The backlight 110 is constituted of a light guide plate 120, LEDs 150 and a housing case 180. The backlight 110 is provided for radiating light to the liquid crystal panel 1. The liquid crystal panel 1 performs a display by controlling a transmission quantity or a reflection quantity of light radiated from the backlight 110. Here, the backlight 110 is mounted on a back surface side or a front surface side of the liquid crystal panel 1 in a stacked manner as viewed from a viewer. However, in
The light guide plate 120 is formed in a substantially rectangular shape, and the LEDs 150 are arranged on a side surface of the light guide plate 120. Numeral 160 indicates a flexible printed circuit board which electrically connects the plurality of LEDs 150. The flexible printed circuit board 160 and the control circuit 80 are electrically connected with each other using a line 161.
A side surface 125 on which the LEDs 150 are arranged is referred to as a light incident surface or a light entrance surface, and light is incident on the light guide plate 120 from the light incident surface 125. Further, a projecting portion (also referred to as a convex portion) 220 is arranged between two neighboring LEDs 150. The detailed explanation of the projecting portions 220 are described later.
Next, the liquid crystal panel 1 is explained hereinafter. The liquid crystal panel 1 includes two substrates consisting of a TFT substrate 2 and a color filter substrate 3, and a liquid crystal composition is sandwiched between two substrates which overlap each other. Pixel electrodes 12 are formed in pixel portions 8 of the TFT substrate 2. Here, the liquid crystal panel 1 includes a large number of the pixel portions 8 in a matrix array. However, to avoid the drawing from becoming cumbersome, in
On the TFT substrate 2, gate signal lines (also referred to as scanning signal lines) 21 which extend in the X direction and are arranged in parallel in the Y direction in the drawing and drain signal lines (also referred to as video signal lines) 22 which extend in the Y direction and are arranged in parallel in the X direction in the drawing are provided, and the gate signal lines 21 and the drain signal lines 22 intersect each other. Further, the pixel portions 8 are formed in regions which are surrounded by the gate signal lines 21 and the drain signal lines 22.
A switching element 10 is provided to the pixel portion 8. A control signal is supplied to the pixel portion 8 from the gate signal line 21 so as to control an ON/OFF state of the switching element 10. When the switching element 10 is turned on, the video signal which is transmitted via the drain signal line 22 is supplied to the pixel electrode 12.
The drain signal lines 22 are connected to a drive circuit 5 and video signals are outputted to the drain signal lines 22 from the drive circuit 5. The gate signal lines 21 are connected to a drive circuit 6 and control signals are outputted to the gate signal lines 21 from the drive circuit 6. Here, the gate signal lines 21, the drain signal lines 22, the drive circuit 5 and the drive circuit 6 are formed on the same TFT substrate 2. Further, the drive circuit 5, the drive circuit 6 and the control circuit 80 may also be formed on one semiconductor chip.
Next,
The LED 150 is configured such that an LED chip 151 constituting a light emitting portion is mounted on a chip substrate 154. The LED chip 151 has a pn junction and light having a specific wavelength is radiated when a voltage is applied to the pn junction. A p electrode (anode) 158 is formed on a p-type semiconductor layer which forms the pn junction, and an n electrode (cathode) 159 is formed on an n-type semiconductor layer which forms the pn junction.
Wires 152 are connected to the p electrode 158 and the n electrode 159 respectively. With these wires 152, chip terminals 153 which are provided for connecting the LED 150 and the outside are electrically connected with the p electrode 158 and the n electrode 159.
A fluorescent light emitting portion 156 may be formed on a light radiation surface side of the LED chip 151. The fluorescent light emitting portion 156 has a function of converting a wavelength of light which is emitted from the LED chip 151. Here, numeral 155 indicates a reflection portion which reflects light frontwardly.
Next,
In
An adhesive sheet 190 (not shown in the drawing) is mounted on a light-guide-plate-120 side of the flexible printed circuit board 160. By adhering and fixing the flexible printed circuit board 160 to the light guide plate 120 using the adhesive sheet 190, the LEDs 150 can be positioned with respect to the light incident surface 125.
Here, the inclination surface 129 is arranged close to the light incident surface 125 and, further, the flexible printed circuit board 160 possesses the flexibility. However, since a portion of the flexible printed circuit board 160 which overlaps the inclination surface 129 is short, it is difficult to fix the flexible printed circuit board 160 to the inclination surface 129 using the adhesive sheet 190 by bending the flexible printed circuit board 160. Further, there exists a possibility that positions of the LEDs 150 are moved after being mounted due to a bending stress. Accordingly, projecting portions 220 are formed on the light guide plate 120 along side surfaces of the LEDs 150, and the adhesive sheet 190 is arranged between the projecting portions 220 and the flexible printed circuit board 160.
Next, the explanation is made with respect to light 131 which is radiated from the LED 150 in conjunction with
Further, the upper surface 121 and the lower surface 122 of the light guide plate 120 are arranged to be substantially orthogonal to the light incident surface 125, and grooves 126 having a V-shaped cross section are formed in the lower surface 122 as reflection portions. The light which is incident on the inside of the light guide plate 120 advances the inside of the light guide plate 120 while repeating the total reflection with respect to the upper surface 121 and the lower surface 122 of the light guide plate 120. A portion of the light which advances the inside of the light guide plate 120 is reflected toward the upper surface 121 side by the grooves 126 formed in the lower surface 122 and is radiated from the upper surface 121. Here, although the explanation has been made by taking the grooves 126 having a V-shaped cross section as one example of the reflection portions, the reflective portions may be formed in any shape provided that the reflection portions can direct the light which advances the light guide plate toward the upper surface 121 side. For example, white dots which are formed by printing or the like may be used as the reflection portions.
Next, the explanation is made with respect to the light which is reflected by the grooves 126 in conjunction with
Further, as shown in
Next, the LED 150 which radiates light from side surfaces thereof is explained in conjunction with
By allowing the light to be incident on the light guide plate 120 through the projecting portions 220, the light can be incident on the light guide plate 120 also from a gap between two neighboring LEDs 150. Accordingly, it is possible to reduce a dark portion which is formed between two neighboring LEDs 150.
Next, a step for assembling the flexible printed circuit board 160 which mounts the LEDs 150 thereon to the light guide plate 120 is explained in conjunction with
The adhesive sheet 190 is mounted on the flexible printed circuit board 160 on which the LEDs 150 are mounted. The flexible printed circuit board 160 is adhered to the light guide plate 120 using the adhesive sheet 190. If the positions of the LEDs 150 are easily moved with respect to the light incident surface 125 of the light guide plate 120 due to vibrations or the like, brightness of light which is incident on the light guide plate 120 is changed. The change of brightness of light which is incident from the light source decreases the display performance. Accordingly, the flexible printed circuit board 160 is fixed to the light guide plate 120 using the adhesive sheet 190 or the like.
The adhesive sheet 190 has the multi-layered structure in which an adhesive member is mounted on a resin-made substrate. As described later, a reflection portion of the adhesive sheet 190 may be made of a paint or a material corresponding to silver.
On the light guide plate 120, as described above, the projecting portions 220 are formed. The adhesive sheet 190 is arranged between upper surfaces of the projecting portion 220 and the flexible printed circuit board 160. The flexible printed circuit board 160 is fixed to the light guide plate 120 using the adhesive sheet 190 and hence, the positions of the LEDs 150 with respect to the light guide plate 120 are stabilized.
Further, by integrally forming the light guide plate 120 and the flexible printed circuit board 160 using the adhesive sheet 190, it is possible to confirm whether the LEDs 150 are arranged at accurate or proper positions with respect to the light incident surface 125 of the light guide plate 120 or not. That is, in case of a step in which the flexible printed circuit board 160 and the light guide plate 120 are separately mounted on the backlight 110, in an attempt to confirm the positions of the LEDs 150 with respect to the light incident surface 125 after storing respective parts in the backlight 110, other parts conceal the LEDs 150 and the light incident surface 125 and hence, the confirmation of the LEDs 150 becomes difficult.
Next, a step for mounting the part which is integrally formed of the light guide plate 120 and the flexible printed circuit board 160 on a mold 180 is explained in conjunction with
Further, the mold 180 also has the function of preventing leaking of light and covers a periphery of the light guide plate 120. However, the mold 180 forms an opening in a liquid-crystal-panel side thereof and hence, light which is radiated from the backlight 110 is radiated to the liquid crystal panel.
First of all, the reflective sheet 115 is arranged on the mold 180. The light guide plate 120 and the flexible printed circuit board 160 are arranged on the reflective sheet 115. Here, as shown in
When the reflective sheet 115 is arranged to the outside of the opening of the mold 180, it is possible to form a space between the LED 150 and the reflective sheet 115. With the provision of such a space, it is possible to lower the possibility of occurrence of a drawback that the LED 150 and the reflective sheet 115 are brought into contact with each other attributed to the deformation of the LED 150 caused by the thermal expansion.
The optical sheets are arranged in conformity with light radiated from the light radiation surface and hence, the respective optical sheets have the substantially same shape and the substantially same size as the light radiation surface of the light guide plate 120. That is, for lowering a manufacturing cost of a product, an area of the optical sheet to be used is required to be as small as possible. Accordingly, to achieve such an optical object, the optical sheets have the substantially same size as the light radiation surface of the light guide plate 120.
Next,
A light blocking frame 116 is arranged between the liquid crystal panel 1 and the mold 180. With the use of the light blocking frame 116, it is possible to prevent undesired light from being incident on the liquid crystal panel 1 from the backlight 110. Further, by imparting the adhesiveness to the light blocking film 116, the mold 180 and the liquid crystal panel 1 may be fixed to each other.
Accordingly, as shown in
Even when the force indicated by the arrow A in
Here, although the optical sheets extend to a lower side of the light blocking frame 116, the light is blocked by the light blocking frame 116 and hence, optical functions of portions of the optical sheets arranged below the light blocking frame 116 are useless. Accordingly, sheet-like parts may overlap the inclination surface 129 instead of the expensive optical sheets.
Here, the reflective sheet 115 is configured to be arranged inside the mold 180 in
By arranging the optical sheets such as the diffusion plate 114, the lower prism sheet 113 and the upper prism sheet 112 on the inclination surface 129 in an overlapping manner, it is possible to prevent the breakage of the liquid crystal panel 1. However, by arranging the optical sheets on the inclination surface 129 in an overlapping manner, light which is radiated from the inclination surface 129 propagates the optical sheet and becomes stray light thus giving rise to a drawback that the light transmission efficiency of the light guide plate 120 is lowered. That is, a ratio of a quantity of the light which is radiated from the backlight 110 and is radiated to the liquid crystal panel 1 with respect to a quantity of the light which is radiated from the LED 150 (utilization efficiency of light) is lowered.
Accordingly, as shown in
For example, when a thickness of the light guide plate 120 is set to 0.2 to 0.5 mm for reducing a thickness of the liquid crystal display device, a height of the inclination surface 129 becomes 0.05 to 0.15 mm and the total thickness of the overlapping optical sheets becomes 0.1 to 0.2 mm and hence, it is impossible to overlap the flexible printed circuit board 160 to the optical sheet.
Accordingly, as shown in
Next,
The detail of the adhesive sheet 190 which is used in the constitution shown in
By arranging the reflective member 211 on an extending portion of the flexible base film 212, as shown in
As the reflective member 211, a material having a high reflectance may be used. For example, a white paint, silver or a material corresponding to silver may be used.
Next,
Number | Date | Country | Kind |
---|---|---|---|
2006-222883 | Aug 2006 | JP | national |