and


1901


-


2


are equal to each other. The process of generating the delay control signal


1902


is the same as the process in the case of the first delay circuit


1401


described with reference to FIG.


15


. The latch circuit


1913


latches high level at each rising edge of the delay transfer clock (


1


)


1402


and it is cleared to low level at each rising edge of the clear signal


1903


. As a result, as shown in

FIG. 17

, the reproduced transfer signal


108


as the output of the latch circuit


1913


has the same cycle as the input transfer signal


102


and has its duty of 50%. Further, since the phase of the delay transfer clock (


1


)


1402


is shifted relatively to the input transfer clock


102


by half the cycle of the high-level width of the latter, the phase of the reproduced transfer clock


108


is also shifted by half the cycle of the high-level width of the input transfer clock


102


. The objective signal can be generated thereby. The reproduced transfer clock


108


thus generated is further input to the second delay circuit


1405


. The second delay circuit


1405


has quite the same construction as the first delay circuit


1401


and outputs a signal shifted by half the cycle of the high-level width of the input signal. Since the duty of the reproduced transfer clock


1404


as the input signal to the second delay circuit


1405


is 50%, the phase of the reproduced transfer clock


108


is shifted relatively to the reproduced transfer clock


1404


by quarter the cycle. These two signals are subjected to an exclusive OR operation in the exclusive OR circuit


1406


to generate the latch clock


109


.




Through the above-described process, it becomes possible to generate a signal which has the same cycle as the input transfer clock


102


, and its duty of 50%, and which rises earlier (or later ) and falls later (or earlier) than the input transfer clock


102


by half the time of the duty difference from the latter. Thus it becomes possible to make a reproduced transfer clock having the same effect of that in the first embodiment, using only digital circuits.




In the above embodiments, only a liquid crystal display device in which data drivers are cascade-connected has been described. However, the present invention is, of course, not limited to this but it can be applied also to a system in which data drivers are connected in parallel. Further, it is needless to say that the present invention is not limited to liquid crystal display devices but can be applied to any device which has a possibility of the duty of data changing because the device includes transfer lines and input and output buffers.




According to the first and second embodiments of the present invention, by providing a reproducing circuit for a transfer clock in each data driver, it becomes easy to take display data in the driver at each stage, and it becomes possible to transfer a transfer signal and the display data to the driver at the next stage without changing their duties. Hence, more data divers can be connected. Further, an increase in either of setup/hold margins of the display data becomes possible. Besides, raising the transfer frequency becomes possible. As a result of these effects, even in a liquid crystal display device of cascade connection that can realize a reduction of price, an increase in size of screen and improvement in resolution can be realized.



Claims
  • 1. A liquid crystal display device for displaying display data comprising:a liquid crystal panel including pixel elements arranged in a matrix form; a plurality of data drivers for applying graduation voltages corresponding to said display data, to said pixel elements; a gate driver for selecting a pixel element to which a graduation voltage is to be applied; and a liquid crystal control circuit for controlling said data drivers on the basis of a transfer clock, wherein said data drivers each comprising a reproducing circuit for reproducing the transfer clock input to the data driver such that the deviations between the duties of the display data and said transfer clock input to said data driver and the duties of the display data and the transfer clock output from said data driver become small, and for generating a latch clock, and a latch circuit for latching said display data input to said data driver.
  • 2. The device according to claim 1, wherein said plurality of data drivers are cascade-connected with each other.
  • 3. The device according to claim 1, wherein said reproducing circuit further comprises a comparing circuit for comparing said transfer clock input to said data driver with said transfer clock reproduced in said reproducing circuit.
  • 4. The device according to claim 3, wherein said transfer clock reproduced in said reproducing circuit rises earlier than said transfer clock input to said data driver by a period t, and falls later than said transfer clock input to said data driver by said period t.
  • 5. The device according to claim 3, wherein, when the cycle of the transfer clock synchronous with display data is T0 and the difference between its low level period and its high level period is Tx, said reproducing circuit newly generates a signal that rises earlier than said transfer clock by a period Tr, and falls later than said transfer clock by a period (Tx−Tr), where Tx>Tr>0 when Tx>0, and 0>Tr>Tx when Tx<0.
  • 6. A liquid crystal display device for displaying display data comprising:a liquid crystal panel including pixel elements arranged in a matrix form; a plurality of data drivers for applying graduation voltages corresponding to said display data, to said pixel elements; a gate driver for selecting a pixel element to which a graduation voltage is to be applied; and a liquid crystal control circuit for outputting a transfer clock and said display data to said data drivers, wherein said data drivers each comprising a reproducing circuit for reproducing the transfer clock input to the data driver such that the deviations between the duties of said display data and said transfer clock output from said liquid crystal control circuit and the duties of the display data and the transfer clock output from said data driver become small, and for generating a latch clock, and a latch circuit for latching said display data input to said data driver.
  • 7. The device according to claim 6, wherein either of said duties of said display data and said transfer clock output from said liquid crystal control circuit is 50%.
  • 8. A liquid crystal display device for displaying display data comprising:a liquid crystal panel including pixel elements arranged in a matrix form; a plurality of data drivers cascade-connected with each other for applying graduation voltages corresponding to said display data, to said pixel elements; a gate driver for selecting a pixel element to which a graduation voltage is to be applied; and a liquid crystal control circuit for outputting a transfer clock and said display data to said data drivers, wherein said data drivers each comprising a latch circuit for latching said display data so as to increase the margins of setup/hold times of said display data input to the data driver; wherein each of said data drivers further comprises a doubling circuit for doubling the transfer clock converted in a converting circuit, and takes in said display data on the basis of the doubled transfer clock.
  • 9. The device according to claim 8, wherein each of said data drivers generates a latch clock on the basis of said transfer clock such that said margins of said setup/hold times of said display data input to said data driver increase, and outputs said latch clock to said latch circuit.
Priority Claims (1)
Number Date Country Kind
2000-210685 Jul 2000 JP
US Referenced Citations (6)
Number Name Date Kind
5359343 Nakamura Oct 1994 A
5399912 Murata et al. Mar 1995 A
5801554 Momma et al. Sep 1998 A
5845108 Yoo et al. Dec 1998 A
6262611 Takeuchi Jul 2001 B1
6333895 Hamamoto et al. Dec 2001 B1