This invention relates a liquid crystal display device, and more particularly to a technique useful for a circuit for supplying a video signal voltage to each pixel.
An active-matrix type liquid crystal display device having an active element for each pixel (for example, a thin film transistor) and switching the active elements has been used widely as a display device of a notebook personal computer or the like.
Among the active-matrix type liquid crystal display devices, a TFT (Thin Film Transistor) type liquid crystal display module has been known. In the TFT type liquid crystal display module, since a video signal voltage (a gray scale voltage) is applied to a pixel electrode via a thin film transistor (TFT), the TFT type liquid crystal display module is free from crosstalk between pixels, and therefore that the TFT type liquid crystal display module is capable of providing a multi-gray scale display without using a special driving method for preventing the crosstalk, unlike a simple matrix type liquid crystal display device.
However, when a D/A conversion which selects a gray-scale voltage corresponding to a display data in digital form is used for supplying the gray-scale voltage to a pixel electrode, problems arise that, as the number of gray scales increases, the number of bits representing a display data increases, and consequently, the scale of circuits becomes large and further the speed of operation of the circuits becomes insufficient. Further, especially in liquid crystal display devices of the driving-circuit-integrated type having driving circuits and a display section fabricated on the same substrate, the above problems are serious because they increase the area of the driving circuit section other than the useful display area.
There is a tendency for output signals from video equipment to be supplied in digital signals rather than in analog signals, and therefore there is a demand for a driving method for converting digital signals into multi-gray-scale video signal voltages by inputting digital signals into the liquid crystal display device and using a driving circuit fabricated on a liquid crystal display panel, in the liquid crystal display devices of the driving-circuit-integrated type also.
As a driving method for applying multi-gray-scale video signal voltages to each pixel so that a multi-gray-scale display can be produced by using digital signal input in the active matrix type liquid crystal display device, one method of driving is known which is disclosed in Japanese Patent Application Laid-open No. Hei 5-35200 (corresponding to U.S. Pat. No. 5,337,070).
In the method disclosed in Japanese Patent Application Laid-open No. Hei 5-35200, 2m voltage bus lines are provided, and each of gray scale voltages provided from the 2m voltage bus lines varies in a staircase fashion having 2k steps during one horizontal scanning period corresponding to one horizontal scanning line.
One of the above-mentioned 2m voltage bus lines is selected based on the high-order m bits of an n-bit display data, one of the voltage levels is selected based on the lower-order k (k=n−m) bits of the n-bit display data, from the gray scale voltage varying in the staircase fashion on the selected voltage bus line, and the selected voltage level is applied to a pixel electrode of a pixel.
For example, assume a case in which the display data is 3 bits (n=3), m=1, and k=2. Two voltage bus lines are provided and each voltage bus line is supplied with a gray scale voltage varying in a staircase fashion having four steps during one horizontal scanning period. A gray scale voltage on one of two voltage bus lines is selected based on the high-order 1 bit of the 3-bit display data, one voltage level is selected from the gray scale voltage varying in the staircase fashion having four steps on the selected voltage bus line, based on the lower-order 2 bits of the 3-bit display data, and the selected voltage level is applied to the pixel electrode of a pixel.
According to the driving method described in the above-mentioned Japanese Patent Application Laid-open No. Hei 5-35200, the operating speed of the circuit for applying a video signal voltage on each pixel can be reduced, variations in the video signal voltages caused by the D/A conversion are reduced over the entire display area, and the number of voltage bus lines can be reduced.
However, when the number of the gray-scale levels are increased to improve display quality, the scale of a selector circuit for selecting one of voltage levels varying in a staircase fashion is made larger, and an area occupied by the selector circuit becomes so large in incorporating it into the liquid crystal display panel, and consequently, a problem arises in that the liquid crystal display panel becomes large-sized. As a liquid crystal display device solving the above-problem, a technique for reducing the width of the selector circuit is known which is disclosed in Japanese Patent Application Laid-open No. 2000-194330.
Recently, in liquid crystal display devices, the number of gray-scale voltages has been increased further to 64 or 256. No consideration has given to a problem of an increase in length of the driving circuit for realizing 64 or more gray-scale levels in Japanese Patent Application Laid-open No. 2000-194330.
Further, in the liquid crystal display device, display resolution has been increasing, but no consideration has been given to reduction of an area where the driving circuit is fabricated, that is, that of an area occupied by the driving circuit, or the minimum required number of elements.
The present invention has been made to solve the above problems with the prior art, and provides a technique for reducing the scale of the driving circuit and thereby capable of reducing the area occupied by the circuit in the liquid crystal display device.
The above objects and novel features of the present invention will become more apparent by reference to the following detailed description taken in conjunction with the accompanying drawing.
The following explains the representative ones of the present inventions briefly.
In accordance with an embodiment of the present invention, there is provided a liquid crystal display device comprising a first substrate, a second substrate, a liquid crystal composition sandwiched between the first substrate and the second substrate, a plurality of pixels disposed on the first substrate, a plurality of video signal lines for supplying video signal voltages to the plurality of pixels, a drive circuit adapted to be supplied with a gray-scale voltage varying periodically for outputting the video signal voltages to the plurality of video signal lines, N display data lines for supplying display data to the drive circuit, and N time control signal lines for supplying time control signals varying in synchronism with the gray-scale voltage to the drive circuit, each of the N time control signals lines being associated with one of N bits representing the time control signals in a binary system; wherein the drive circuit is provided with a voltage selector circuit for selecting voltage levels from the gray-scale voltage based upon the display data and outputting the voltage levels to the plurality of video signal lines; the voltage selector circuit includes a plurality of series combinations of processing circuits, each of the plurality of series combinations being associated with one of the plurality of video signal lines, each of the processing circuits of a respective one of the plurality of series combinations being associated both with a respective one of the N display data lines and with a respective one of the N time control signal lines, and being disposed between two adjacent ones of the N display data lines, each of the processing circuits comprises a parallel combination of a display-data-related switching element and a time-control-signal-related switching element, the display data make 2N different combinations by selecting a number of from zero to N of the display-data-related switching elements, assigning the selected number of the display-data-related switching elements to be turned OFF and turning ON the remainder of the display-data-related switching elements in each of the plurality of series combinations, each of the 2N different combinations being uniquely in synchronism with one level of the gray-scale voltage, the time control signals uniquely determine one level of the gray-scale voltage by turning ON a time-control signal-related switching element constituting the parallel combination with the turned-OFF display-data-related switching element.
In accordance with another embodiment of the present invention, there is provided a liquid crystal display device comprising a first substrate, a second substrate, a liquid crystal composition sandwiched between the first substrate and the second substrate, a plurality of pixels arranged in a matrix array on the first substrate, a plurality of video signal lines extending in a column direction and arranged in a row direction of the matrix array for supplying video signal voltages to the plurality of pixels, a drive circuit adapted to be supplied with a gray-scale voltage varying periodically for outputting the video signal voltages to the plurality of video signal lines, N display data lines extending in the row direction and arranged in the column direction for supplying display data to the drive circuit, and N time control signal lines extending in the row direction and arranged in the column direction for supplying time control signals varying in synchronism with the gray-scale voltage to the drive circuit; wherein the drive circuit includes a voltage selector circuit for selecting voltage levels from the gray-scale voltage based upon the display data and outputting the voltage levels to the plurality of video signal lines, a shift register for supplying timing signals to the voltage selector circuit, and a plurality of timing signal lines for supplying the timing signals from the shift register to the voltage selector circuit; the voltage selector circuit includes a plurality of series combinations of processing circuits, and a plurality of data taking-in elements for taking in the display data in synchronism with the timing signals, each of the plurality of data taking-in elements corresponding to a respective one of the processing circuits and disposed together with the respective one of the processing circuits between two adjacent ones of the N display data lines, the plurality of timing signal lines are extending from the shift register in the column direction, connected to corresponding ones of the data taking-in elements, and are made of a conductive film of a same level as that of conductive films forming control electrodes of the data taking-in elements, each of the plurality of series combinations being associated with one of the plurality of video signal lines, each of the processing circuits of a respective one of the plurality of series combinations being associated both with a respective one of the N display data lines and a respective one of the N time control signal lines, each of the processing circuits comprises a parallel combination of a display-data-related switching element and a time-control-signal-related switching element, the display data make 2N different combinations by selecting a number of from zero to N of the display-data-related switching elements, assigning the selected number of the display-data-related switching elements to be turned OFF and turning ON the remainder of the display-data-related switching elements in each of the plurality of series combinations, each of the 2N different combinations being uniquely in synchronism with one level of the gray-scale voltage, the time control signals uniquely determine one level of the gray-scale voltage by turning ON a time-control-signal-related switching elements constituting the parallel combination with the turned-OFF display-data-related switching element.
In accordance with another embodiment of the present invention, there is provided a liquid crystal display device comprising a first substrate, a second substrate, a liquid crystal composition sandwiched between the first substrate and the second substrate, a plurality of pixels disposed on the first substrate, a plurality of video signal lines for supplying video signal voltages to the plurality of pixels, a drive circuit adapted to be supplied with a gray-scale voltage varying periodically for outputting the video signal voltages to the plurality of video signal lines, N display data lines for supplying display data to the drive circuit, and N time control signal lines for supplying time control signals varying in synchronism with the gray-scale voltage to the drive circuit; wherein the drive circuit is provided with a voltage selector circuit for selecting voltage levels from the gray-scale voltage based upon the display data and outputting the voltage levels to the plurality of video signal lines; the voltage selector circuit includes a plurality of series combinations of processing circuits, and a plurality of output circuits for outputting the voltage levels to the plurality of video signal lines based upon an output from the plurality of the series combinations, each of the plurality of output circuits being connected in series with a corresponding one of the plurality of series combinations, each of the plurality of series combinations being associated with one of the plurality of video signal lines, each of the processing circuits of a respective one of the plurality of series combinations being associated both with a respective one of the N display data lines and with a respective one of the N time control signal lines, and disposed between two adjacent ones of the N display data lines, each of the processing circuits comprises a parallel combination of a display-data-related switching element and a time-control-signal-related switching element coupled together to form an OR circuit, the display-data make 2N different combinations by selecting a number of from zero to N of the display-data-related switching elements, assigning the selected number of the display-data-related switching elements to be turned OFF and turning ON the remainder of the display-data-related switching elements in each of the plurality of series combinations, each of the 2N different combinations being uniquely in synchronized with one level of the gray-scale voltage, and each of the plurality of output circuits is supplied with a control signal for uniquely determining one level of the gray-scale voltage corresponding to the display data when all of the processing circuits of a corresponding one of the plurality of series combinations are turned ON.
In accordance with another embodiment of the present invention, there is provided a liquid crystal display device comprising a first substrate, a second substrate, a liquid crystal composition sandwiched between the first substrate and the second substrate, a plurality of pixels disposed on the first substrate, a plurality of video signal lines for supplying video signal voltages to the plurality of pixels, a drive circuit adapted to be supplied with a gray-scale voltage varying periodically for outputting the video signal voltages to the plurality of video signal lines, N display data lines for supplying display data to the drive circuit, and N time control signal lines for supplying time control signals varying in synchronism with the gray-scale voltage to the drive circuit, wherein the drive circuit is provided with a voltage selector circuit for selecting voltage levels from the gray-scale voltage based upon the display data and outputting the voltage levels to the plurality of video signal lines; the voltage selector circuit includes a plurality of series combinations of processing circuits, each of the plurality of series combinations being associated with one of the plurality of video signal lines, each of the processing circuits of a respective one of the plurality of series combinations being associated both with a respective one of the N display data lines and with a respective one of the N time control signal lines, and being disposed between two adjacent ones of the N display data lines, each of the processing circuits comprises a parallel combination of a display-data-related switching element and a time-control-signal-related switching element, the time control signals make 2N different combinations by selecting a number of from zero to N of the time-control-signal-related switching elements, assigning the selected number of the time-control-signal-related switching elements to be turned OFF and turning ON the remainder of the time-control-signal-related switching elements in each of the plurality of series combinations, each of the 2N different combinations being uniquely in synchronism with one level of the gray-scale voltage, the display data uniquely determine one level of the gray-scale voltage by turning ON a display-data-related switching element constituting the parallel combination with the turned-OFF time-control-signal-related switching element.
In accordance with another embodiment of the present invention, there is provided a liquid crystal display device comprising a first substrate, a second substrate, a liquid crystal composition sandwiched between the first substrate and the second substrate, a plurality of pixels arranged in a matrix array on the first substrate, a plurality of video signal lines extending in a column direction and arranged in a row direction of the matrix array for supplying video signal voltages to the plurality of pixels, a drive circuit adapted to be supplied with a gray-scale voltage varying periodically for outputting the video signal voltages to the plurality of video signal lines, N display data lines extending in the row direction and arranged in the column direction for supplying display data to the drive circuit, and N time control signal lines extending in the row direction and arranged in the column direction for supplying time control signals varying in synchronism with the gray-scale voltage to the drive circuit; wherein the drive circuit includes a voltage selector circuit for selecting voltage levels from the gray-scale voltage based upon the display data and outputting the voltage levels to the plurality of video signal lines, a shift register for supplying timing signals to the voltage selector circuit, and a plurality of timing signal lines for supplying the timing signals from the shift register to the voltage selector circuit; the voltage selector circuit includes a plurality of series combinations of processing circuits, and a plurality of data taking-in elements for taking in the video signal in synchronism with the timing signals, each of the plurality of data taking-in elements corresponding to a respective one of the processing circuits and disposed together with the respective one of the processing circuits between two adjacent ones of the N display data lines, the plurality of timing signal lines are extending from the shift register in the column direction, connected to corresponding ones of the data taking-in elements, and are made of a conductive film of a same level as that of conductive films forming control electrodes of the data taking-in elements, each of the plurality of series combinations being associated with one of the plurality of video signal lines, each of the processing circuits of a respective one of the plurality of series combinations being associated both with a respective one of the N display data lines and a respective one of the N time control signal lines, each of the processing circuits comprises a parallel combination of a display-data-related switching element and a time-control-signal-related switching element, the time control signals make 2N different combinations by selecting a number of from zero to N of the time-control-signal-related switching elements, assigning the selected number of the time-control-signal-related switching elements to be turned OFF and turning ON the remainder of the time-control-signal-related switching elements in each of the plurality of series combinations, each of the 2N different combinations being uniquely in synchronism with one level of the gray-scale voltage, the display data uniquely determine one level of the gray-scale voltage by turning ON a display-data-related switching elements constituting a parallel combination with the turned-OFF time-control-signal-related switching element.
In accordance with another embodiment of the present invention, there is provided 21. A liquid crystal display device comprising a first substrate, a second substrate, a liquid crystal composition sandwiched between the first substrate and the second substrate, a plurality of pixels disposed on the first substrate, a plurality of video signal lines for supplying video signal voltages to the plurality of pixels, a drive circuit adapted to be supplied with a gray-scale voltage varying periodically for outputting the video signal voltages to the plurality of video signal lines, N display data lines for supplying display data to the drive circuit, and N time control signal lines for supplying time control signals varying in synchronism with the gray-scale voltage to the drive circuit; wherein the drive circuit is provided with a voltage selector circuit for selecting voltage levels from the gray-scale voltage based upon the display data and outputting the voltage levels to the plurality of video signal lines; the voltage selector circuit includes a plurality of series combinations of processing circuits, and a plurality of output circuits for outputting the voltage levels to the plurality of video signal lines based upon an output from the plurality of the series combinations, each of the plurality of output circuits being connected in series with a corresponding one of the plurality of series combinations, each of the plurality of series combinations being associated with one of the plurality of video signal lines, each of the processing circuits of a respective one of the plurality of series combinations being associated both with a respective one of the N display data lines and with a respective one of the N time control signal lines, and disposed between two adjacent ones of the N display data lines, each of the processing circuits comprises a parallel combination of a display-data-related switching element and a time-control-signal-related switching element coupled together to form an OR circuit, the time control signals make 2N different combinations by selecting a number of from zero to N of the time-control-signal-related switching elements, assigning the selected number of the time-control-signal-related switching elements to be turned OFF and turning ON the remainder of the time-control-signal-related switching elements in each of the plurality of series combinations, each of the 2N different combinations being uniquely in synchronized with one level of the gray-scale voltage, and each of the plurality of output circuits is supplied with a control for uniquely determining one level of the gray-scale voltage corresponding to the display date when all of the processing circuits of a corresponding one of the plurality of series combinations are turned ON.
In the accompanying drawings, in which like reference numerals designate similar components throughout the figures, and in which:
The following describes the embodiments in accordance with the present invention in detail by reference to the drawings. Same reference numerals designate functionally similar parts throughout the figures for explaining the embodiments of the present invention, and they are not repeatedly explained.
The liquid crystal display panel 100 comprises a display section 110, a horizontal drive circuit (a video signal line drive circuit) 120, and a vertical drive circuit (a scanning signal line drive circuit) 130. The display section 110, the horizontal drive circuit 120, and the vertical drive circuit 130 are disposed on the same substrate. The display control device 111 and the voltage generating circuit 112 are illustrated as separate from the liquid crystal display panel 100, but they can be disposed on the same substrate on which the liquid crystal display panel 100 is disposed.
The display control device 111 controls the horizontal drive circuit 120 and the vertical drive circuit 130, based upon control signals such as clock signals, a display timing signal, a horizontal sync signal, a vertical sync signal, which are externally transmitted. The display control device 111 supplies display data which are image data to be displayed on the liquid crystal display panel 100, to the horizontal drive circuit 120. The voltage generating circuit 112 generates voltages necessary for the liquid crystal display panel 100 to produce a display. The horizontal drive circuit 120 selects and outputs to the display section 110 gray-scale voltages supplied from the voltage generating circuit 112 in accordance with display data, and the display section 110 inputs the gray-scale voltages into pixels (not shown) in synchronism with a scanning signal output from the vertical drive circuit 130.
A plurality of video signal lines (also called drain signal lines or vertical signal lines) 103 extend from the horizontal drive circuit 120 in a vertical direction (in the Y direction in
The horizontal drive circuit 120 comprises a horizontal shift register 121 and a voltage selector circuit 123. A timing control signal line 131 from the display control device 111 is connected to the horizontal shift register 121 and the vertical drive circuit 130, and a display data line 132 and a time control signal line 134 from the display control device 111 are connected to the voltage selector circuit 123. A gray-scale voltage line 133 from the voltage generating circuit 112 is connected to the voltage selector circuit 123 to supply gray-scale voltages thereto. For simplicity, voltage supply lines to the respective circuits are omitted from
The display control device 111 acknowledges the first display timing signal immediately after a vertical sync signal as corresponding to the first display line, and outputs a start pulse which is one of timing control signals to the vertical drive circuit 130 via the timing control signal line 131. The display control device 111 outputs shift clocks to the vertical drive circuit 130 with a horizontal scanning period based upon the horizontal sync pulses so that the scanning signal lines 102 are selected sequentially. The vertical drive circuit 130 selects the scanning signal lines 102 based upon the shift clocks and supplies the scanning signals to the selected scanning signal lines 102.
Further, when the display control device 111 receives a display timing signal, the display control device 111 acknowledges the display timing signal as corresponding to a display start, and outputs display data to the horizontal drive circuit 120. Display data are output sequentially from the display control device 111, and the horizontal shift register 121 outputs timing signals used for selecting display data to be supplied to the respective video signal lines 103, to the voltage selector circuit 123, based upon the shift clocks which are one of the timing control signals transmitted from the display control device 111.
The voltage selector circuit 123 takes in the display data in accordance with the timing signals, selects one of the gray-scale voltages supplied by the voltage generating circuit 112 corresponding to each of the display data, and outputs the selected voltages to the video signal lines 103. The voltage selector circuit 123 will be explained in detail subsequently.
As described above, the vertical drive circuit 130 outputs the scanning signals sequentially to the scanning signal lines 102 with one horizontal scanning period, and the scanning signals are used for on-or-off control of the switching elements 104.
The video signal lines 103 are supplied with the gray-scale voltages, and when the switching elements 104 are turned on, the gray-scale voltages are supplied to the pixel electrodes 109 from the video signal lines 103. A counter electrode (a common electrode) 107 is disposed to face the pixel electrodes 109, and a liquid crystal layer (not shown) is interposed between the pixel electrodes 109 and the counter electrode 107. In the circuit diagram shown in
A display is produced by applying voltages between the pixel electrodes 109 and the counter electrode 107 and thereby changing optical properties of the liquid crystal layer. The gray-scale levels of the respective pixels forming an image displayed on the liquid crystal display panel depend upon the voltages supplied to the pixel electrodes 109. Therefore, the number of the gray-scale voltage levels to be supplied to the pixel electrodes 109 increases as the number of the gray-scale levels to be displayed on the liquid crystal display panel is increased.
In the display section 110, brightness of the display section 110 is determined by the ratio of an area occupied by the pixel electrodes 109 to the overall area of the display section 110, and therefore the size of the pixel electrodes 109 of the pixel section 101 is fabricated to be as large as possible. In other words, in the liquid crystal display panel, the area occupied by portions other than the pixel electrodes 109 are designed to be as small as possible.
As described above, the gray-scale voltages supplied to the pixel electrodes 109 are output from the voltage selector circuit 123. When the number of the gray-scale levels to be displayed on the liquid crystal display panel 100, the voltage selector circuit 123 has to select gray-scale voltages desired to be output to the video signal lines 103 among a large number of gray-scale voltage levels, and the amount of data increases which is transmitted via the display data lines 132 connected between the display control device 111 and the voltage selector circuit 123. Consequently, when the number of gray-scale levels to be displayed on the liquid crystal display panel 100, a problem arises in that the number of the display data lines 132 is increased, and as a result the scale of the voltage selector circuit 123 is made larger. In the present invention, the voltage selector circuit 123 is formed of a circuit configuration made as small as possible, and is arranged efficiently in the liquid crystal display panel 100.
Further, especially in liquid crystal display devices of the so-called driving-circuit-integrated type having the driving circuits and the display section fabricated on the same substrate, the present invention solves problems with small-sized liquid crystal display devices having the number of gray-scale levels increased.
The following explains the voltage selector circuit 123 by reference to
Display data lines 321-323 from the display control device 111 (not shown) are connected to the horizontal drive circuit 120. Each of the display data lines 321-323 corresponds to one bit of the display data in digital form when the display data explained in connection with
Display data are sequentially output to the display data lines 321-323, and the horizontal shift register 121 outputs timing signals with which the display data are taken in synchronism. Timing signal lines 329 from the horizontal shift register 121 are connected to the voltage selector circuit 123, and they transmit timing signals to the voltage selector circuit 123. Reference characters HSR1 to HSRn denote bidirectional shift registers. The horizontal shift register 121 comprises the bidirectional shift registers HSR1 to HSRn. The bidirectional shift registers HSR1 to HSRn output timing signals based upon signals (shift clocks) from the timing control signal line 131.
Display data intended for each of the video signal lines 103 are output to the display data signal lines 321-323, and the display data processing circuits 325 take in the display data in synchronism with a corresponding one of the timing signals. The bidirectional shift registers HSR0 and HSRn+1 are dummy.
In
On the extension line of each of the video signal lines 103 are provided the display data processing circuits 325 and the gray-scale voltage output circuit 326 for outputting gray-scale voltages to a corresponding one of the video signal lines 103. Combinations of the display data processing circuits 325 and the gray-scale voltage output circuit 326 are also disposed on two extension lines adjacent to an arbitrary one of the extension lines of the video signal lines 103. Therefore, if the widths of the display data processing circuits 325 and the gray-scale voltage output circuits 326 are not restricted within the horizontal pixel pitch, a problem arises in that the display data processing circuits 325 or the gray-scale voltage output circuits 326 overlap an adjacent one of the display data processing circuits 325 and the gray-scale voltage output circuits 326. Therefore, in a case where the area of the display section is reduced, or the number of pixels is increased, a problem arises in that consideration has to be given to the width of the circuits so that the driving circuits can be formed within the pixel pitch.
In the present embodiment, in order to arrange the display data processing circuit 325 and the gray-scale voltage output circuit 326 efficiently within the horizontal pixel pitch, a plurality of the display data processing circuits 325 are provided, each of which corresponds to a corresponding one of the display data lines 321-323, they are arranged in conformity with the arrangement of the display data lines 321-323, and they are disposed on an extension line of a corresponding one of the video signal lines 103.
As shown in
The display data processing circuits 325 are provided each of which is associated with a corresponding one of the display data lines 321-323, performs digital processing using a corresponding bit of the display signal, and then transmits a processing result to the gray-scale voltage output circuit 326. The gray-scale voltage output circuit 326 outputs a gray-scale voltage corresponding to the display data based upon the processing results from the display data processing circuit 325.
As described above, the spacing between the video signal lines 103 is limited by the size of the pixel electrodes 109 disposed in the display section 110. On the other hand, the spacing between two adjacent ones of the display lines 321-323 can be selected to wide enough for each of the display data processing circuit 325 to be disposed therebetween. As shown in
However, the present inventors have found out that the spacing between the display data lines cannot be made large freely, but it is necessary to make the spacing as small as possible. Reduction of the length as well as the width of the display data processing circuits 325 will be described subsequently.
The voltage selector circuit 123 will now be explained in detail by reference to
As described above, the voltage selector circuit 123 is provided with the display data processing circuits 325 each of which is associated with a corresponding one of the display data lines 312-323. Each of the display data processing circuits 325 is connected to a corresponding one of time control signal lines 161-163.
The time control signal lines 161-163 are included in the control signal lines 134 indicated in
In
In the present embodiment, the processing-result transmitting circuits 331-333 and the gray-scale voltage output circuit 326 are connected by a smaller number of processing-result signal lines 152 than the number of the display data lines, and therefore a area required for wiring can be reduced. To put it concretely, the data transmitted by the three display data lines 321-323 are processed by the three the processing-result transmitting circuits 331-333, then their processing results are transferred in the vertical direction via a single processing-result signal line 152, and therefore the number of wirings is reduced. Further, the three processing-result transmitting circuits 331-333 are arranged in the vertical direction, and as a result the width of the circuit configuration for outputting gray-scale voltages to the video signal line 103 can be reduced.
The following explains a method which selects a gray-scale voltage and outputs to the video signal line 103 by using the gray-scale voltage output circuit 326. The gray-scale voltage output circuit 326 has the voltage bus line 151 connected thereto. A voltage on the voltage bus line 151 varies periodically with time. When the time-varying voltage on the voltage bus line 151 becomes a desired voltage value, the gray-scale voltage output circuit 326 electrically connects the voltage bus line 151 to the video signal line 103, but when the time-varying voltage on the voltage bus line 151 is not equal to the desired voltage value, the gray-scale voltage output circuit 326 disconnect the voltage bus line 151 from the video signal line 103, so that the desired voltage can be output as a gray-scale voltage to the video signal line 103.
The following explains the operation of the voltage selector circuit 123 briefly. Initially display data are stored in the display data hold circuits 122 in synchronism with a timing signal output from the horizontal shift register 121. Then the display data stored in the display data hold circuits 122 are transmitted to the processing-result transmitting circuits 331-333. Time control signals on the time control signal lines 161-163 vary with time, and the processing-result transmitting circuits 331-333 perform digital processing by using the values from the display data hold circuits 122 and the values of the time control signals on the time control signal lines 161-163. The processing results obtained by the processing-result transmitting circuits 331-333 are transmitted to the gray-scale voltage output circuit 326. When the voltage on the voltage bus line 151 becomes equal to a gray-scale voltage represented by the display data, the processing results obtained by the processing-result transmitting circuits 331-333 are output and thereby the gray-scale voltage output circuit 326 outputs the gray-scale voltage from the voltage bus line 151, to the video signal line 103.
Referring again to
Since the three processing-result transmitting circuits 331-333 are connected in series by the processing-result signal line 152, the states represented by the processing-result transmitting circuits 331-333 are the following two states only:
If the number of states transmitted to the gray-scale voltage output circuit 326 is only two, it is difficult for the gray-scale voltage output circuit 326 to output a plurality of gray-scale voltages.
To solve this problem, in the present embodiment, the display data processing circuits 325 are configured such that a certain number of processing-result transmitting circuit are selected from a number m (three in this embodiment) of the processing-result transmitting circuits (331-333) so as to serve as switching circuits. With this configuration, the number m of the processing-result transmitting circuits (331-333) can represent a number 2m of states even if they are connected in series by the processing-result signal line 152.
TABLE 1 shows variations of assignments of the three processing-result transmitting circuits 331, 332 and 333 for switching circuits.
In Table 1, “-” indicates that a processing-result transmitting circuit is ON (conducting) at all times, and “SW” indicates that a processing-result transmitting circuit serves as a switching circuit. Although the three processing-result transmitting circuits 331, 332 and 333 are configured as switching circuits, if the processing-result transmitting circuits are set to be ON at all times, the switching circuits can be considered absent and conducting.
As described above, in a case where the switching circuits are connected in series, only two states can be selected, one is that all the switching circuits are ON, and the other one is that at least one of the switching circuits is OFF. However, if, as shown in TABLE 1, a number m (three in TABLE 1) of the switching circuits (the processing-result transmitting circuits 331-333) are configured such that, in each case, only a certain number of switching circuits can be selected from the number m of the switching circuits for switching operation, a number 2m of different states can be selected.
When a repetition period is divided into 2m intervals, and different combinations of data time-varying with the period from a plurality of the time control signal lines (161-163) at respective ones of the 2m intervals is configured so as to represent a number 2m of different states, all of the processing-result transmitting circuits (331-333) can be made conducting, and thereby the voltage on the fixed-voltage line 153 can be transmitted to the gray-scale voltage output circuit 326 during one of the 2m intervals corresponding to display data, based upon the data from the time control signal lines (161-163) and the display data.
As shown in
Each of the display data processing circuits 325 of
The display data held in the memory capacitances 191-193 are transferred to the display data processing elements 201-203 via the display data transfer elements 181-183 in accordance with the transfer signal TG. Reference numerals 153 and 156 denote fixed-voltage lines for supplying a supply voltage VDD. Reference numeral 154 denotes a fixed-voltage line for supplying a supply voltage GND. Reference numeral 166 is the processing-result-signal-line set signal line, and 166 is a processing-result-signal-line reset signal line. In
As shown in
First, before explaining the circuit of
In
As explained above, in a case where a plurality of transistors are fabricated in the same substrate, if two transistors of opposite conductivity types are arranged side by side, an area of a device-isolation region increases and as a result a problem arises in that a wasted area increases.
A relationship between the arrangement of transistors and an area required for their fabrication will be explained by reference to
In the present embodiment, as shown in
As indicated in
As shown in
As shown in
As shown in
An active region 271 for the data taking-in element 173 and the display data transfer element 183 is patterned such that its portions overlapped by the gate electrodes of the elements 173 and 183 are trapezoids. These shapes cause preferred directions in which charges appearing below the gate electrodes move easily. When the transistor is in an ON state with a voltage applied on the gate electrode, charges are generated in the active region below the gate electrode, and then when the transistor is changed into an OFF state, the charges flow into one of its source and drain regions. When a difference in length is present between the two opposing long sides of a portion of one gate electrode overlapping with the active region 271 as shown in
In the case of the data taking-in element 173, when a signal of positive polarity is intended to be taken into the memory capacitance 193, the amount of negative charges flowing from the memory capacitance 193 into the display data signal line 323 is very small. Therefore, when the transistor (the data taking-in element 173) is turned OFF, if the charges below its gate electrode have flowed into the memory capacitance 193, a sufficient signal cannot be written into the memory capacitance 193. To eliminate this problem, the active region 271 is shaped as shown in
The following explains the operation of the circuit shown in
The display data DD1-DD3 represent three-bit data with DD1 being assigned to the lowest-order bit. During the time when the timing signal HSR1 is output, the display data DD1 is at a high level, the display data DD2 is at a low level, and the display data DD3 is at the high level. In the display data DD1-DD3 of this embodiment, the high and low levels are represented by “1” and “0”, respectively, and therefore the above display data during the time when the timing signal HSR1 is output is represented as (1, 0, 1) in the order from the lowest-order bit.
In
Operation after the display data have been taken into the memory capacitances 191-193 will be explained by reference to
In
Next in a state in which the time control pulses DA1-DA3 are at the high level, the processing-result-signal-line set signal DST is set to the low level so that a processing-result-signal-line set element 222 is turned OFF. Then the processing-result-signal-line reset signal DRST is set to the low level so that two processing-result-signal-line set elements 221 and 223 is turned OFF, and as a result the processing-result signal lines 152(1) and 152(4) are connected to the fixed-voltage lines 153 and 156, respectively, and changes to the high level.
When the processing-result signal line 152 is at the high level, the level shift circuit 141 of the gray-scale voltage output circuit 326 supplies gate voltages to the gate circuit 142 so that the gate circuit 142 electrically connects the voltage bus line 151 to the video signal line 103. This means that, during the time when the processing-result signal line 152 is at the high level, the video signal line 103 is supplied with the gray-scale voltage RMP from the voltage bus line 151. As explained above, the gray-scale voltage RMP in
Next the time control pulses DA1-DA3 start to be output to the time control signal lines 161-163, respectively. Then the processing-result-signal-line reset signal DRST is set to the high level, and then the processing-result-signal-line set signal DST is set to the high level. When the processing-result-signal-line set signal DST changes to the high level, the processing-result-signal-line set element 222 is turned ON, the processing-result signal line 152(1) is connected to the line 154 at the GND level, and changes to the low level.
In
In
At time t0, the display data processing element 202 is turned OFF, and the processing-result signal line 152 (4) is kept at VDD.
After that, at time t2 the time control pulses DA1-DA3 become (0, 1, 0), and thereby the time data processing element 212 is turned ON. On the other hand, since the display data are (1, 0, 1), the display data processing elements 201 and 203 are in the ON state. Consequently, all of the processing-result signal line 152(1) to 152(4) are connected the GND line 154, the processing-result signal line 152(4) changes to the low level, and therefore the gate circuit 142 electrically disconnects the voltage bus line 151 from the video signal line 103. Consequently, the video signal line 103 is held at a voltage V2 present on the voltage bus line 151 at the instant when the video signal line 103 is disconnected from the voltage bus line 151. Thereafter the video signal line 103 is not electrically connected to the voltage bus line 151 until the processing-result-signal-line reset signal DRST changes to the low level and thereby the processing-result signal line 152 is set to the high level.
The circuit configuration of the horizontal shift register 121 will be explained by reference to
Reference numeral 25 is an input terminal for a horizontal scanning reset signal, and 26 is an input terminal for a horizontal scanning start signal. The clocked inverters 61 provide the start signal to the horizontal shift register 121 for scanning in the left-to-right direction in
The clocked inverters 61 and 62 employed in the bidirectional shift registers HSR will be explained by reference to
The clocked inverter 61 is composed of p-type transistors 71, 72 and n-type transistors 73, 74 as shown in
On the other hand, in the clocked inverter 62, the p-type transistor 72 is connected to the first horizontal direction-setting line RL1, and the n-type transistor 73 is connected to the second horizontal direction-setting line RL2. When the second horizontal direction-setting line RL2 is at the H level, the clocked inverter 62 serves as an inverter, and when the first horizontal direction-setting line RL1 is at the H level, the clocked inverter 62 serves a high impedance.
Reference numeral 121 denotes the horizontal shift register, which is composed of n-type transistors and p-type transistors arranged side by side as shown in
Reference numeral 236 in
Reference numeral 329 in
As the timing signal line 329 is lengthened, wiring resistance increases. Since the timing signal is a pulse of high frequency, the increase in the wiring resistance causes distortions in the waveform of the timing signal. The waveform distortions in the timing signal produces errors in timing of taking-in of the display data into the data taking-in elements 171-173. For example, a problem arises in that, while the display data processing circuit 325(1) has taken in a display data at a given instant of time, the display data processing circuit 325(6) has not taken in a display data, and display quality is degraded.
When the wiring resistance and capacitance of the timing signal line 329 are considered, it is desirable to make the length AL1 of the display data processing circuit 325 as short as possible. When the length AL2 of the horizontal shift register 121 is longer than the length AL1 of each of the display data processing circuits 325(1), 325(2), 325(3), . . . The overall length of the display data processing circuits 325(1), 325(2), 325(3), . . . is the product of the length AL1 and the number of the display data bit, and therefore, if the number of display data bits is increased, it is effective for reducing the lengths of the entire circuits and the timing signal lines 329 to shorten the length AL1 of each of the display data processing circuits 325(1), 325(2), 325(3) . . . In view of the above, the length AL1 of the display data processing circuits 325(1), 325(2), 325(3), . . . is reduced by forming the circuits 325(1), 325(2), 325(3), . . . using n-type transistors, and thereby reducing the length of the device-isolation regions 235.
In
As explained above, in the design of the layout of transistors constituting the horizontal drive circuit 120, the length of the drive circuit can be reduced by forming the drive circuit by using transistors of the same conductivity type and locating the circuit within the pixel pitch. Even if the area of the display section of a liquid crystal display panel is reduced, but the numbers of gray-scale levels and pixels are increased, the drive circuit can be realized which has an area smaller than the display section. The wiring resistance of the timing signal lines used for taking in display data can be kept to a low value by shortening the length of the drive circuit even when the number of gray scale levels, and thereby errors in taking-in the display data can be reduced.
The following explains the pixel section in the liquid crystal display device in accordance with the present invention by reference to
In
Reference numeral 34 denote drain regions, 35 are source regions, 36 are gate electrodes, 38 are insulating films, 39 are field oxide films for electrically isolating transistors from each other, 40 is a storage-capacitance-forming electrode for forming a capacitance in cooperation with the drive circuit substrate 1 with an insulating film 38 interposed therebetween, 41 are first interlayer insulating films, 42 are first conductive films, 43 are second interlayer insulating films, 44 are first light blocking films, 45 are third interlayer insulating films, 46 are second light blocking films, 47 are fourth interlayer insulating films, and 48 are second conductive films forming the reflective electrodes 5.
The liquid crystal display panel in this embodiment is of the reflective type. Light projected into the liquid crystal display panel 100 enters from the transparent substrate 2 (at the top of
In the liquid crystal display panel of the reflective type, when the reflective electrode 5 is disposed on the surface of the drive circuit substrate 1 on its liquid crystal composition 3 side, an opaque substrate such as a silicon substrate can be used as the drive circuit substrate 1. This structure has advantages that the active elements 30 and wiring can be disposed below the reflective electrodes 5, thereby the area of the reflective electrodes 5 can be increased which form pixels, and consequently, the higher aperture ratio can be realized. Also this structure has an advantage of radiating heat generated by light projected into the liquid crystal display panel 100 from the back surface of the drive circuit substrate 1.
Next, operation of the liquid crystal display panel employing the electrically controlled birefringence mode will be explained. Light linearly polarized by a polarizer enters the liquid crystal display panel 100. When a voltage is applied between the reflective electrode 5 and the counter electrode 6, orientation of liquid crystal molecules of the liquid crystal composition 3 is changed due to their dielectric anisotropy, and as a result the birefringence of the layer of the liquid crystal composition 3 is changed. The electrically controlled birefringence mode generates images by converting the changes of the birefringence into the changes of light transmission.
Next, the single-polarizer twisted nematic (SPTN) mode, which is one type of the electrically controlled birefringence mode, will be explained by reference to
Reference numeral 9 denotes a polarizing beam splitter which divides an incident light L1 from a light source (not shown) into two polarized lights, and a linearly polarized light L2 of the two is emitted.
In
The liquid crystal composition 3 is a nematic liquid crystal material having positive dielectric anisotropy. Longitudinal axes of the liquid crystal molecules are oriented approximately in parallel with the major surfaces of the drive circuit substrate 1 and the transparent substrate 2, and the liquid crystal molecules are twisted through about 90 degrees across the liquid crystal layer by the orientation films 7, 8.
In the single-polarizer twisted nematic mode, the direction of orientation of the liquid crystal molecules is parallel with the major surfaces of the substrates, and therefore usual methods of orientating the liquid crystal molecules can be employed and its manufacturing process is highly stable. The normally white mode operation is preventive of defective displays occurring at low voltage levels. The reason is that, in the normally white mode, a dark level (a black display) is provided when a high voltage is applied across the liquid crystal layer, and in this state, almost all the liquid crystal molecules are orientated in the direction of the electric field which is perpendicular to the major surfaces of the substrates, and consequently, a display of the dark level does not depend very much upon the initial conditions of orientation of the liquid crystal molecules having a low electric field applied thereto.
The human eye perceives non-uniformity in luminance based upon the ratio of luminances, is responsive approximately to the logarithm of luminance, and consequently, is sensitive to variations in dark levels.
Because of the above reasons, the normally white mode has advantages with respect to prevention of non-uniformity in luminance caused by initial conditions of orientation of the liquid crystal molecules.
The electrically controlled birefringence mode requires a highly precise cell gap between the substrates of the liquid crystal display panel. The electrically controlled birefringence mode utilizes a phase difference between ordinary rays and extraordinary rays caused while they pass through the liquid crystal layer, and therefore the intensity of the light transmission through the liquid crystal layer depends upon the retardation Δn□d between the ordinary and extraordinary rays, where Δn is a birefringence and d is a cell gap established by spacers 4 between the transparent substrate 2 and the drive circuit substrate 1.
In this embodiment, in view of non-uniformity in display, the cell gap was controlled with accuracy of ±0.05 μm. In the reflective type liquid crystal display panel, light entering the liquid crystal layer is reflected by the reflective electrode, and then passes through the liquid crystal layer again, therefore, if the reflective type liquid crystal display panel uses a liquid crystal composition having the same birefringence Δn as that of a liquid crystal composition used in the transmissive type liquid crystal display panel, the cell gap d of the reflective type liquid crystal display panel is half that of the transmissive type liquid crystal display panel. Generally, the cell gap d of the transmissive type liquid crystal display panel is in a range of from about 5 microns to about 6 microns, but in this embodiment the cell gap d is selected to be about 2 microns.
In this embodiment, to ensure a high accuracy of the cell gap and a smaller cell gap than that of conventional liquid crystal display panels, column-like spacers are fabricated on the drive circuit substrate 1 instead of using a bead-dispersing method.
In
The spacers 4 and the peripheral frame 11 are formed of resin material. As the resin material can be used a chemically amplified type negative photoresist “BPR-113” (a trade name) manufactured by JSR Corp. (Tokyo, Japan), for example. The photoresist material is coated as by a spin coating method on the drive circuit substrate 1 having the reflective electrodes 5 formed thereon, then is exposed through a mask having a pattern in the form of the spacers 4 and the peripheral frame 11, and then is developed by a remover to form the spacers 4 and the peripheral frame 11.
When the spacers 4 and the peripheral frame 11 is fabricated by using photoresist or the like as their material, the height of the spacers 4 and the peripheral frame 11 can be controlled by coating thickness of the material, and therefore the spacers 4 and the peripheral frame 11 can be fabricated with high precision. The positions of the spacers 4 can be determined by the mask pattern, and consequently, the spacers 4 can be located at the desired positions accurately.
In the liquid crystal display panel employed in a liquid crystal projector, if one of the spacers 4 is present on a pixel, a problem arises in that a shadow of the spacer 4 is visible in its projected enlarged image. By fabricating the spacers 4 by exposure through a mask pattern and subsequent development, the spacers 4 can be located at such positions as not to deteriorate the quality of a displayed image.
Since the spacers 4 and the peripheral frame 11 have been fabricated simultaneously, the liquid crystal composition 3 can be sealed between the drive circuit substrate 1 and the transparent substrate 2, by initially dropping a small amount of the liquid crystal composition 3 on the drive circuit substrate 1, then overlapping the transparent substrate 2 on the drive circuit substrate 1 with the liquid crystal layer therebetween, and then bonding the transparent substrate 2 to the drive circuit substrate 1.
When the liquid crystal display panel 100 has been assembled after interposing the liquid crystal composition 3 between the driving circuit substrate 1 and the transparent substrate 2, the liquid crystal composition 3 is held within a region surrounded by the peripheral frame 11.
The sealing member 12 is coated around the outside of the peripheral frame 11 and confines the liquid crystal material 3 within the liquid crystal display panel 100.
As described above, the peripheral frame 11 is fabricated by using the pattern mask, and therefore it is fabricated on the driving circuit substrate 1 with high positional accuracy, and consequently, the border of the liquid crystal composition 3 can be defined with high accuracy. Further, the peripheral frame 11 can define the border of the sealing member 12 with high accuracy.
The sealing member 12 serves to fix the driving circuit substrate 1 and the transparent substrate 2 together, and also serves to prevent materials harmful to the liquid crystal composition 3 from penetrating thereinto. When the fluid sealing member 12 is applied, the peripheral frame 11 serves as a stopper against the sealing member 12. By disposing the peripheral frame 11 as the stopper against the sealing member 12, the borders of the liquid crystal composition 3 and the sealing member 12 can be established with high precision, and consequently, the region between the display area and the peripheral sides of the liquid crystal display panel 100 can be reduced, resulting in the reduction of the peripheral border around the display area.
Dummy pixels 10 are disposed between the peripheral frame 11 and the display area for making the quality of the display produced by the outermost pixels 5B equal to that of the display produced by the inner pixels 5A disposed inside the outermost pixels 5B. Since the inner pixels 5A have neighboring pixels, unwanted electric fields are generated between the inner pixels 5A and their neighboring pixels, and consequently, the quality of the display produced by the inner pixels 5A is made worse compared with that produced in the absence of their neighboring pixels.
On the other hand, assume a case where none of the dummy pixels 10 are provided, then unwanted electric fields degrading the display quality are not produced around the outermost pixels 5B, and as a result the display quality by the outermost pixels 5B is better compared with that by the inner pixels 5A. If some pixels have difference in display quality between them, non-uniformity occurs in display. To eliminate this problem, the dummy pixels 10 are provided and are supplied with signal voltages like the pixels 5A and 5B so that the display quality of the outermost pixels 5B is equalized with that of the inner pixels 5A.
Further, since the peripheral frame 11 is fabricated to surround the display area, a problem arises in that, in performing a rubbing treatment on the surface of the drive circuit substrate 1 for orientating the liquid crystal molecules of the liquid crystal composition 3 in a specified direction, the peripheral frame 11 impedes the rubbing treatment of the surface in the vicinity of the peripheral frame 11. In this embodiment, a liquid crystal molecule orientation film 7 (see
In the rubbing treatment, because the peripheral frame 11 is raised above the surface of the drive circuit substrate 1, the orientation film 7 in the vicinity of the peripheral frame 11 is not rubbed sufficiently because of the step formed by the peripheral frame 11, and consequently, non-uniformity in orientation of the liquid crystal molecules is apt to occur in the vicinity of the peripheral frame 11. In order to make inconspicuous non-uniformity in a display caused by defective orientation of the liquid crystal molecules of the liquid crystal composition 3, some of the pixels immediately inside the peripheral frame 11 are fabricated as dummy pixels 10 which do not contribute to a display.
However, if the dummy pixels 10 are supplied with signals like the pixels 5A and 5B, a problem arises in that displays produced by the dummy pixels 10 are also observed by the viewer because of presence of the liquid crystal composition 3 between the dummy pixels 10 and the transparent substrate 2. In the liquid crystal display panel of the normally white type, the dummy pixels 10 appear white when a voltage is not applied across the layer of the liquid crystal composition 3, and consequently, the border of the display area becomes ill-defined and the quality of a display is deteriorated. It is conceivable to mask the dummy pixels 10, but it is difficult to fabricate a light-blocking frame at the border of the display area accurately because of a spacing of a few microns between the pixels, and therefore the dummy pixels 10 are supplied with such a voltage that the dummy pixels 10 display black images which appear as a black peripheral frame surrounding the display area.
The following explains a configuration of the active elements 30 and their vicinity fabricated on the drive circuit substrate 1 by reference to
In
In
The video signals are supplied to the drain region 35 by the first conductive film 42 through the contact hole 35CH made in the insulating film 38 and the first insulating interlayer film 41. When a scanning signal is supplied to the scanning signal line 51, the active element 30 is turned ON, and the video signal is transmitted from the semiconductor region (the n-type well) 32 to the source region 34, and then is transmitted to the first conductive film 42 through the contact hole 34CH. Thereafter the video signal is transmitted from the first conductive film 42 to the storage-capacitance-forming electrode 40 through the contact hole 40CH, and then is transmitted to the reflective electrode 5 through the contact hole 42CH as shown in
The second insulating interlayer film 43 insulates the second conductive film 44 from the first conductive film 42. The second insulating interlayer film 43 is formed of two layers composed of a planarizing film 43A for filling indentations and reducing unevenness caused by underlying elements and an insulating film 43B overlying the planarizing film 43A. The planarizing film 43A is fabricated by applying SOG (Spin-On-Glass), and the insulating film 43B is an SiO2 film fabricated by a CVD process using TEOS (Tetraethylorthosilicate) as reactive gas. The second insulating interlayer film 43 is planarized by polishing it using the CMP (Chemical Mechanical Polishing) process after it is applied on the silicon substrate 31. The first light-blocking film 44 is fabricated on the planarized second insulating interlayer film. The first light-blocking film 44 is formed of the same multilayer metal film made of titanium tungsten (TiW) and aluminum as the first conductive film 42.
The first light-blocking film 44 covers the approximately entire area of the drive circuit substrate 1, and openings are made only at the contact holes 42CH shown in
When the first light-blocking film 44 and the second light-blocking film 46 are made of metal films, the third interlayer film 45 made of an insulating (dielectric) film is interposed therebetween, and a voltage is applied to the first light-blocking film 44, a storage capacitance can be formed between the first light-blocking film 44 and the second light-blocking film 46. In view of the withstand voltage of the third insulating interlayer film 45 with respect to drive voltage and increasing of the capacitance by reducing the thickness of the dielectric film 45, it is desired that the thickness of the third insulating interlayer film 45 is in a range of from 150 nm to 450 nm, and is preferably about 300 nm.
Next, as shown in
Conventionally, a flexible printed wiring board is connected to terminals for external connections disposed on the drive circuit substrate 1 only, and therefore the wiring to the counter electrode 5 from the flexible printed wiring board is made via the drive circuit substrate 1.
The transparent substrate 2 in this embodiment of the present invention is provided with connecting portions 82 to be connected to the flexible printed wiring board 80 such that the flexible printed wiring board 80 is connected directly to the counter electrode 5. The liquid crystal display panel 100 is formed by superposing the transparent substrate 2 on the drive circuit substrate 1. The transparent substrate 2 is superposed on the drive circuit substrate 1 such that a peripheral portion of the transparent substrate 2 extends beyond the outside edges of the drive circuit substrate 1 and provides the connecting portions 82 where the flexible printed wiring board 80 is connected to the counter electrode 5.
As shown in
As shown in
The invention by the present inventors has been explained concretely based upon the embodiments in accordance with the present invention, but the present invention is not limited to the above-described embodiments, and various changes and modifications can be made without departing from the spirit and scope of the present invention.
The advantages obtained by the representative ones of the inventions disclosed in this specification can be summarized as follows:
The present invention makes possible reduction of a space occupied by the horizontal drive circuit incorporated into the liquid crystal display panel, and is also capable of miniaturizing the liquid crystal display panel.
Number | Date | Country | Kind |
---|---|---|---|
2001-059394 | Mar 2001 | JP | national |
This is a continuation of U.S. application Ser. No. 10/084,942, filed Mar. 1, 2002, the subject matter of which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | 10084942 | Mar 2002 | US |
Child | 10933380 | Sep 2004 | US |