This application claims priority to and the benefit of Korean Patent Application No. 10-2005-70096342 filed in the Korean Intellectual Property Office on Oct. 13, 2005, the contents of which are incorporated herein by reference.
(a) Field of the Invention
The present invention relates to a liquid crystal display, and more particularly; to a common voltage generator of a liquid crystal display.
(b) Description of the Related Art
Typically, a liquid crystal display (LCD) includes two display panels having pixel electrodes and a common electrode, and a dielectric-anisotropic liquid crystal layer interposed between the two display panels. The pixel electrodes are arranged in a matrix configuration with rows and columns and are connected to switching elements such as thin film transistors (TFTs) such that data voltages are sequentially applied to rows of the pixel electrodes. The common electrodes are formed to cover an entire surface of the display panel, and a common voltage is applied to the common electrode. In a circuit diagram, the pixel electrodes, the common electrode, and the liquid crystal layer interposed therebetween form a liquid crystal capacitor, and the liquid crystal capacitor and the switching element connected to the liquid crystal capacitor serve as a basic unit of a pixel.
In the liquid crystal display, an electric field is formed in the liquid crystal layer by applying voltages to the two electrodes, and light transmission through the liquid crystal layer is controlled by adjusting the intensity of the electric field in the liquid crystal layer. Accordingly, a desired image is obtained. Often, the polarity of the data voltage with respect to the common voltage is inverted every frame, every row, or every pixel to prevent device deterioration that may result from applying the electric field to the liquid crystal layer in one direction for a long time.
The liquid crystal display includes a liquid crystal panel assembly that has pixels each having a switching element and display signal lines connected to the pixels, a data driver that applies corresponding data voltages to the pixels through the switching elements, a gray voltage generator that generates gray voltages and supplies the gray voltages to the data driver, and a common voltage generator that supplies the common voltage to the liquid crystal panel assembly.
A problem with the liquid crystal display is the formation of a parasitic capacitance between the gate and the drain of each switching element. Formation of the parasitic capacitance causes coupling of the common voltage with the data voltage, which results in the common voltage becoming higher or lower than the intended voltage. Therefore, a direct current is applied in the form of an alternating current, and different voltages are applied to the pixels. When the difference in the voltages applied to the pixels becomes large enough, stripe-shaped horizontal crosstalk is displayed on a screen. It is desirable to eliminate this horizontal crosstalk, as it deteriorates image quality.
The present invention provides a liquid crystal display driving device and a liquid crystal display with reduced crosstalk.
In one aspect, the invention is a device for driving a liquid crystal display that includes a common voltage generator that generates first and second common voltages. The common voltage generator includes a first capacitor provided between a first terminal for outputting the first common voltage and a second terminal for outputting the second common voltage.
The common voltage generator may further include an operational amplifier that has an inversion terminal, a non-inversion terminal, and an output terminal, wherein the output terminal is coupled to the first terminal. The common voltage generator may also include a second capacitor that has one end connected to a first voltage and the non-inversion terminal and the other end grounded, a first resistor that is connected to the inversion terminal and a second voltage, a second resistor that is connected to the inversion terminal and the first terminal, and a third resistor that is connected to a third voltage and the second terminal.
In another aspect, present invention is a liquid crystal display including the above driving device.
The accompanying drawings briefly described below illustrate exemplary embodiments of the present invention, and together with the description, serve to explain the principles of the present invention.
The present invention will be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown.
In the drawings, the thicknesses of layers, films, panels, regions, etc., are exaggerated for clarity. Like reference numerals designate like elements throughout the specification. It will be understood that when an element such as a layer, a film, a region, or a substrate is referred to as being “on” another element, it can be “directly on” another element or intervening elements may also be present therebetween. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present therebetween.
First, a liquid crystal display according to an exemplary embodiment of the present invention will be described in detail with reference to FIGS. 1 to 3.
As shown in
In an equivalent circuit of the liquid crystal panel assembly, the liquid crystal panel assembly 300 includes a plurality of signal lines G1 to Gn and D1 to Dm, and a plurality of pixels PX that are connected to the plurality of signal lines G1 to Gn and D1 to Dm and arranged substantially in a matrix configuration. In the structure shown in
The signal lines G1 to Gn and D1 to Dm include a plurality of gate lines G1 to Gn used to transmit gate signals (referred to as “scanning signals”), and a plurality of data lines D1 to Dm used to transmit data signals. The gate lines G1 to Gn extend substantially in a first direction and are substantially parallel to each other, and the data lines D1 to Dm extend substantially in a second direction and are substantially parallel to each other. The first and the second direction are substantially perpendicular to each other.
Each of the pixels PX, for example, a pixel PX connected to both an i-th (i=1,2, . . . , n) gate line Gi and a j-th (j=1,2, . . ., m) data line Dj includes a switching element Q connected to signal lines Gj and Dj, and a liquid crystal capacitor Clc and a storage capacitor Cst that are connected to the switching element Q. If desired, the storage capacitor Cst may be omitted.
The switching element Q is a three-terminal element such as a thin film transistor that is provided on the lower panel 100. A control terminal of the switching element Q is connected to the gate line Gi, an input terminal thereof is connected to the data line Dj, and an output terminal thereof is connected to both the liquid crystal capacitor Clc and the storage capacitor Cst.
The liquid crystal capacitor Clc has a pixel electrode 191 on the lower panel 100 and a common electrode 270 on the upper panel 200 that function as two terminals. The liquid crystal layer 3 interposed between the two electrodes 191 and 270 serves as a dielectric material. The pixel electrode 191 is connected to the switching element Q, and the common electrode 270 is formed on an entire surface of the upper panel 200. A common voltage Vcom is applied to the common electrode 270. Unlike the structure shown in
The storage capacitor Cst is formed by a separate signal line (not shown) and the pixel electrode 191 sandwiching an insulator. A predetermined voltage such as the common voltage Vcom is applied to the separate signal line. In some embodiments, the storage capacitor Cst may be formed by the pixel electrode 191 and a previous gate line sandwiching an insulator.
Depending on the embodiment, colors images may be produced by spatial division or temporal division. In spatial division, each of the pixels PX is assigned a primary color and color is produced by activating certain pixels. In temporal division, each of the pixels PX alternately displays different primary colors at different times so that a desired color is displayed by controlling the color of each of the pixels. Typically, red, green, and blue are used as the primary colors although other color combinations may be used.
At least one polarizer (not shown) for polarizing light is attached to the outer surface of the liquid crystal panel assembly 300.
Referring again to
The gate driver 400 includes a plurality of gate driver ICs 440. Further, the gate driver 400 is connected to the gate lines Gi to Gn of the liquid crystal panel assembly 300 and applies gate signals, which are formed by combination of a gate-on voltage Von and a gate-off voltage Voff, to the gate lines G1 to Gn.
The data driver 500 includes a plurality of data drivers ICs 540, and is connected to the data lines D1 to Dm of the liquid crystal panel assembly 300. In addition, the data driver 500 selects a gray voltage from the gray voltage generator 800 and applies the selected gray voltage to the data lines D1 to Dm as a data signal. When the gray voltage generator 800 does not provide voltages for all grayscales but provides only a predetermined number of reference gray voltages, the data driver 500 generates gray voltages for all grayscales by dividing the reference gray voltages and selects a data signal among the gray voltages for all grayscales.
The common voltage generator 700 modifies a feedback voltage Vcomf of the common voltage Vcom and applies the modified voltage Vcom′ to the liquid crystal panel assembly 300 through a dummy pad (not shown) of the data driver ICs 540 and the short-circuit points SP1 to SP3 connected to the dummy pad.
The signal controller 600 controls the gate driver 400, the data driver 500, and the like.
Some or all of the driving devices 400, 500, 600, 800 are mounted on flexible printed circuit film 410 or 510 as shown in
Hereinafter, the operation of the liquid crystal display will be described in detail.
The signal controller 600 receives input image signals R, G, and B from an external graphics controller (not shown), and input control signals for controlling the display of the input image signals R, G, and B. The input control signals may include a vertical synchronization signal Vsync, a horizontal synchronizing signal Hsync, a main clock signal MCLK, a data enable signal DE, and the like.
The signal controller 600 appropriately processes the input image signals R, G, and B using the input control signals so that the input image signals R, G, and B correspond to operating conditions of the liquid crystal panel assembly 300, and generates gate control signals CONT1, data control signals CONT2, and the like. Then, the signal controller 600 transmits the gate control signals CONT1 to the gate driver 400, and transmits the data control signals CONT2 and the processed image signals DAT to the data driver 500.
Each of the gate control signals CONT1 includes a scanning start signal STV for instructing the start of scanning, and at least one clock signal for controlling the output period of the gate-on voltage Von. In addition, the gate control signal CONT1 may further include an output enable signal OE for limiting the duration of the gate-on voltage Von.
Each of the data control signals CONT2 includes a horizontal synchronization start signal STH for directing the start of transmitting image data to a row (group) of pixels PX, and a load signal LOAD and a data clock signal HCLK for causing the data signals to be applied to the data lines Di to Dm. In addition, each of the data control signals CONT2 may further include an inversion signal RVS for inverting the voltage polarity of the data signal for the common voltage Vcom (hereinafter, “the voltage polarity of the data signal for the common voltage” is briefly referred to as “the polarity of the data signal”).
The data driver 500 converts the digital image signals DAT into analog data signals by receiving the digital image signals DAT for a row (group) of pixels PX, and selecting respective gray voltages corresponding to the digital image signals DAT on the basis of the data control signals CONT2 from the signal controller 600. Then, the data driver 500 applies the analog data signals to corresponding data lines D1 to Dm.
The gate driver 400 turns on the switching elements Q connected to the gate lines G1 to Gn. by applying the gate-on voltage Von to the gate lines G1 to Gn. on the basis of the gate control signal CONT1 from the signal controller 600. Accordingly, the data signals applied to the data lines D1 to Dm are applied to the corresponding pixels PX through the turned-on switching elements Q.
The difference between the voltage of the data signal applied to each pixel PX and the common voltage Vcom is represented as a voltage charged in the liquid crystal capacitor Clc, that is, a pixel voltage. Since the arrangement of the liquid crystal molecules changes depending on the level of the pixel voltage, the polarization of the light passing through the liquid crystal layer 3 also changes. The change in polarization in turn affects light transmittance of the polarizers attached to the display panel assembly 300.
The gate-on voltage Von is sequentially applied to all gate lines G1 to Gn. and the data signals are applied to all pixels PX by repeating the above-mentioned processes for 1 horizontal period (which is represented as “1H”, and is equal to one period of the horizontal synchronizing signal Hsync and the data enable signal DE). Accordingly, one frame of the image is displayed.
A display of a previous frame is completed, a display of a next frame begins, and the inversion signal RVS applied to the data driver 500 is controlled so that the data signal applied to each pixel PX has the polarity opposite in the polarity of the previous frame (“frame inversion”). In this case, even in one frame, the polarity of a data signal to be transmitted through one data line is changed (for example, row inversion, dot inversion) depending on the characteristic of the inversion signal RVS, or the polarities of data signals applied to one row of pixels may be changed (for example, column inversion, dot inversion).
Hereinafter, a common voltage generator of the display according to the exemplary embodiment of the present invention will be described in detail with reference to
Referring to
The operational amplifier OP is a differential amplifier. The operational amplifier OP adjusts the difference between the reference voltage VREF and the feedback voltage Vcomf, and outputs the common voltages Vcom1 and Vcom2 that are results of processing the reference voltage VREF in light of the feedback voltage Vcomf. The common voltage Vcom1 is output from the output terminal of the operational amplifier OP, and the common voltage Vcom2 is output from a junction between the resistor R3 and the capacitor C2. In this case, the common voltage Vcom1 may be input through the short-circuit point SP1, and the common voltage Vcom2 may be input to the liquid crystal panel assembly 300 through the short-circuit point SP2.
The reference voltage VREF has substantially the same level as the common voltage Vcom first input to the liquid crystal panel assembly 300, and the feedback voltage Vcomf may be output through the short-circuit point SP3.
In this case, the common voltage Vcom2 is obtained by dividing the voltage between the source voltage AVDD and the common voltage Vcom1 with impedances of the resistor R3 and the capacitor C2. When the source voltage AVDD is constant and the common voltage Vcom1 has a constant alternating current component, the common voltage Vcom2 changes according to the common voltage Vcom1 so as to also have a constant alternating current component.
The waveforms of the common voltages shown in
Separate operational amplifiers are not needed for the common voltage Vcom2 and the common voltage Vcom1. Rather, the second capacitor C2 is provided between the output terminals of the common voltages Vcom1 and Vcom2. Accordingly, as an added benefit of the invention, the number of parts and the manufacturing cost can be reduced. Since the capacitor C2 is provided between the output terminals of the common voltages Vcom1 and Vcom2, the distortion components of the common voltage Vcom2 are reduced. As a result, the horizontal crosstalk can be reduced.
While this invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments and is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2005-0096342 | Oct 2005 | KR | national |