1. Field of the Invention
The present invention relates to the field of liquid crystal display technology, and in particular to a liquid crystal display device.
2. The Related Arts
Liquid crystal displays (LCDs) have a variety of advantages, such as thin device body, low power consumption, and being free of radiation, and are thus of wide applications, such as liquid crystal televisions, mobile phones, personal digital assistants (PDAs), digital cameras, computer monitors, and notebook computer screens.
Most of the currently available liquid crystal displays are backlighting liquid crystal displays, which comprise an enclosure, a liquid crystal panel arranged in the enclosure, and a backlight module mounted in the enclosure. The liquid crystal panel itself does not emit light and light must be supplied from the backlight module to the liquid crystal panel in order to normally display images
A conventional backlight module 300 comprises a backlight source 310, a light guide plate 330, a bottom reflector plate 350, and an optic film assembly 370. The backlight source 310 can be a light-emitting diode (LED), a cold cathode fluorescent lamp (CCFL), or a hot cathode fluorescent lamp (HCFL). The optic film assembly 370 comprises a diffuser film, a bright enhancement film, and a protection film.
The conventional liquid crystal television produces often adopt a driving method of a VA mode solution or an IPS mode solution in order to expand the view angle of displaying. The VA mode has advantages of high yield rate and high throughput; however, to reduce color shift for displaying at large view angles, the ITO electrode must adopt the eight-domain solution to improve color deviation at large view angles. Using ITO electrode of the eight-domain pattern would lead to a reduction of the yield rate of a manufacturing process, a reduction of the aperture ratio, a reduction of liquid crystal performance, and a reduction of light transmittance, and thus the cost of the backlight module is indirectly increased. On the other hand, using a two-domain or one-domain VA mode solution allows for a signification increase of light transmittance, but color deviation becomes apparently severe at large view angles.
Further, since a display panel of a liquid crystal television needs a large view angle for watching and view angel brightness must satisfy the view angle specification of ½ brightness or ⅓ brightness. The optic film assembly of the backlight module needs to have a relatively large light-exit view angle. Since the light transmittance of the liquid crystal panel at a large view angle is reduced, the light extraction performance of the backlight module gets deteriorated and the large view angle color deviation issue of the liquid crystal panel is made apparently identifiable.
An object of the present invention is to provide a liquid crystal display device, which greatly improves light transmittance and light extraction efficiency and also effectively overcomes the issue of color deviation at a large view angle.
To achieve the above object, the present invention provides a liquid crystal display device, which comprises: a liquid crystal panel and a collimated exit light backlight module that provides a light source to the liquid crystal panel. The liquid crystal panel comprises a color filter (CF) substrate, an array substrate that is arranged opposite to the CF substrate, and a liquid crystal layer that is filled between the CF substrate and the array substrate. The CF substrate has a surface that is distant from the liquid crystal layer and comprises an upper polarizer film arranged thereon. The array substrate has a lower surface that is distant from the liquid crystal layer and comprises a lower polarizer film arranged thereon. The collimated exit light backlight module comprises a light guide plate, at least one backlight source arranged at one side of the light guide plate, an optic film assembly arranged above the light guide plate, and a bottom reflector plate arranged below the light guide plate. The upper polarizer film comprises a view angle diffusion film arranged thereon. The optic film assembly comprises a birefringent polarizer. The birefringent polarizer separates polarized lights.
The view angle diffusion film is a diffusive optic film made up of diffusion particles.
The view angle diffusion film adopts a prism-structure design. The view angle diffusion film has a lower surface on which a plurality of V-shaped projections is formed.
The view angle diffusion film comprises a plurality of diffractive optic units. The diffractive optic units are rectangular projections formed on the view angle diffusion film. A spacing distance between two adjacent ones of the diffractive optic units is equal to or less than a wavelength of a visible light.
The birefringent polarizer is made up of a microstructure anisotropic polymer layer.
The optic film assembly further comprises a microstructure brightness enhancement film. The microstructure brightness enhancement film generates a collimated exit light.
The microstructure brightness enhancement film adopts a prism-structured design.
The light guide plate has a lower surface comprising a plurality of inverted V-shaped troughs formed therein.
The optic film assembly further comprises an inverted prism-structured film. The inverted prism-structured film has a lower surface in which a plurality of inverted V-shaped troughs is formed.
The liquid crystal panel is a one-domain or two-domain vertical alignment (VA) mode liquid crystal panel.
The efficacy of the present invention is that the present invention provides a liquid crystal display device, which comprises an arrangement of a view angle diffusion film to give a component of a normal-view-angle exit light to a large-view-angel exit light so as to greatly increase light transmittance and thus overcome the issue of color deviation at a large view angle and an arrangement of a birefringent polarizer to separate polarized lights so as to provide a polarized exit light and thus greatly improve utilization rate of the light entering the liquid crystal panel, whereby the liquid crystal display device can greatly improve light transmittance and light extraction efficiency and may also effectively overcome the issue of color deviation at a large view angle.
For better understanding of the features and technical contents of the present invention, reference will be made to the following detailed description of the present invention and the attached drawings. However, the drawings are provided for the purposes of reference and illustration and are not intended to impose limitations to the present invention.
The technical solution, as well as other beneficial advantages, of the present invention will be apparent from the following detailed description of embodiments of the present invention, with reference to the attached drawing. In the drawing:
To further expound the technical solution adopted in the present invention and the advantages thereof, a detailed description is given to a preferred embodiment of the present invention and the attached drawings.
Referring to
The liquid crystal panel 1 comprises a color filter (CF) substrate 11, an array substrate 13 that is arranged opposite to the CF substrate 11, and a liquid crystal layer 12 that is filled between the CF substrate 11 and the array substrate 13. The CF substrate 11 has an upper surface that is distant away from the liquid crystal layer 12 in a relative sense and comprises an upper polarizer film 15 attached thereto and a lower surface that is close to the liquid crystal layer 12 in a relative sense and comprises color resist arranged thereon by taking pixels as units. The array substrate 13 has a lower surface that is away from the liquid crystal layer 12 in a relative sense and comprises an upper polarizer film 15 that is normal to the lower polarizer film 17 in directions of axes thereof attached thereto and an upper surface that is close to the liquid crystal layer 12 in a relative sense and is provided with thin-film transistor (TFT) switches for charging/discharging the pixels. Formed atop the TFT switches is an indium tin oxide (ITO) electrode that controls the liquid crystal layer 12. The ITO electrode comprises a pattern design that can be a pattern fit for one-domain or two-domain vertical alignment (VA) mode liquid crystal panel. The one-domain or two-domain VA mode liquid crystal panel employs UV2A, PVA, or PSVA driving techniques, having an increased aperture ratio, enhanced liquid crystal performance, and a heightened light transmittance.
It is noted here that the upper polarizer film 15 comprises a view angle diffusion film 19 arranged thereon. More specifically, the view angle diffusion film 19 is adhesively bonded on the upper polarizer film 15. The view angle diffusion film 19 can be a diffusive optic film composed of diffusion particles; or alternatively, as shown in
The collimated exit light backlight module 3 comprises a light guide plate 31, at least one backlight source 33 arranged at one side of the light guide plate 31, an optic film assembly 35 arranged above the light guide plate 31, and a bottom reflector plate 37 arranged below the light guide plate 31.
Specifically, each of two opposite sides of the light guide plate 31 is provided with a backlight source 33 and the backlight sources 33 each comprise a light-emitting diode (LED) light source. The light guide plate 31 is provided, in a lower surface thereof, with a plurality of inverted V-shaped troughs by a V-cut process. The optic film assembly 35 has a surface that is close to the light guide plate 31 in a relative sense and comprises an inverted prism-structured film 355 thereon. The inverted prism-structured film 355 has a lower surface in which a plurality of inverted V-shaped troughs is formed. The light guide plate 31 and the inverted prism-structured film 355 in combination readily concentrate exit light distribution in a small view angel range for light exiting.
It is noted that the optic film assembly 35 may further comprises a microstructure brightness enhancement film 353, which may adopt a prism-structured design or other forms of structure. The microstructure brightness enhancement film 353 functions to generate a collimated exit light.
It is noted that the side of the optic film assembly 35 has a surface that is distant from the light guide plate 31 in a relative sense and comprises a birefringent polarizer 351 arranged thereon. Specifically, the birefringent polarizer 351 is made up of a microstructure anisotropic polymer layer. The birefringent polarizer 351 functions for S/P separation of polarized lights so as to provide a polarized exit light to thereby greatly improve utilization rate of the light entering the liquid crystal panel 1.
In summary, the present invention provides a liquid crystal display device, which comprises an arrangement of a view angle diffusion film to give a component of a normal-view-angle exit light to a large-view-angel exit light so as to greatly increase light transmittance and thus overcome the issue of color deviation at a large view angle and an arrangement of a birefringent polarizer to separate polarized lights so as to provide a polarized exit light and thus greatly improve utilization rate of the light entering the liquid crystal panel, whereby the liquid crystal display device can greatly improve light transmittance and light extraction efficiency and may also effectively overcome the issue of color deviation at a large view angle.
Based on the description given above, those having ordinary skills of the art may easily contemplate various changes and modifications of the technical solution and technical ideas of the present invention and all these changes and modifications are considered within the protection scope of right for the present invention.
Number | Date | Country | Kind |
---|---|---|---|
201410524674.1 | Sep 2014 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2014/089617 | 10/28/2014 | WO | 00 |