The present invention relates to a liquid crystal display device, and more particularly to a technique effectively applied to a video signal line driver circuit (drain driver) of a liquid crystal display device capable of carrying out multi-gray scale display.
A liquid crystal device of an active matrix type having an active element (for example, a thin film transistor) for each pixel and switching the active element is widely used as a display device of a notebook personal computer or the like.
In the active matrix type liquid crystal display device, a video signal voltage (a gray scale voltage in correspondence with display data; hereinafter referred to as a gray scale voltage) is applied to a pixel electrode via an active element and accordingly, there is produced no crosstalk among respective pixels, a special driving method need not be used for preventing crosstalk as in a simple matrix type liquid crystal display device and multi-gray scale display is feasible.
There has been known as one of the active matrix type liquid crystal display device, a liquid crystal display module of a TFT (Thin Film Transistor) type having a liquid crystal display panel of a TFT type (TFT-LCD), drain drivers arranged at the top side of the liquid crystal display panel and gate drivers and an interface circuit arranged at the side of the liquid crystal display panel.
In the liquid crystal display module of the TFT type, there are provided in the drain driver, a multi-gray scale voltage generating circuit, a gray scale voltage selector for selecting one gray scale voltage in correspondence with display data from among a plurality of gray scale voltages generated by the multi-gray scale voltage generating circuit and an amplifier circuit receiving the one gray scale voltage selected by the gray scale voltage selector.
In this case, the gray scale voltage selector is supplied with respective bit values of the display data via a level shift circuit.
Further, such a technique is described in, for example, Japanese Patent Laid-Open No. Hei 9-281930 (corresponding to U.S. application Ser. No. 08/826,973 filed on Apr. 9, 1997, now U.S. Pat. No. 5,995,073).
The concept of eliminating offset voltages in amplifiers is disclosed in the following patent applications or patents: Japanese Patent Laid-Open Nos. Sho 55-1702 (Application No. Sho 53-72691, laid open on Jan. 8, 1980); Sho 59-149408 (Application No. Sho 59-17278, laid open on Aug. 27, 1984); Hei 1-202909 (Application No. Sho 63-26572, laid open on Aug. 15, 1989); Hei 4-38004 (Application No. Hei 2-145827, laid open on Feb. 7, 1992); U.S. Pat. No. 4,902,981 (application Ser. No. 07/283,149, issued on Feb. 20, 1990); U.S. Pat. No. Re. 34,428 (application Ser. No. 07/846,442, reissued on Nov. 2, 1993); and U.S. Pat. No. 5,334,944 (application Ser. No. 08/168,399, issued on Aug. 2, 1994).
In recent years, in liquid crystal display devices of a liquid, crystal display module of a TFT type or the like, the number of steps of gray scales is increasing from 64 to 256 and a voltage step per gray scale (a voltage difference between two successive gray scale voltages) in the plurality of gray scale voltages generated by the multi-gray scale voltage generating circuit becomes small.
An offset voltage is produced in the amplifier circuit by variations in properties of active elements constituting the amplifier circuit and when the offset voltage is produced in the amplifier circuit, an error is caused in an output voltage from the amplifier circuit and the output voltage from the amplifier circuit becomes a voltage different from a specified gray scale.
Thereby, there poses a problem in that black or white vertical lines are generated in a display screen displayed in the liquid crystal display panel (TFT-LCD) and display quality is significantly deteriorated. A liquid crystal display device of a liquid crystal display module of a TFT type or the like has a tendency toward a larger screen size and a higher display resolution (a larger number of pixels) of a liquid crystal display panel (TFT-LCD), and also there is requested a reduction of the border areas such that areas other than a display area of the liquid crystal display panel are made as small as possible in order to eliminate non-useful area and achieve aesthetic qualities as a display device.
Further, the level shift circuit installed at the first stage of the gray scale voltage selector is constituted by transistors having a high voltage breakdown capacity between the source and the drain.
However, when transistors having a high-voltage rating are used as the transistors for the level shift circuit, there poses a problem in that an area of the level shift circuit becomes large in a semiconductor integrated circuit (IC chip) constituting the drain driver, the chip size of the semiconductor integrated circuit constituting the drain driver becomes large, the unit cost of the chip cannot be lowered and the reduction of the border areas cannot be achieved.
Further, conventionally, in a liquid crystal display device, a higher resolution liquid crystal display panel has been requested, the resolution of a liquid crystal display panel has been enlarged from 640×480 pixels of a VGA (Video Graphics Array) display mode to 800×600 pixels of an SVGA (Super VGA) display mode. In recent years, in a liquid crystal display device, in accordance with a request for a larger, screen size of a liquid crystal display panel, as a resolution of a liquid crystal display panel, there has been requested a further higher resolution of 1024×768 pixels of an XGA (Extended Video Graphics Array) display mode, 1280×1024 pixels of an SXGA (Super Extended Video Graphics Array) display mode or 1600×1200 pixels of a UXGA (Ultra Extended Video Graphics Array) display mode.
In accordance with such a higher resolution of a liquid crystal panel, a display control circuit, drain drivers and gate drivers are obliged to carry out high-speed operation, and more particularly, there has been requested high-speed operation for a clock for latching display data (CL2) outputted from the display control circuit to the drain driver and an operating frequency of display data.
Thereby, there poses a problem in that a timing margin is reduced when display data is latched inside of a semiconductor integrated circuit constituting the drain driver.
The present invention has been carried out in order to solve the problems of the conventional technologies mentioned above and it is an object of the present invention to provide a technique capable of improving display quality of a display screen displayed on a liquid crystal display element by preventing black or white vertical lines caused by an offset voltage from being produced in the display screen, of the liquid crystal display element in an amplifier of a video signal line driver circuit in a liquid crystal display device.
It is another object of the present invention to provide a technique capable of reducing the chip size of a semiconductor integrated circuit constituting a video signal line driver circuit by using lower source-drain voltage rating transistors in a level shift circuit of the video signal line driver circuit in a liquid crystal display device.
It is another object of the present invention to provide a technique capable of ensuring a timing margin when display data is latched inside of a semiconductor integrated circuit constituting a video signal line driver circuit even if high-speed clock operation is performed in latching display data as well as an operating frequency of display data in a liquid crystal display device.
The above-described objects and novel features of the present invention will become apparent by description and attached drawings in the specification.
In accordance with one embodiment of the present invention, there is provided a liquid crystal display device including a plurality of pixels adapted to be supplied with respective video signal voltages, and a plurality of video signal driver circuits which output respective output voltages and supply the output voltages to the plurality of pixels as the video signal voltages. Each of the plurality of video signal driver circuits includes a pair of amplifier circuits which supply a respective one of the video signal voltages to one of the plurality of pixels. The pair of amplifier circuits includes a first amplifier circuit including a first output terminal, a first input terminal, and a second input terminal, and a second amplifier circuit including a second output terminal, a third input terminal, and a fourth input terminal. Each of the plurality of video signal driver circuits further includes a first connecting circuit switchable between a first connection in which an output voltage output from the first output terminal is input to the first input terminal as a reference voltage, and a second connection in which the output voltage output from the first output terminal is input to the second input terminal as a reference voltage, and a second connecting circuit switchable between a third connection in which an output voltage output from the second output terminal is input to the third input terminal as a reference voltage, and a fourth connection in which the output voltage output from the second output terminal is input to the fourth input terminal as a reference voltage.
In the accompanying drawings, in which like reference numerals designate similar components throughout the figures, and in which:
An explanation of embodiments of the present invention will be given with reference to the drawings.
To be more specific, all of the drawings for explaining embodiments of the present invention, portions having the same functions are attached with the same notations and repeated explanation thereof will be omitted. Embodiment 1
The interface circuit 100 is mounted to an interface board, further, also the drain drivers 130 and the gate drivers 140 are mounted to special TCPs (Tape Carrier Packages), respectively, or directly on the liquid crystal display panel.
Each pixel is arranged in an area surrounded by two adjacent drain signal lines (D) and two adjacent gate signal lines (G) intersecting with the two drain signal lines. Each pixel is provided with two thin film transistors (TFT1, TFT2) and source electrodes of the thin film transistors (TFT1, TFT2) of each pixel are connected to a pixel electrode (ITO1). A liquid crystal layer is provided between the pixel electrode (ITO1) and a common electrode (ITO2) and accordingly, electrostatic capacitance of the liquid crystal layer (CLC) is equivalently connected between the pixel electrode (ITO1) and the common electrode (ITO2).
Further, additional capacitance (CADD) is connected between the source electrodes of the thin film transistors (TFT1, TFT2) and a preceding one of the gate signal line (G).
Although, in the example shown in
Though the present invention is applicable to both the types of
In the liquid crystal display panels 10 shown in
Besides, gate electrodes of the thin film transistors (TFT) at each of pixels arranged in a row direction are respectively connected to the gate signal lines (G) and the respective gate signal lines (G) are connected to the gate drivers 140 for supplying scanning drive voltages (positive bias voltages or negative bias voltages) to the gate electrodes of the thin film transistors (TFT) of each of pixels in the row direction for one horizontal scan time.
The interface circuit 100 shown in
The display control circuit 110 is constituted with one piece of a semiconductor integrated circuit (LSI) for controlling and driving the drain drivers 130 and the gate drivers 140 based on respective display control signals of a clock signal, a display timing signal, a horizontal/vertical scanning sync signal, and so on as well as data (R, G, B) for display transmitted from a host computer side.
When a display timing signal is inputted, the display control circuit 110 determines it as start of display and outputs a start pulse (a start signal of a display data input) to the first drain driver 130 via a signal line 135. The display control circuit 110 outputs one row of display data to a plurality of the drain drivers 130 via a bus line 133 for display data.
At this occasion, the display control circuit 110 outputs a display data latch clock (CL2) (hereinafter referred to merely as a clock CL2) which is a display control signal for latching display data to a data latch circuit of each of the drain drivers 130 via a signal line 131.
Display data of 6-bit supplied by a host computer are transmitted in one pixel unit including a trio of display data for three sub-pixels for red (R), green (G) and blue (B), respectively at each unit period of time.
Latch operation of the data latch circuit at the first drain driver 130 is controlled by the start pulse inputted thereto.
When the latch operation of the data latch circuit at the first drain driver 130 has been completed, a start pulse is inputted from the first drain driver 130 to the second, drain driver 130, and latch operation of the data latch circuit of the second drain driver is controlled.
Hereinafter, similarly, latch operation of the data latch circuits in each drain driver 130 is controlled and display data is successively written to the data latch circuits.
When input of the display timing signals has been finished or a predetermined constant period of time has elapsed after input of the display timing signals was executed, the display control circuit 110 determines that input of data corresponding to one horizontal scanning line has been completed. And then, the display control circuit 110 outputs to the respective drain drivers 130 via a signal line 132 a clock (CL1) for controlling an output timing (hereinafter referred to merely as clock CL1) which is a display control signal for outputting display data stored in the data latch circuits of the respective drain drivers 130 to the drain signal lines (D) of the liquid crystal display panel 10.
When the first display timing signal is inputted after receiving input of the vertical scanning sync signal, the display control circuit 110 determines that the signal is for displaying the first line and outputs a frame start signal to the gate driver 140 via a signal line 142.
Then, the display control circuit 110 outputs a clock (CL3) which is a shift clock having a period of one horizontal scan time to the gate drivers 140 via a signal line 141 for successively applying a positive bias voltage on respective gate signal lines (G) of the liquid crystal display panel 10 with a period of the horizontal scan time.
Accordingly, the plurality of thin film transistors (TFT) connected to the respective gate signal lines (G) of the liquid crystal display panel 10 become conducting for a period of time to execute one horizontal scan.
By the above-described operation, a picture image is displayed on the liquid crystal display panel 10.
The power supply circuit 120 shown in
Both the positive-polarity voltage generating circuit 121 and the negative-polarity voltage generating circuit 122 are constituted with a series-resistor voltage divider. The positive-polarity voltage generating circuit 121 outputs five positive-polarity gray scale reference voltages (V″0 through V″4) and the negative-polarity voltage generating circuit 122 outputs five negative-polarity gray scale reference voltages (V″5 through V″9). The positive-polarity gray scale reference voltages (V″0 through V″4) and the negative-polarity gray scale reference voltages (V″5 through V″9) are supplied to each drain driver 130.
Further, the respective drain drivers 130 are supplied with control signals for AC driving (AC driving timing signal M) from the display control circuit 110 via a signal line 134.
The common-electrode voltage generating circuit 123 generates a drive voltage applied to the common electrode (ITO2) and the gate-electrode voltage generating circuit 124 generates a drive voltage (positive bias voltage and negative bias voltage) applied to gate electrodes of the thin film transistors (TFT).
Generally, when a liquid crystal layer is supplied with the same voltage (direct current voltage) for a long period of time, tilting of liquid crystal molecules is gradually fixed, as a result, image retention is caused and life of the liquid crystal layer is shortened.
In order to prevent this, in the TFT type liquid crystal display module, the polarity of voltages applied across the liquid crystal layer is reversed periodically, that is, voltages applied to the pixel electrodes is alternated from positive to negative with respect to the voltage applied to the common electrode voltage periodically.
As driving methods for applying alternating current voltages to the liquid crystal layer, there are known two ways of methods of a fixed common-electrode voltage method and a common-electrode voltage inversion method. The common-electrode voltage inversion method is a method which reverses polarities of both voltages applied to a common electrode and a pixel electrode periodically. On the other hand, the fixed common-electrode voltage method is a method which makes voltages applied to pixel electrodes alternately positive and negative with respect to a fixed common electrode voltage periodically.
Although the fixed common-electrode voltage method has a drawback in which the amplitude of voltage applied to the pixel electrode (ITO1) becomes twice as much as that of the common-electrode voltage inversion method, and thus low-voltage rating drivers cannot be used unless a low-threshold voltage liquid crystal material is developed. There can be used a dot-inversion drive method or an every-Nth-line inversion drive method which is excellent in view of low power consumption and display quality.
In the liquid crystal display module of the present embodiment, the dot-inversion drive method is used as a driving method thereof.
An explanation will be given of a case using the dot-inversion drive method as a method of driving the liquid crystal display module. First,
Next,
By using the dot-inversion drive method, the polarities of the voltages applied to the two adjacent drain signal lines (D), respectively, are opposite from each other, and accordingly, currents flowing into the common electrode (ITO2) and gate electrodes of the thin film transistors (TFT) are canceled by the adjacent drain signal lines and power consumption can be reduced.
Further, current flowing in the common electrode (ITO2) is insignificant and voltage drop does not become large, and accordingly, the voltage level of the common electrode (ITO2) is stabilized and deterioration of display quality can be restrained to a minimum.
A negative-polarity gray scale voltage generating circuit 151b generates 64 levels of negative-polarity gray scale voltages based on five negative-polarity gray scale reference voltages (V″5 through V″9) inputted from the negative voltage generating circuit 122 and outputs them to the output circuit 157 via a voltage bus line 158b.
Further, a shift register circuit 153 in a control circuit 152 of the drain driver 130, generates a data input control signal based on the clock (CL2) inputted from the display control circuit 110 and outputs it to an input register circuit 154.
The input register circuit 154 latches display data of 6-bit per color based on the data input control signal outputted from the shift register circuit 153 in synchronism with the clock (CL2) inputted from the display control circuit 110.
A storage register circuit 155 latches display data in the input register circuit 154 in accordance with the clock (CL1) inputted from the display control circuit 110. Display data inputted to the storage register circuit 155 is then inputted to the output circuit 157 via a level shift circuit 156.
The output circuit 157 selects one gray scale voltage (one gray scale voltage out of 64 gray scale levels) in correspondence with display data from among 64 levels of positive-polarity gray scale voltages or 64 levels of negative-polarity gray scale voltages and outputs it to each of the drain signal lines (D).
In
Notations Y1, Y2, Y3, Y4, Y5 and Y6 respectively designate first, second, third, fourth, fifth and sixth drain signal lines (D), respectively.
In the drain driver 130 shown in
The high-voltage decoder circuit 278 or the low-voltage decoder circuit 279 is installed into one piece of the data latch circuit 265.
The amplifier circuit pair 263 is constituted with a high-voltage amplifier circuit 271 and a low-voltage amplifier circuit 272.
The high-voltage amplifier circuit 271 is supplied with a positive-polarity gray scale voltage generated by the high-voltage decoder circuit 278 and the high-voltage amplifier circuit 271 outputs a positive-polarity gray scale voltage.
The low-voltage amplifier circuit 272 is supplied with a negative-polarity gray scale voltage generated by the low-voltage decoder circuit 279 and the low-voltage amplifier circuit 272 outputs a negative-polarity gray scale voltage.
In the dot-inversion drive method, the polarities of the gray scale voltages applied to the two adjacent drain signal lines (D) (Y1, Y4, for example) for displaying the same color, respectively, are opposite from each other.
Besides, arrangement of the high-voltage amplifier circuits 271 and the low-voltage amplifier circuits 272 of the amplifier pairs 263, is in the order of the high-voltage amplifier circuit 271→the low-voltage amplifier circuit 272→the high-voltage amplifier circuit 271→the low-voltage amplifier circuit 272. Accordingly, by switching data input control signals inputted to the data latch circuit 265 by the switch circuit (1) 262, one of two display data inputted to the adjacent drain lines (Y1, Y4, for example) respectively for displaying the same color, for example, the data of the drain line Y1 is inputted to the data latch circuit 265 connected to the high-voltage amplifier circuit 271. Meanwhile, for example, the data of the other drain line Y4 is inputted to the data latch circuit 265 connected to the low-voltage amplifier circuit 272 allowing output voltages outputted from the data latch circuits 265 to be switched by the switch circuit (2) 264 and outputted to the drain signal lines (D) in correspondence with the two display data or the first drain signal line (Y1) and the fourth drain signal line (Y4) by which a positive-polarity or a negative-polarity gray scale voltage can be outputted to the respective drain signal lines (D).
As shown in
The gate electrode of the PMOS transistor (PM1) is supplied with an output from an NOR circuit (NOR1) inverted by an inverter (INV) and the gate electrode of the PMOS transistor (PM2) is supplied with an output from an NOR circuit (NOR2) inverted by an inverter (INV) after having been level shifted respectively by level shift circuits (LS).
Similarly, the gate electrode of the NMOS transistor (NM1) is supplied with an output from an NAND circuit (NAND2) inverted by an inverter (INV) and the gate electrode of the NMOS transistor (NM2) is supplied with an output from an NAND circuit (NAND1) inverted by an inverter (INV) after having been level shifted respectively by level shift circuits (LS).
In this case, the NAND circuit (NAND1) and the NOR circuit (NOR1) are supplied with the control signal for AC driving (M) and the NAND circuit (NAND2) and the NOR circuit (NOR2) are supplied with the control signal for AC driving (M) inverted by inverters (INV). Further, NAND circuits (NAND1, NAND2) are supplied with an output enabling signal (ENB) and the NOR circuits (NOR1, NOR2) are supplied with the output enabling signal (ENB) inverted by the inverter (INV).
As is known from Table 1, when the output enabling signal (ENB) is at a Low level (hereinafter, L level), the NAND circuits (NAND1, NAND2) become a High level (hereinafter, H level), the NOR circuits (NOR1, NOR2) are brought into the L level and the respective MOS transistors (PM1, PM2, NM1, NM2) are put into an OFF state.
At the time of switching from one scanning line to its succeeding scanning line, both of the high-voltage amplifier circuit 271 and the low-voltage amplifier circuit 272 are brought into an unstable state.
The output enabling signal (ENB) is provided to prevent outputs from the respective amplifier circuits (271, 272) from being outputted to the respective drain signal lines (D) during transition from one horizontal scanning line to its succeeding line.
It should be noted that, although in to this embodiment, an inverted signal of the clock (CL1) is used as the output enabling signal (ENB), END can also be generated at inside by counting the clock (CL2) or the like.
As is known from Table 1, when the output enabling signal (ENB) is at the H level, in accordance with the H level or the L level of the control signal for AC driving (M), the respective NAND circuits (NAND1, NAND2) are brought into the H level or the L level and the respective NOR circuits (NOR1) are brought into the H level or the L level.
Therefore, the PMOS transistor (PM1) and the NMOS transistor (NM1) are made OFF or ON, and the PMOS transistor (PM2) and the NMOS transistor (NM2) are made ON or OFF, the output from the high-voltage amplifier circuit 271 is outputted to the drain signal line (Yn+3), the output from the low-voltage amplifier circuit 272 is outputted to the drain signal line (Yn), or the output from the high-voltage amplifier circuit 271 is outputted to the drain signal line (Yn) and the output from the low-voltage amplifier circuit 272 is outputted to the drain signal line (Yn+3).
In the liquid crystal display module (LCM) of the present embodiment, gray scale voltages applied to liquid crystal layers of the respective pixels are in a range of 0 to 5 volts of negative polarity and 5 to 10 volts of positive polarity and accordingly, a negative-polarity gray scale voltage of 0 through 5 volts is outputted from the low-voltage amplifier circuit 272 and a positive-polarity gray scale voltage of 5 through 10 volts is outputted from the high-voltage amplifier circuit 271.
In this case, for example, when the PMOS transistor (PM1) is turned OFF and the NMOS transistor (NM2) is turned ON, the voltage of 10V at maximum is applied between the source and the drain of the PMOS transistor (PM1).
Therefore, high breakdown voltage MOS transistors having a breakdown voltage of 10 volts between the source and the drain are used for the respective MOS transistors (PM1, PM2, NM1, NM2).
In recent years, in a liquid crystal display device of a liquid crystal display module of a TFT type or the like, a larger screen size and a higher display resolution of the liquid crystal display panel 10 is in progress, the display screen size of the liquid crystal display panel 10 tends to become large, and also an increase in the number of steps of gray scales is in progress from 64 gray scale display to 256 gray scale display.
In accordance therewith, a high-speed charging property in respect of a thin film transistor (TFT) is requested in the drain driver 130 and it becomes difficult to satisfy the request in the drain driver 130 by a method of simply selecting gray scale voltage and outputting it directly to the drain signal (D).
Therefore, a method of installing an amplifier circuit at a final stage of the drain driver 130 and outputting gray scale voltage to the drain signal line (D) via the amplifier circuit has become the mainstream. The high-voltage amplifier circuit 271 and the low-voltage amplifier circuit 272 shown in
However, generally, the above-described op-amps (OP) include offset voltages (Voff).
When a basic amplifier circuit of the above-described op-amp (OP) is constituted with the differential amplifier shown in, for example,
The slight deviations from perfect symmetry are caused by variations in a threshold value voltage (Vth) of the MOS transistor, or a ratio (W/L) of (gate width W)/(gate length L) of the MOS transistor or the like owing to variations in an ion implantation step or a photolithography step in fabrication steps. However, even if the process control is made much more severely, it is impossible to nullify the offset voltage (Voff).
In case that the op-amp (OP) is an ideal op-amp having no offset voltage (Voff), the input voltage (Vin) becomes equal to the output voltage (Vout) (Vin=Vout). On the other hand, when the op-amp (OP) is not free from the offset voltage (Voff), the input voltage (Vin) is not equal to the output voltage (Vout) and the output voltage (Vout) becomes equal to the input voltage (Vin) with the offset voltage (Voff) added (Vout=Vin+Voff).
Therefore, in the related art liquid display module using the voltage follower circuit shown in
Thereby, there is posed a problem in that, in the prior art liquid crystal display module, black or white spurious-signal vertical lines appeared on a display screen, thus significantly deteriorating display quality in a display screen displayed in the liquid crystal display panel.
Hereinafter, detailed explanation will be given reasons of generating black or white vertical lines.
Further, in a state B shown in
At this occasion, assume a case in which in the drain driver 130 shown in
Further, as can easily be understood, under the above-described conditions, when the high-voltage amplifier circuit 271 connected to the drain signal lines (D) Y1 and Y4 has the negative (−) offset voltage (Vofh) and the low-voltage amplifier circuit 272 connected to the drain signal lines (D) Y1 and Y4 has the positive (+) offset voltage (Vofl), white vertical lines appear in the display image of the liquid crystal display panel.
At this occasion, when both of the high-voltage amplifier circuit 271 and the low-voltage amplifier circuit 272 connected to the drain signal lines (D) Y1 and Y4 have the offset voltage (Vofh, Vofl) having the same polarity and the same value, as shown in
Thereby, deviations from the specified brightness of the pixels connected to the drain signal lines (D) YI and Y4 are compensated at intervals of two frame periods and accordingly, white or black vertical lines become inconspicuous in the display image of the liquid crystal display panel.
However, since the offset voltage (Voff) of an op-amp is generated at random for each op-amp, it is extremely rare that the offset voltage (Vofh, Vofl) of two op-amps becomes the same and the offset voltage (Vofh, Vofl) of two op-amps cannot normally be the same. In this way, in the prior art liquid crystal display module, there has been posed a problem in that white or black vertical lines are generated in the display screen of the liquid crystal display panel by the offset voltage (Voff) of an amplifier circuit connected to each of the drain signal lines (D).
Further, although there has been known an offset canceler circuit, the offset canceler circuit uses a switched-capacitor circuit, and accordingly, there is posed a problem of feedthrough errors in gray scale voltages, an increase in chip size due to formation of capacitors and a restriction on high-speed operation due to an increase in capacitance charging time period.
In the low-voltage amplifier circuit 272 of the embodiment shown in
In the high-voltage amplifier circuit 271 of the present embodiment shown in
In the low-voltage amplifier circuit 272 according to the present embodiment shown in
Further,
As can be understood from
Thereby, in the circuit constitution of
(Equation 1)
Vout=Vin−Voff (1)
Further, in the circuit constitution of
(Equation 2)
Vout=Vin−Voff (2)
Output voltages shown in
Further, as shown in time charts of
Accordingly, as shown in
Further, although at the first line of the second frame, a voltage of (VL+Vofl) is outputted from the low-voltage amplifier circuit 272, at the first line of the fourth frame, a voltage of (VL−Vofl) is outputted from the low-voltage amplifier circuit 272. Accordingly, in a corresponding pixel, an increase and a decrease of brightness caused by the offset voltage (Vofl) of the low-voltage amplifier circuit 272 are canceled by each other.
Thereby, as shown in
Although in the time charts shown in
In both cases, increases and decreases in the brightness caused by the offset voltages (Vofh, Vofl) of the high-voltage amplifier circuit 271 and the low-voltage amplifier circuit 272 are compensated by each other at intervals of four frame periods and accordingly, the brightness of a pixel becomes a specified brightness in correspondence with the gray scale voltage.
By reversing the phases of the control signal (A) and (B) at intervals of two lines in each frame, as shown in
The control signal generating circuit 400 is supplied with the clock (CL1). As shown in
Further, the control signal generating circuit 400 is supplied with a frame recognizing signal (FLMN) for recognizing each frame. Incidentally, a description will be given later, of a method of generating the frame recognizing signal (FLMN).
The frame recognizing signal (FLMN) is reversed by an inverter (INV) to constitute a signal (FLMIP). As shown in
Further, the clock (QCL1) and the signal (QFLM) are inputted to an exclusive-OR circuit (EXOR1), a signal (CHOPA) is outputted from the exclusive-OR circuit (EXOR1) and a signal (CHOPB) is generated by reversing the signal (CHOPA) by an inverter (INV).
Levels of the signals (CHOPA, CHOPB) are shifted by a level shift circuit to thereby constitute the control signal (A) and the control signal (B).
Thereby, the phases of the control signal (A) and the control signal (B) can be reversed at intervals of two lines in each frame and at intervals of two frame periods.
In addition, when the phases of the control signal (A) and the control signal (B) are reversed at intervals of two frame periods, the signal (CHOPA) is constituted by the signal (QFLM) produced by dividing the frame recognizing signal (FLMN) in four and the signal (CHOPB) may be constituted by reversing the signal (CHOPA) by the inverter (INV).
In this case, in the control signal generating circuit 400 shown in
Further, in the control signal generating circuit 400, the D flip-flop circuits (F1, F2) are initialized by the frame recognizing signal (FLMN). Meanwhile, the D flip-flop circuits (F3, F4) are initialized by a signal (PORN) from a PORN signal generating circuit 401.
The PORN signal generating circuit 401 is constituted by a voltage dividing circuit 402 for dividing a high supply voltage (VDD) and a group of inverter circuits 403 supplied with the output from the voltage dividing circuit 402.
The power supply voltage (VDD) is a voltage generated by a DC/DC converter (not illustrated) in the power supply circuit 120 shown in
Next, an explanation will be given of a method of generating the frame recognizing signal (FLMN) according to the embodiment. A signal for recognizing switching between frames is needed to generate the frame recognizing signal (FLMN).
Further, since a frame start instruction signal is outputted from the display control circuit 110 to the gate driver 140 when the frame start instruction signal is inputted also to the drain driver 130, the frame recognizing signal (FLMN) can be generated easily.
However, for this method, the number of input pins of a semiconductor integrated circuit (semiconductor chip) for constituting the drain driver 130 needs to be increased by which a wiring pattern of a printed wiring board needs to be changed.
Further, in accordance with the change of the wiring pattern of the printed wiring board, characteristic of high-frequency noise emitted by the liquid crystal display module may be changed and immunity against electromagnetic interference may be deteriorated.
Further, an increase of the number of input pins of a semiconductor integrated circuit nullifies compatibility of the input pins.
Therefore, according to the embodiment, a pulse width of a start pulse outputted from the display control circuit 110 to the drain driver 130 is made to differ at each frame such that the first start pulse within a frame (hereinafter referred to as a frame start pulse) differs from start pulses (hereinafter referred to as an in-frame start pulse) other than the first start pulse so that switching between frames is recognized and the frame recognizing signal (FLMN) is generated.
According to the embodiment, the frame start pulse has a pulse width of 4 periods of the clock signal (CL2) and the in-frame start pulse has a pulse width of 1 period of the clock signal (CL2).
In
Accordingly, the start pulse is latched by the D flip-flop circuit (F11) in synchronism with the clock (CL2) to constitute a signal (STEIO).
The signal (STEIO) is latched by the D flip-flop circuit (F12) in synchronism with the clock (CL2) to constitute a signal (Q1), further, the signal (Q1) is latched by the D flip-flop circuit (F13) in synchronism with the clock (CL2) to constitute a signal (Q2).
The signal (Q2) is inputted to the clock signal input terminals of the D flip-flop circuit (F14), further, a data input terminal (D) of the D flip-flop circuit (F14) is supplied with the signal (STEIO).
Accordingly, when, the start pulse is the frame start pulse having the pulse width of four time periods of the clock signal (CL2), Q output of the D flip-flop circuit (F14) becomes the H level.
In this case, since the Q output from the D flip-flop circuit (F14) becomes a start pulse selecting signal (FSTENBP) for a succeeding drain driver, the start pulse selecting signal (FSTENBP) becomes the H level.
Further, the Q output from the D flip-flop circuit (F14) and the signal (STEIO) are inputted to an NAND circuit (NAND 11) and output from the NAND circuit (NAND 11) becomes the frame recognizing signal (FLMN), therefore, the frame recognizing signal (FLMN) becomes the L level for two periods of the clock (CL2).
Meanwhile, when the start pulse is the in-frame start pulse having the pulse width of 1 period of the clock signal (CL2), the Q output from the D flip-flop circuit (F14) becomes the L level.
Thereby, the start pulse selecting signal (FSTENBP) becomes the L level and the frame recognizing signal (FLMN) keeps the H level.
In addition, each D flip-flop circuit (F11 through F14) is initialized by a signal (RESETN).
According to the embodiment, as the signal (RESETN), a signal produced by reversing the clock (CL1) is used.
Further, although in this embodiment, an explanation has been given to a case in which the frame start pulse has the pulse width of 4 periods of the clock signal (CL2), the invention is not limited thereto but the pulse width of the frame start pulse can arbitrarily be set so far as the frame recognizing signal (FLMN) constituting the L level for a predetermined period of time can be generated only when the frame start pulse is inputted.
According to the embodiment, a first one of the drain drivers 130 is supplied with the frame start pulse and the in-frame start pulse from the display control circuit 110 and the above-described operation is carried out.
However, in a second one and succeeding ones of the drain drivers 130, since the frame start pulse and the in-frame start pulse are not inputted from the display control circuit 110, in order to carry out the above-described operation even in the second one and the succeeding ones of the drain drivers 130, a pulse having the same pulse width as that of the inputted start pulse needs to be output to the succeeding drain driver 130 as a start pulse.
Therefore, according to the embodiment, in the pulse generating circuit 440 shown in
As shown in
Each flip-flop circuit in the shift register circuit 153 successively outputs data input control signals (SFT1 through SFTn+3) by which display data is latched to the input register 154.
Further, the data input control signal SFTn constitutes the in-frame start pulse of a succeeding stage of the drain drivers 130 having the pulse width of 1 period of the clock (CL2).
In this case, although the data input control signals of SFT1 through SFTn are used for latching a first one through an N-th one of display data to the input register 154, the data input control signals of SFTn+1 through SFTn+3 are not used for latching the display data to the input register 154.
The data input control signals of SFTn+1 through SFTn+3 are used for generating the frame start pulse of the succeeding stage of the drain driver 130. That is, as shown in
As mentioned above, when the start pulse is the in-frame start pulse, the start pulse generating signal (FSTENBP) becomes the L level and accordingly, the pulse selecting circuit 450 selects the in-frame start pulse (that is, the data input control signal SFTn) and outputs it to the succeeding drain drivers 130.
Meanwhile, when the start pulse is the frame start pulse, the start pulse selecting signal (FSTENBP) becomes the H level and accordingly, the pulse selecting circuit 450 selects the frame start pulse and outputs it to the succeeding drain driver 130.
In this case, as the clock generating circuit 450, a circuit shown by, for example,
The clock generating circuit 450 shown in
Further, Q outputs from the flip-flop circuits F21 and F22 are inputted to an exclusive-OR circuit (EXOR2) and the frame start pulse having the pulse width of 4 periods of the clock (CL2) is generated from the exclusive-OR circuit (EXOR2).
In this way, according to the embodiment, in each of the drain drivers 130, the frame start pulse and the in-frame start pulse are generated, whereby, the number of input pins of the semiconductor integrated circuit constituting the drain driver 130 is not increased and while maintaining the compatibility of the input pins, in the respective drain drivers 130, switching between frames can be recognized.
As shown in
In the level shift circuit 156, conventionally, a circuit constitution as shown in
In this case, in the level shift circuit 156, input voltages of 0V through 5V need to be converted to voltages of 0V through 10V and be output, therefore, in the level shift circuit shown in
In the high-voltage-rating MOS transistors compared with low-voltage-rating MOS transistors having a source-drain breakdown voltage of 5 volts, the gate length is longer and the gate width is also enlarged since the current value needs to be increased.
Therefore, when the level shift circuit using the high-voltage-rating MOS transistors (PSB1, PSB2, NSB1, NSB2) having a source-drain breakdown voltage of 10 volts is used as the level shift circuit 156, there poses a problem in that an area of a portion of the level shift circuit 156 in the semiconductor integrated circuit constituting the drain driver 130 is enlarged, at the same time, the chip size of the short sides of semiconductor IC chips constituting the drain driver 130 is enlarged, the chip unit cost cannot be lowered and a reduction of the border areas of the liquid crystal display panel cannot be achieved.
The level shift circuit shown in
In this case, the gate electrodes of the PMOS transistors (PSA3, PSA4) and the NMOS transistors (NSA3, NSA4) are supplied with a bias potential (Vbis) which is an intermediate voltage between the power supply voltage VDD and a reference voltage (GND).
An explanation will be given of the operation of the level shift circuit shown in
Now, in the case in which the input voltage is at H level of 4V, 4V is applied to the gate electrode of the NMOS transistor (NSA1) and 0V (input voltage reversed by an inverter) is applied to the gate electrode of the NMOS transistor (NSA2) and accordingly, the NMOS transistor (NSA1) is made ON and the NMOS transistor (NSA2) is made OFF.
Accordingly, a potential of point (a) shown in
Further, when the potential of point (c) shown in 62
The source potential of the PMOS transistor (PSA3) is applied to the gate electrode of a PMOS transistor (PSA2), the PMOS transistor (PSA2) is made ON and the potential of point (b′) shown in
When the potential of point (b′) shown in
Further, when the PMOS transistor (PSA1) is made OFF, since no current flows in the series circuits of transistors comprising the PMOS transistors (PSA1, PSA3) and the NMOS transistors (NSA1, NSA3), the source potential (VPS) of the source electrode of the PMOS transistor (PSA3) is expressed by the following equation (3).
(Equation 3)
VPGS+VPth=0
VPG−VPS+VPth=0
VPS=VPG+VPth (3)
where VPGS designates a voltage between the gate and the source of the PMOS transistor (PSA3), VPG designates the gate potential of the PMOS transistor (PSA3) and VPth designates a threshold voltage. Therefore, the potential at point (b) shown in
The source voltage (VPS) of the PMOS transistor (PSA3) is equal to a drain voltage (VPD) of the drain electrode of the PMOS transistor (PSA1) and accordingly, as the PMOS transistor (PSA1) and the PMOS transistor (PSA3), low-voltage-rating PMOS transistors having a source-drain breakdown voltage of 5 volts can be used.
Further, by making ON the PMOS transistor (PSA2), the PMOS transistor (PSA4) is made ON and the potential of point (c′) shown in
Further, the NMOS transistor (NSA2) is made OFF, no current flows in the series circuits of transistors comprising the PMOS transistors (PSA2, PSA4) and the NMOS transistors (NSA2, NSA4) and accordingly, the source potential (VNS) of the source electrode of the NMOS transistor (NSA4) is expressed by the following equation (4).
VNES−VNth=0
VNG−VMS−VNth=0
VNS=VNG−VNth (4)
where VNGS designates a voltage between the gate and the source of the NMOS transistor (NSA4), VNG designates the gate voltage of the NMOS transistor (NSA4) and VNth designates a threshold voltage.
Accordingly, the potential of point (a′) shown in
The source voltage (VNS) of the NMOS transistor (NSA4) is equal to the drain potential (VND) of the drain electrode of the NMOS transistor (NSA2) and accordingly, as the NMOS transistor (NSA2) and the NMOS transistor (NSA4), low-voltage-rating NMOS transistors having a source-drain breakdown voltage of 5 volts can be used. Further, when a point (a) shown in
Further, a series circuit of a PMOS transistor (PBP2) and an NMOS transistor (NBP2) is inserted between the PMOS transistor (PBP1) of an inverter circuit (INVP) and the NMOS transistor (NBP1) and the gate electrodes of the PMOS resistors (PBP2, NBP2) are supplied with the bias potential (Vbis) of 4V and accordingly, an output (Q) becomes 8V.
In this case, as mentioned above, the source potential of the NMOS transistor (NBP2) becomes substantially equal to the gate potential and accordingly, as the NMOS transistor (NBP1) and the NMOS transistor (NBP2), low-voltage-rating NMOS transistors having a source-drain breakdown voltage of 5V can be used.
Similarly, when the PMOS transistor (PBP1) of the inverter circuit (INVP) is made OFF and the NMOS transistor (NBP1) is made ON, the source potential of the PMOS transistor (PBP2) becomes substantially equal to its gate potential and therefore, as the PMOS transistor (PBP1) and the NMOS transistor (PBP2), low-voltage-rating PMOS transistors having a source-drain breakage voltage of 5V can be used.
Thereby, according to the embodiment, an area occupied by the level shift circuit 156 can be reduced in the semiconductor integrated circuit comprising the drain driver 130 and the length of the short sides of the semiconductor IC chips can be made small.
In
As shown in
Therefore, according to the embodiment, compared with the conventional example, the length of the short sides of semiconductor IC chips comprising the drain driver 130 can be shortened by a length (LI) shown in
As shown in
In this case, the p-type semiconductor region (25b) serves as the drain region of the PMOS transistor (PSA1) and the source region of the PMOS transistor (PSA3).
Further, a p-well region 22 is formed in the p-type semiconductor substrate 20 and the NMOS transistors (NSA1, NSA3) are constituted by respective n-type semiconductor regions (24a, 24b, 24c) formed in the p-well region 22 and gate electrodes (26a, 26b).
In this case, the n-type semiconductor region (24b) serves as the drain region of the NMOS transistor (NSA1) and the source region of the NMOS transistor (NSA3). In this case, a voltage of 0V is applied to the p-type semiconductor substrate 20, a voltage of 0V is applied to the p-well region 22 and a voltage of 8V is applied to the n-well region 21.
Therefore, a maximum of 8V of reverse voltage is applied between the n-type semiconductor region (24c) and the p-well region 22 and between the p-type semiconductor region (25c) and the n-well region 21 and accordingly, when a breakdown voltage is not sufficiently high at the portion, the breakdown voltage of the portion needs to be promoted by a double-drain structure (DDD) or the like.
A liquid crystal display module according to Embodiment 2 of the invention differs from the liquid crystal display module according to Embodiment 1 in that a number of transistors for constituting the high-voltage decoder circuit 278 or the low-voltage decoder circuit 279 in the drain driver 130 is reduced.
An explanation will be given of the drain driver 130 according to the embodiment centering on a point of difference from that in Embodiment 1.
It should be noted that
The high-voltage decoder circuit 278 is provided with 64 rows of transistors (TRP2) each constituted by connecting in series 6 high-voltage-rating PMOS transistors and 6 high-voltage-rating depletion-type PMOS transistors and connected to output terminals and terminals opposite from the output terminals of the respective rows of transistors (TRP2) are supplied with 64 levels of gray scale voltages of positive-polarity outputted from the positive-polarity gray-scale voltage generating circuit 151a via the voltage bus line 158a (refer to
Further, respective gate electrodes of the 6 high-voltage-rating PMOS transistors and the 6 high-voltage-rating depletion-type PMOS transistors constituting each of the rows of transistors (TRP2), are selectively supplied with respective bit values (T) or inverted bit values (B) thereof of 6 bits display data outputted from the level shift circuit 156 based on predetermined combinations.
The low-voltage decoder circuit 279 is provided with 64 rows of transistors (TRP3) each constituted by connecting in series 6 high-voltage-rating NMOS transistors and 6 high-voltage-rating depletion-type NMOS transistors and connected to output terminals and terminals opposite from the output terminals of the respective rows of transistors (TRP3) are supplied with 64 levels of gray scale voltages of negative-polarity outputted from the gray scale voltage generating circuit 151b via the voltage bus line 158b (refer to
In this way, the high-voltage decoder circuit 278 and the low-voltage decoder circuit 279 according to Embodiment 1, are provided with constitutions in which 12 MOS transistors are continuously connected for each gray scale. Therefore, a total number of MOS transistors per each drain signal line (D) is 768 (64×12).
In recent years, in a liquid, crystal display device, an increase in the number of steps of gray scales is in progress from 64 gray scale display to 256 gray scale display. However, when 256 gray scale display is carried out by using conventional ones of the high-voltage decoder circuit 278 and the low-voltage decoder circuit 279, a total number of MOS transistors per each drain signal line (D) is 4096 (256×16).
Therefore, there poses a problem in that an area occupied by the decoder portion 261 is increased and the chip size of the semiconductor integrated circuit (IC chip) constituting the drain driver 130 is enlarged.
As shown in
In this case, each resistance in the voltage-dividing resistor circuit is weighted to reflect the relationship between light transmission through the liquid crystal layer and a voltage applied across it.
The high-voltage decoder circuit 278 includes a decoder circuit 301 for selecting two successive levels among the 17 levels of the primary gray scale voltages and outputting them as primary gray scale voltages VOUTA and VOUTAB, respectively, a multiplexer 302 for outputting the primary gray scale voltage VOUTA to the terminal P1 and the primary gray scale voltage VOUTB to the terminal P2, or outputting the primary gray scale voltage VOUTA to the terminal P2 and the primary gray scale voltage VOUTB to the terminal P1, and a secondary gray scale voltage generating circuit 303 for dividing a voltage difference Δ between the primary gray scale voltages VOUTA and VOUTB and generating Va, V+(I/4)Δ, Va+(2/4)Δ, Va+(3/4)Δ and Va+(I/4)Δ.
The decoder circuit 301 is constituted by a first decoder 311 for selecting primary gray scale voltages in correspondence with higher-order four bits (D2-D5) of 6 bits display data among the odd-numbered primary gray scale voltages and a second decoder 312 for selecting primary gray scale voltages in correspondence with higher-order three bits (D3-D5) of 6 bits display data among the even-numbered primary gray scale voltages.
The first decoder 311 is configured such that the higher-order four bits (D2-D5) of a six-bit display data select the first and seventeenth primary gray scale voltages V1 and V17 once, and select the third to fifteenth primary gray scale voltages V3 to V15 two times. The second decoder 312 is configured such that the higher-order three bits (D3-D5) of a six-bit display data select the second primary gray scale voltage (V2) to the sixteenth primary gray scale voltage (V16) once.
It should be noted that in
In this case, V″0<V″1<V″2<V″3<V″4 and therefore, when the bit value of the third bit (D2) of display data is at L level, as the gray scale voltage VOUTA, a gray scale voltage at a potential lower than that of the gray scale voltage of VOUTB is outputted, further, when the bit value of the third bit (D2) of display data is at H level, as the gray scale voltage VOUTA, a gray scale voltage at a potential higher than that of the gray scale voltage of VOUTB is outputted.
Accordingly, the multiplexer 302 is switched in accordance with H level and L level of the bit value of the third bit (D2) of display data, when the bit value of the third bit (D2) of display data is at L level, the gray scale voltage of VOUTA is outputted to the terminal (P1), the gray scale voltage of VOUTB is outputted to the terminal (P2), further, when the bit value of the third bit (D2) of display data is at H level, the gray scale voltage of VOUTB is outputted to the terminal (P1) and the gray scale voltage of VOUTA is outputted to the terminal (P2).
Thereby, when the gray scale voltage of the terminal (P1) is designated by (Va) and the gray scale voltage of the terminal (P2) is designated by (Vb), Va<Vb can always be established and the design of the second gray scale voltage generating circuit 303 is simplified.
The secondary gray scale voltage generating circuit 303 is constituted by a switch element (S1) connected between the terminal (P1) and an input terminal of the high-voltage amplifier circuit 271, a condenser (CI) one end of which is connected to the input terminal of the high-voltage amplifier circuit 271 and other end of which is connected to the terminal (P1) via a switch element (S2) and connected to the terminal (P2) via a switch element (S5), a condenser (C2) one end of which is connected to the input terminal of the high-voltage amplifier circuit 271 and other end of which is connected to the terminal (P1) via a switch element (S3) and connected to the terminal (P2) via a switch element (S4) and a condenser (C3) connected between the terminal (P2) and the input terminal of the high-voltage amplifier circuit 271.
In this case, capacitance values of the condenser (CI) and the condenser (C3) are set to the same value and a capacitance value of the condenser (C2) is set to a capacitance value twice as much as the capacitance values of the condenser (C1) and the condenser (C3).
In addition, the respective switch elements (S1-S5) are made ON and, OFF in accordance with the bit values of lower-order two bits (D0, D1) of display data as shown in
It should be noted that also the low-voltage decoder circuit 279 can be constituted similar to the high-voltage decoder circuit 278 and in this case, the low-voltage decoder circuit 279 selects primary 17 levels of negative-polarity gray scale voltages generated by the negative-polarity gray scale voltage generating circuit 151b.
Further, the negative-polarity gray scale voltage generating circuit 151b generates the primary 17 levels of negative-polarity gray scale voltages based on 5 levels of negative-polarity reference gray scale voltages (V″5-V″9) inputted from the negative voltage generating circuit 122, further, each resistance in the voltage dividing resistor in the voltage-dividing resistor circuit constituting the negative-polarity gray scale voltage generating circuit 151b is weighted to reflect the relationship between light transmission through the liquid crystal layer and a voltage applied across it.
In the low-voltage decoder circuit 279, V″5>V″6>V″7>V″8>V″9 and therefore, when the gray scale voltage of the terminal (P1) is designated by (Va) and the gray scale voltage of the terminal (P2) is designated by (Vb), Va>Vb is always established.
In
In this way, according to the embodiment, in respect of a number of switching elements constituting the decoder circuit, the number is 64 ((9+7)×4) in the first decoder circuit 311, the number is 24 (=3×8) in the second decoder circuit 312 and accordingly, a total number of the switching elements (MOS transistor) constituting the decoder circuit per each drain signal line (D) is 88 and the number can considerably be reduced in comparison with the total number of 768 of the MOS transistors per each drain signal line (D) in Embodiment 1.
Moreover, by reducing the number of switching elements, inner current of the drain driver 130 can be reduced and accordingly, power consumption of a total of the liquid crystal display module (LCM) can be reduced by which reliability of the liquid crystal display module (LCM) can be promoted.
It should be noted that
In the high-voltage decoder circuit 278 shown in
Therefore, even when the MOS transistors the gate electrodes of which are supplied with the same voltage for each digit and which are continuous at each decoder row, are replaced by one MOS transistor, no problem is posed in view of function.
In the high-voltage decoder circuit 278 shown in
In addition, in the high-voltage decoder circuit 278 shown in
In the high-voltage decoder circuit 278 shown in
It should be noted that
Therefore, the synthesized resistance of MOS transistors at the respective decode rows can be reduced in the high-voltage decoder circuit 278 shown in
Further, generally, in a MOS transistor, by a substrate-source voltage (VBS), the threshold voltage (Vth) is changed in the positive direction by which drain current (IDS) is reduced. That is, resistance of the MOS transistor is increased.
Therefore, in the high-voltage decoder circuit 278 shown in
Thereby, in the high-voltage decoder circuit 278 shown in
The low-voltage decoder circuit 279 shown in
However, in the low-voltage decoder circuit 279, in separating a PMOS transistor region and an NMOS transistor region with the boundary of the gray scale voltage where substrate-source voltages (VBS) are equivalent (in
It should be noted that the respective voltages are set to V1>V2>V3 . . . >V32>V33.
In the above-described embodiments, each MOS transistor constituting the decode circuit 301 is constituted by a high-voltage-rating MOS transistor or a MOS transistor in which only the gate electrode portion is constructed by a high-voltage-rating structure.
Further, as MOS transistors of the lower-order bits of the decode circuit 301, there can be used lower source-drain voltage rating MOS transistors and in this case, the size of the decoder circuit 301 portion can further be reduced.
In the secondary gray scale voltage generating circuit 303 shown in
Additionally, respective switch control circuits (SG1-SG3) each provided with an NAND circuit (NAND), an AND circuit (AND) and a NOR circuit (NOR). Table 2 shows a truth table of the NAND circuit (NAND), the AND circuit (AND) and the NOR circuit (NOR).
When a reset pulse (/CR) is at L level, a switch element (SS1) is made ON, and an output from the NOR circuit (NOR) becomes L level and respective switch elements (S02, S12, S22) are made ON.
In this case, a timing pulse (/TCK) is at H level, an output from the NAND circuit (NAND) becomes H level and the respective switch elements (S01, S11, S21) are made OFF. Thereby, both terminals of the respective condensers (CoI-Co4) are connected to the terminal (P2) and accordingly, the respective condensers (CoI-Co4) are charged or discharged and the potential difference is brought into a state of 0 volt.
Next, when the reset pulse (/CR) becomes H level and the timing pulse (/TCK) becomes L level, the respective switch elements (S01, S02, S11, S12, S21, S22) are made ON or OFF in accordance with respective bit values of the lower-order 3 bits (D0-D2) of display data.
Thereby, when the gray scale voltage of the terminal (P1) is designated by (Va) and the gray scale voltage of the terminal (P2) is designated by (Vb), gray scale voltages of Va+(I18)Δ, Va+(2/8)Δ, . . . Vb{Va+(8/8)Δ} are outputted from the secondary gray scale generating circuit 302.
Further, although resistors can be used in place of the condensers in the secondary gray scale voltage generating circuit 303, in this case, resistors having high resistance values need to be used and the ratios between resistance values are reciprocal to the ratios between the capacitances.
For example, when resistors are used in place of the condensers in the secondary voltage generating circuit 303 shown in
A liquid crystal display module according to Embodiment 3 of the invention differs from the liquid crystal display module according to Embodiment 2 in that inverting amplifiers are used as the high-voltage amplifier circuit 271 and the low-voltage amplifier circuit 272 in the drain driver 130.
An explanation will be given of the drain driver 130 according to the embodiment centering on difference from Embodiment 2.
In
The other terminals of the respective condensers (CA2, CA3, CA4) are supplied with one of two successive levels of the primary gray scale voltages, that is, the primary gray scale voltage (Va) outputted to the terminal (P1) shown in
In this case, capacitance values of the condenser (CA2) and the condenser (CA4) are the same, a capacitance value of the condenser (CA3) is twice as much as the capacitance value of the condenser (CA2) and a capacitance value of the condenser (CAI) is four times as much as the capacitance value of the condenser (CA2).
In the inverting amplifier, in a resetting operation, the switch circuit (SWAO1) and the switch circuits (SwAII, SWA21, SWA31) are made ON and the switch circuits (SWA12, SWA22, SWA32) are made OFF.
In this state, the condenser (CAI) is reset, the op-amp (OP2) constitutes a voltage follower circuit, the output terminal and the inverting input terminal (−) of the op-amp (OP2) become at a potential of the primary gray scale voltage (Vb) and accordingly, the respective condensers (CA2-CA4) are charged to a voltage of (Vb−5 Va=ΔV).
Furthermore, in a normal state, the switch circuit (SWA01) is made OFF, and the switch circuits (SWA11, SWA21, SWA31) and the switch circuits (SWA12, SWA22, SWA32) are made ON or OFF as predetermined.
Thereby, the primary gray scale voltage of Va is inverted and amplified with the primary gray scale voltage (Vb) as, a reference and voltages of Vb+Va, Vb+Va+(1/4)ΔV, Vb+Va+(I/2)ΔV, Vb+Va+(3/4)ΔV are outputted from the output terminal of the op-amp (0P2).
A liquid crystal display module according to Embodiment 4 of the invention differs from the liquid crystal display module according to Embodiment 1 in that negative-polarity gray scale reference voltages (V″5-V″9) are outputted from the power supply circuit 120 to the drain driver 130, and in the drain driver 130, 32 levels of negative-polarity gray scale voltages are generated from the negative-polarity gray scale reference voltages (V″5-V″9), further, an inverting amplifier is used as the high-voltage amplifier circuit 271 and the negative-polarity gray scale voltages are inverted and amplified by the inverting amplifier and positive-polarity gray scale voltages are applied to the drain signal lines (D).
An explanation will be given of the drain driver 130 according to the embodiment centering on difference from Embodiment 1.
In
In the high-voltage amplifier circuit 271 according to this embodiment, an op-amp (OP3) constitutes an inverting amplifier.
Therefore, the input stage of the op-amp (OP3) is connected with the low-voltage decoder circuit 279 shown in
That is, according to this embodiment, the low-voltage decoder circuits 279 are used for all of the decoder portion 261 shown in
Consequently, according to this embodiment, the positive voltage generating circuit 121 and the positive-polarity gray scale voltage generating circuit 151a are not necessary in the power supply circuit 120 (not shown) and in the drain driver 130 (not shown), respectively. As shown in
The other terminal of the condenser (CB2) is supplied with a gray scale voltage from the low-voltage decoder circuit 272 via a switch (SWB3) and is supplied with a reference voltage (Vref) via a switch (SWB2). Further, the reference potential (Vref) is applied to a noninverting input terminal (+) of the op-amp (OP3). In this case, the reference voltage (Vref) is also a potential of the liquid crystal drive voltage (Vcom) applied to the common electrode (ITO2).
In this inverting amplifier, in a resetting operation, the switch circuit (SWB1) and the switch circuit (SWB2) are made ON and the switch circuit (SWB3) is made OFF.
In this state, the op-amp (OP3) constitutes a voltage follower circuit, the output terminal and the inverting terminal of the op-amp (OP3) become at a potential of the reference voltage (Vref), the reference voltage (Vref) is also applied to the other terminal of the condenser (CB2) and accordingly, the condenser (CB1) and the condenser (CB2) are reset.
Moreover, in a normal state, the switch circuit (SWB1) and the switch circuit (SWB2) are made OFF, the switch circuit (SWB3) is made ON, a negative-polarity gray scale voltage inputted via the condenser (CA2) is inverted and amplified with the reference potential (Vref) as a reference and a positive-polarity gray scale voltage is outputted from the output terminal of the op-amp (OP3).
According to this embodiment, in place of the high-voltage decoder circuit 271 shown in
A liquid crystal display module according to Embodiment 5 of the invention differs from Embodiment 1 in that a single amplifier circuit 273 acts as the high-voltage amplifier circuit 271 and the low-voltage amplifier circuit 272.
An explanation will be given of the drain driver 130 according to this embodiment centering on difference from Embodiment 1.
In
Therefore, the amplifier circuit 273 needs to be supplied with a positive-polarity gray scale voltage selected by the high-voltage decoder circuit 278 or a negative-polarity gray scale voltage selected by the negative-voltage decoder circuit 279.
As shown in
In the amplifier circuit 273 shown in
In this amplifier circuit 273, the output stage is configured by a push-pull constitution to output negative-polarity and positive-polarity gray scale voltages with the single amplifier circuit.
Additionally, the amplifier circuit 273 provides a wide dynamic range since currents (11′, 12′) can be flowed even when the currents (11, 12) are made OFF.
According to this embodiment, a single amplifier circuit is configured to output negative-polarity and positive-polarity gray scale voltages to a corresponding drain signal line (D), the brightness of each pixel is determined by its potential with respect to the common potential (Vcom) applied to the common electrode (ITO2). No problem of vertical spurious lines occurs on a displayed image if a voltage difference (|VH−Vcom|) between a positive-polarity gray scale voltage (VH) and the potential (Vcom) of the common electrode (ITO2) is equal to a voltage difference (|VL−Vcom|) between a negative-polarity gray scale voltage (VL) and the potential (Vcom) of the common electrode (ITO2), but in many cases, there occurs a difference between the positive-polarity gray scale voltages (VII) and the negative-polarity gray scale voltages (VL), due to asymmetrical characteristics of the liquid crystal layer with respect to the polarity of a voltage applied across it, or unintentional coupling in the gate drivers 140 and accordingly, this embodiment is advantageous.
As mentioned above, a higher resolution liquid crystal panel is requested in a liquid crystal display device.
For such a higher resolution liquid crystal panel, the display control circuit 110, the drain driver 130 and the gate driver 140 have to perform high-speed operation, particularly, the clock (CL2) outputted from the display control circuit 110 to the drain driver 130 and the operating frequency of display data undergo the considerable influence of high-speed operation. For example, in a liquid crystal display panel having 1024×768 pixels of an XGA display mode, the clock (CL2) frequency is 65 MHz and display data frequency is 32.5 MHz (half of 65 MHz).
Accordingly, for example, in the case of XGA display mode, in a liquid crystal display module of the embodiment, the frequency of the clock (CL2) between the display control circuit 110 and the drain driver 130 is 32.5 MHz (half of 65 MHz) and display data are latched on both the positive-going transition and the negative-going transition of the clock CL2 in the drain driver 130.
The structure of
An explanation will be given of the driver 130 according to this embodiment centering on a difference from Embodiment 1.
As shown in
As shown in
Display data latched by the pre-latch circuit 160 is selected by the switch portion (3) and is outputted alternately to the bus line 161a and the bus line 161b of display data.
Display data on two routes of the bus lines (161a, 161b) are inputted to the data latch portion 265 based on a control signal for data input from the shift register 153.
In this case, data of 2 pixels (data for six drain signal lines (D)) are inputted to the data latch portion 265 at one time.
A gray scale voltage in correspondence with display data is outputted from the amplifier pair 263 of the drain driver 130 to each drain signal line (D) based on display data latched at the data latch portion 265.
The operation is the same as in Embodiment 1 and therefore an explanation thereof will be omitted.
As shown in
As is known from
As shown in
Accordingly, when the frequency of display data on one route of the bus line 161 is the same frequency as that of display data transmitted from the display control circuit 110 (for example, 60 MHz), a timing margin for latching display data is reduced at the end remote from the pre-latch circuit 160.
However, according to this embodiment, two routes of the bus lines (161a, 161b) are installed, the frequency of display data on two routes of the bus lines (161a, 161b) can be made a half (for example, 30 MHz) of the frequency (for example, 60 MHz) transmitted from the display control circuit 110 and accordingly, compared with the case of the drain driver shown in
However, in the drain driver 130 of this embodiment, data for two pixels (data for six drain signal lines (D)) is inputted to the data latch portion 265 at one time and accordingly, one flip/flop circuit of the shift register 153 may be installed for every six drain signal lines (D) (for example, 43 when the total number of drain signal lines (D) is 258) and the number of flip/flop circuits of the shift register 153 can be made a half of those of the drain driver 130 shown in
Moreover, in the drain driver 130 of this embodiment, display data from the pre-latch circuit 160 is outputted alternately to each of the two routes of the bus lines (161a, 161b) by using the switch portion (3) 266 and accordingly, the switch portion (1) 262 shown in
One switch portion (1) 262 is needed for every six drain signal lines (D) (for example, 43 when the total number of drain signal lines (D) is 258). However, the number of the switch portion (3) 266 of the drain driver 130 is no more than the number of bits for display data (in
In this way, in the drain driver 130 of the embodiment, compared with the drain driver shown in
Although, in the above-described respective embodiments, an explanation has been given of embodiments in which the present invention is applied to a vertical field type liquid crystal display panel, the present invention is not limited thereto, but the present invention is also applicable to a horizontal field type liquid crystal display panel in which an electric field is applied in the direction parallel to its liquid crystal layer and which is commonly called an in-plane switching type liquid crystal display panel shown in
In the liquid crystal display panel of a vertical field type shown in
Accordingly, the capacitance of the liquid crystal layer (Cpix) is equivalently connected between a pixel electrode (PX) and the counter electrode (CT). Further, the holding capacitance (Cstg) is also formed between the pixel electrode (PX) and the counter electrode (CT).
Moreover, although, in the above-described embodiments, an explanation has been given of the embodiments in which the dot-inversion drive method is used, the invention is not limited thereto, but the invention is applicable to a common-electrode voltage inversion drive method of inverting polarities of both drive voltages applied to a common electrode (ITO2) and a pixel electrode (ITO1) on successive lines or on successive frames.
Although a specific explanation has been given of the present invention carried out by the inventors based on the embodiments of the invention, the invention is not limited to the above-explained embodiments of the invention, and various changes and modifications can be made to those embodiments without departing from the true spirit and scope of the invention.
Advantages provided by the representative embodiments of the present invention can be summarized as follows:
(1) Improvement of display quality by preventing black or white spurious-signal vertical lines from appearing in a displayed image due to offset voltages in amplifier circuits of video signal line driver circuits;
(2) Reduction of an area occupied by level shift circuits in a chip of video signal line driver circuits by using low source-drain voltage rating transistors in the level shift circuit compared with the case of using higher source-drain voltage rating transistors;
(3) Reduction of border areas of the liquid crystal display panel, reduction of cost and improvement of reliability by the above-mentioned reduction of the chip size of the video signal line driver circuits; and
(4) Sufficient timing margin in latching display data in a semiconductor IC of video signal line driver circuits even when the display data latch clock frequency and the operating frequency of display data are increased.
Number | Date | Country | Kind |
---|---|---|---|
10-050699 | Mar 1998 | JP | national |
This is a division of U.S. application Ser. No. 10/832,435, filed Apr. 27, 2004, now U.S. Pat. No. 7,417,614, which is a continuation of U.S. application Ser. No. 10/143,796, filed May 14, 2002, now U.S. Pat. No. 6,731,263, which is a continuation of U.S. application Ser. No. 09/260,076, filed Mar. 2, 1999, now U.S. Pat. No. 6,388,653, the subject matter of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4138649 | Schaffer | Feb 1979 | A |
4902981 | Gard et al. | Feb 1990 | A |
RE34428 | George et al. | Nov 1993 | E |
5334944 | Hirakata | Aug 1994 | A |
5467009 | McGlinchey | Nov 1995 | A |
5706024 | Park | Jan 1998 | A |
5724057 | Kimura et al. | Mar 1998 | A |
5831605 | Yasui et al. | Nov 1998 | A |
5909146 | Okada | Jun 1999 | A |
5995073 | Isami et al. | Nov 1999 | A |
6046736 | Atherton | Apr 2000 | A |
6140876 | Yero | Oct 2000 | A |
6140989 | Kato | Oct 2000 | A |
6157360 | Jeong et al. | Dec 2000 | A |
6166725 | Isami et al. | Dec 2000 | A |
6184855 | Kobayashi et al. | Feb 2001 | B1 |
6480178 | Itakura et al. | Nov 2002 | B1 |
Number | Date | Country |
---|---|---|
55-1702 | Jan 1980 | JP |
59-149408 | Aug 1984 | JP |
1-202909 | Aug 1989 | JP |
4-38004 | Feb 1992 | JP |
5-232898 | Sep 1993 | JP |
9-281930 | Oct 1997 | JP |
Number | Date | Country | |
---|---|---|---|
20080024419 A1 | Jan 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10832435 | Apr 2004 | US |
Child | 11862433 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10143796 | May 2002 | US |
Child | 10832435 | US | |
Parent | 09260076 | Mar 1999 | US |
Child | 10143796 | US |