The present invention relates to a liquid crystal display device, and more particularly, to a liquid crystal display device having a wide viewing angle characteristic and performing a high quality display.
Conventionally, liquid crystal display devices using a liquid crystal layer with a CPA (Continuous Pinwheel Alignment) mode are well known (see Patent Document 1, for example). This type of liquid crystal display devices uses a vertical orientation type liquid crystal layer in a manner similar to a VA (Vertical Alignment) mode and its response speed is faster than a TN (Twisted Nematic) mode and the like.
In addition, a CPA mode liquid crystal display device has a plurality of pixel electrodes with rounded edges and generates a particular electric field (a so-called oblique electric field) based on a shape of the aforementioned pixel electrodes when voltage is applied. The aforementioned liquid crystal display device can align and tilt liquid crystal molecules radially with respect to each pixel using its particular electric field. Therefore, the CPA mode liquid crystal display device can tilt liquid crystal molecules in all directions continuously and has an excellent wide viewing angle characteristic.
This type of liquid crystal display devices with an excellent wide viewing angle characteristic is widely used for monitors of personal computers, display devices of personal digital assistant devices, television receivers and the like.
The CPA mode liquid crystal display device, described in the aforementioned Patent Document 1, has protrusion portions to facilitate the tilt-orientation of liquid crystal molecules by an oblique electric field when voltage is applied. As shown in Patent Document 1, these protrusion portions (the punctate protrusion and linear protrusion in Patent Document 1) is provided on the opposite electrode facing the pixel electrodes through a liquid crystal layer. Each of the aforementioned protrusion portions is provided so as to correspond to the approximate center of respective pixel electrodes. The presence of this type of protrusion portions facilitates the radial tilt-orientation of the liquid crystal molecules such that the liquid crystal molecules surround the protrusion portions when voltage is applied.
Patent Document 1: Japanese Patent Application Laid-Open Publication No. 2008-304544
The CPA mode liquid crystal display device, described in the aforementioned Patent Document 1 and the like, is normally set to display black when no voltage is applied. This setting is so called a normally black type. When voltage is not applied (when no voltage is applied), it is preferable that liquid crystal molecules be all vertically aligned in a liquid crystal layer of a liquid crystal display device.
However, when the aforementioned protrusion portions are provided on the opposite electrodes as in the aforementioned Patent Document 1 and the like, the protrusion portions act on the liquid crystal molecules present in its surroundings and tilt the liquid crystal molecules when no voltage is applied. This is because there is an alignment film to vertically align liquid crystal molecules between the opposite electrode in which the aforementioned protrusion portions are provided and the liquid crystal layer when no voltage is applied, and this alignment film is deformed in a manner of projecting into the liquid crystal layer by the aforementioned protrusion portions. When deformed, the alignment film acts on the liquid crystal molecules on the film surface in its deformed state. Therefore, the liquid crystal molecules tilt as described above.
When liquid crystal molecules tilt in the black display, the tilted liquid crystal molecules become a cause of a light leakage, and furthermore a cause of a lower contrast. The problems such as a lower contrast and the like become more pronounced when the protrusion portions are set large. Therefore, from the viewpoint of suppressing a light leakage and a low contrast, it is desirable that the size of the aforementioned protrusion portions be set small.
However, if the aforementioned protrusion portions are too small relative to the size of the pixel electrodes, the response speed of a liquid crystal display device becomes slower. When voltage is applied to a CPA mode liquid crystal display device, the force to orient liquid crystal molecules radially (so called an orientation control force) appears most significantly in the proximity of the protrusion portions which are placed approximately at the center of pixel electrodes and in the proximity of the edge area (the periphery) of pixel electrodes. As a result, the orientation of the liquid crystal molecules starts to change from the liquid crystal molecules placed adjacent to these areas and the liquid crystal molecules begin to tilt. Then the liquid crystal molecules that exist therebetween also start to change the orientation progressively and sequentially tilt. Therefore, if the pixel electrodes are large relative to the aforementioned protrusion portions, the distance between the aforementioned protrusion portions and the edge area becomes longer and it takes a long time for all the liquid crystal molecules to complete tilting.
As described above, the CPA mode liquid crystal display device that controls the orientation of liquid crystal molecules using the protrusion portions shown in the aforementioned Patent Document 1 and the like actually had limitations such as an inability to set the pixel electrodes large due to a lower contrast and slower response speed.
The purpose of the present invention is to provide a liquid crystal display device with a high degree of freedom in the size of pixel electrodes.
A liquid crystal display device according to the present invention includes a first substrate having a plurality of pixel electrodes thereon, a second substrate provided with an opposite electrode that faces the pixel electrodes, the second substrate facing the first substrate, and a liquid crystal layer that is interposed between the first substrate and the second substrate and that contains vertical orientation type liquid crystal molecules, wherein the liquid crystal molecules are aligned and tilted radially or concentrically with respect to the aforementioned pixel electrodes in response to voltage applied between the pixel electrode and the opposite electrode, wherein either one or both of the substrates have a photo-aligning vertical alignment film which exhibits an orientation control force in response to light illumination, and wherein the photo-aligning vertical alignment film is disposed to correspond to each of the pixel electrodes and contains a plurality of orientation control surfaces that control the orientation of the liquid crystal molecules radially.
In the aforementioned liquid crystal display device, it is preferable that the respective orientation control surfaces of the photo-aligning vertical alignment film exhibits the orientation control force in response to radial or concentric light illumination.
In the aforementioned liquid crystal display device, each of the orientation control surfaces of the photo-aligning vertical alignment film is formed by a pinhole exposure, for example.
In the aforementioned liquid crystal display device, each of the orientation control surfaces of a photo-aligning vertical alignment film is formed by a microlens exposure, for example.
In the aforementioned liquid crystal display device, the pixel electrodes have a rounded shape, for example.
In the aforementioned liquid crystal display device, the pixel electrode includes a plurality of sub-pixel electrodes, for example.
In the aforementioned liquid crystal display device, it is preferable that the liquid crystal layer including the vertical alignment type liquid crystal molecules contains a chiral agent.
The liquid crystal display device in the present invention offers a high degree of freedom in the size of pixel electrodes.
Embodiments of a liquid crystal display device according to the present invention are described with references to the figures below. However, the present invention is not limited to the examples shown in the present specification.
In the present specification, the term “pixel” refers to a smallest unit that represents a specified gradation in the display. In the color display, a pixel corresponds to a unit representing any one of the gradations of R (red), G (green) and B (blue), for example, and is also called a dot. The combination of R pixels, G pixels and B pixels constitutes a color display. In addition, the term “a pixel area” refers to an area of a liquid crystal display device corresponding to “a pixel” in the display.
A liquid crystal display device 1 of the present embodiment is described with reference to
As shown in
The aforementioned liquid crystal layer 4 is a vertical alignment type liquid crystal layer, and is a liquid crystal layer in which liquid crystal molecule axes are aligned at an angle of equal or greater than approximately 85° with respect to the surface of the vertical alignment film. The liquid crystal molecules 14 in the liquid crystal layer 4 have a negative dielectric anisotropy. The liquid crystal layer 4 together with the liquid crystal molecules 14 contains a chiral agent (not shown). The inclusion of a chiral agent raises the efficiency of light utilization. As the chiral agent, a material commonly used in a CPA mode and the like can be used, for example.
The aforementioned TFT substrate 11 contains a transparent glass plate 31, TFTs 9 (see
In addition, as illustrated in
The aforementioned CF substrate 12 includes a transparent glass plate 32, an opposite electrode (common electrode) 3, which is provided on the glass plate 32, and a photo-aligning vertical alignment film 5, which is provided to cover the opposite electrode 3. In addition, a CF layer (not shown) corresponding to one of the three primary RGB colors is placed between the aforementioned glass plate 32 and the opposite electrode 3.
The aforementioned opposite electrode 3 is made of a transparent thin film conductor such as ITO and is formed continuously to cover the glass plate 32 and face the pixel electrode 2 (2a and 2b) of the aforementioned TFT substrate 11 through the liquid crystal layer 4.
The aforementioned photo-aligning vertical alignment film 5 is made of a material with an orientation control force (a vertical orientation) which vertically aligns the liquid crystal molecules 14 of the liquid crystal layer 4, in a manner similar to an alignment film conventionally used in this type of liquid crystal display devices.
Here, however, the aforementioned photo-aligning vertical alignment film 5 additionally has a photosensitivity and is made of a material (having a photo aligning property) that exhibits an orientation control force, which aligns and tilts the liquid crystal molecules 14 in response to light illumination (exposure) of ultraviolet light or the like. The tilt angles of the liquid crystal molecules 14 are controlled by this orientation control force (a tilt orienting property). This type of material includes publicly known photo-aligning alignment film materials, such as polyimide side-chain substituted by azobenzene, polyimide side-chain substituted by cinnamate, coumarin, and the like, for example.
As shown in
The aforementioned alignment film 5 is described further with reference to
The orientation control force of the orientation control surfaces 15 (15a, 15b) acts on the liquid crystal molecules 14 of the liquid crystal layer 4 even when no voltage is applied.
In addition, the dotted lines shown in
The area of the orientation control surfaces 15 (15a, 15b) in
With reference to
In the liquid crystal display device 1 shown in
On the other hand, when no voltage is applied in the liquid crystal display device 1 of
In addition, as described above, the liquid crystal molecules 14 in the proximity of the surface of the respective orientation control surfaces 15 (15a, 15b) of the aforementioned alignment film 5 are tilted by the action of the respective orientation control surfaces 15 (15a, 15b) even when no voltage is applied. However, the tilt is very small (approximately 1°), and therefore the tilted liquid crystal molecules do not cause light leakage or lower contrast.
With reference to
The aforementioned exposure equipment 40 is in a plate form as a whole and is placed so as to be substantially in parallel with the aforementioned CF substrate 12. By having a light L such as ultraviolet light irradiate from the light source (not shown) placed on the upper side of this exposure equipment 40 and pass through the aforementioned pinholes 41 (41a, 41b), diffraction rays L′ are generated. Diffraction rays L′ (La′, Lb′) generated in the pinholes 41 (41a, 41b) progress radially from the respective pinholes 41 (41a, 41b) and the light is radiated radially or concentrically on the surface of the material 5′ of the aforementioned photo-aligning vertical alignment film 5. As a result, the aforementioned material 5′ photo-reacts to these diffraction rays L′ (La′, Lb′) and an orientation control force is imparted by the photoreaction. This orientation control force acts to align and tilt liquid crystal molecules.
According to the method using the pinholes shown in
In addition, if various conditions, such as the diameter of the pinhole areas 41, the shape of the pinholes 41, a distance between the light source and the exposure equipment 40, the distance between the exposure equipment 40 and the aforementioned material 5′, the light source condition (the illumination angle, illumination strength, illumination area, for example), or a combined use with other optical members and the like, are properly set, the shape, size (area), and the like of the orientation control surfaces 15 (15a, 15b) can be adjusted appropriately.
Next, the method shown in
The aforementioned exposure equipment 50 includes a light-transmissive supporting plate 52, and a plurality of microlenses 51(51a, 51b) provided on the surface of the CF substrate 12 side of this supporting plate 52. The respective microlenses 51 (51a, 51b) are placed in a matrix by the exposure equipment 50 so as to form the respective orientation control surfaces 15 (15a, 15b) corresponding to the respective pixel electrodes 2 (2a, 2b) (see
The aforementioned exposure equipment 50 is in a plate form as a whole and is placed so as to be substantially in parallel with the aforementioned CF substrate 12. By having the light L such as ultraviolet light irradiate from the light source (not shown) placed on the upper side of this exposure equipment 50 and by having the light L pass through the aforementioned microlenses 51 (51a, 51b), the light L″ (La″, Lb″) which progress radially is generated. The light L″ (La″, Lb″) that have passed through the aforementioned microlenses 51 (51a, 51b) progress radially from the respective microlenses 51 (51a, 51b), and the light is radiated radially (or concentrically) on the surface of the aforementioned material 5′ of the aforementioned photo-aligning vertical alignment film 5.
Then, the aforementioned material 5′ photo-reacts to the light L″ (La″, Lb″) and an orientation control force is imparted by the photoreaction. This orientation control force acts to align and tilt liquid crystal molecules. In this way, the orientation control surfaces 15 (15a, 15b) can be formed on the aforementioned material 5′ and the photo-aligning vertical alignment film 5 can be obtained in the present embodiment. As described, the exposure method which uses the microlenses 51 is specifically referred to as a “microlens exposure” in the present specification.
In addition, if various conditions, such as the diameter and the shape (curvature) of the microlenses 51, the distance between the light source and the exposure equipment 50, the distance between the exposure equipment 50 and the aforementioned material 5′, the light source condition (the illumination angle, illumination strength, illumination area, for example), or a combined use with other optical members and the like, are properly set, the shape, size (area), and the like of the orientation control surfaces 15 (15a, 15b) can be adjusted accordingly.
In the these embodiments, the alignment film 5 of the liquid crystal display device 1 uses the area in which the light such as ultraviolet light is radiated (exposure) as the orientation control surfaces 15. However, in other embodiments, it is possible to use an area in which the light is not radiated (exposure) as an orientation control surface if an orientation control surface has a control force by aligning and tilting liquid crystal molecules.
As described above, the liquid crystal display device 1 of the present embodiment controls the orientation of liquid crystal molecules radially, using only the alignment film 5. Therefore, it is not necessary to use protrusions (ribs) as in the case of the conventional liquid crystal display devices.
Thus, in the liquid crystal display device 1 of the embodiments of the present invention, even when the size of the pixel electrodes 2 is changed as needed, neither lower contrast nor slower response speed are caused by the change. Therefore, it can be said that the liquid crystal display device 1 of the embodiments of the present invention has a high degree of freedom in the size of pixel electrodes.
Furthermore, in the liquid crystal display device 1 of the above embodiments, an alignment film (not shown) provided on the side of the TFT substrate 11 may be similar to a conventional vertical alignment film, or may be made of the same material as the photo-aligning vertical alignment film 5 of the aforementioned CF substrate 12.
The liquid crystal display device 1 of the above embodiments was a transmissive type, but in other embodiments, it may be of other types such as a reflective type, a projection type, a transmissive/reflective dual type, and the like.
The liquid crystal display device 1 of the above embodiments was in a mode using linear polarized light as the polarized light, but in other embodiments, circularly polarized light or elliptically polarized light may be used.
In addition, in other embodiments, a photo-aligning vertical alignment film containing an orientation control surface may be provided on the TFT substrate 11, and a photo-aligning alignment film containing an orientation control surface also may be provided on both the TFT substrate 11 and the CF substrate 12.
Number | Date | Country | Kind |
---|---|---|---|
2009-139812 | Jun 2009 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP10/55867 | 3/31/2010 | WO | 00 | 12/6/2011 |